
A Case for Adaptive Redundancy

for HPC Resilience�

Saurabh Hukerikar, Pedro C. Diniz, and Robert F. Lucas

Information Sciences Institute,
University of Southern California,
Marina del Rey, CA 90292, USA

{saurabh,pedro,rflucas}@isi.edu

Abstract. Redundancy both in space and time has been widely used to
detect and in some cases correct errors in High Performance Computing
(HPC) systems. With the HPC community seeking exascale class super-
computers by the end of the decade, unrealistic expectations for correct
system behavior will result in exorbitant costs in terms of performance
lost and energy expended. Resilience strategies will need to find balance
between fault coverage and the overheads incurred. In this work, we pro-
pose an adaptive approach that factors in application level knowledge
together with runtime inference about the fault tolerance state of the
system to dynamically enable redundant multithreading (RMT). Our
approach is based on simple programming language extensions, tightly
integrated with a compiler infrastructure and a runtime framework that
enables managing the performance overheads of redundant computation.

1 Introduction

In the era of exascale supercomputers, systems will frequently encounter faults
that lead to system errors and failures. With smaller transistor feature sizes and
lower supply voltages in each new process generation, chips are projected to
become increasingly vulnerable to errors [1]. Single Event Upsets (SEUs) that
cause soft errors are an important class of errors and with shrinking transis-
tor geometries, the likelihood that these result in multi-cell upsets (MCU) will
also increase. Error correcting codes (ECC) in memory and parity in latches
and registers have been used for detection and in some cases correction so that
the errors remain transparent to the application and system software. Exascale
High Performance Computing (HPC) systems are projected to deploy millions
of processor cores and memory chips organized in complex hierarchies [2]. Even
if individual component reliabilities were to remain the same as they are today,

� This research has been supported by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research (Award Number DE-SC0006844).
Partial support for this work was also provided through a contract from Sandia
National Laboratories (Award Number 1315083).

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 690–697, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



A Case for Adaptive Redundancy for HPC Resilience 691

the sheer scale of these systems would make the Mean Time to Interrupt (MTTI)
so small that a significant fraction of the applications’ execution times would be
spent on failure recovery actions.

Redundancy, either in space or in time, has been widely used for error detec-
tion and recovery. An N-modular redundancy approach entails creating as many
replicas of the computation whose results are compared to verify correctness
and errors are masked through majority voting. In HPC systems, software man-
aged system level approaches that use complete replication at the process level
have been shown to reduce the number of interrupts that an application expe-
riences [3]. Redundant multithreading (RMT) involves running identical copies
of the same program as independent threads. When there is an output mis-
match, the checker flags an error and initiates a recovery sequence. Redundant
computation constitutes a preemptive approach to fault tolerance and there is a
significant performance degradation associated with using it for entire programs.
In future exascale class supercomputing systems, there will be billions of pro-
cesses and threads, and applying redundancy systemwide for error detection and
masking will result in massive penalties to application performance and energy.

We believe that redundancy should be judiciously applied, factoring in the
requirements of the application as well as the fault tolerance state of the system.
In this paper, we propose an approach that allows the selective use of multi-
threaded redundancy based on the programmer’s insight. The approach is based
on modest programming model extensions that allows programmers to specify
what regions of the application code require robust computation. Additionally,
whether to enable the redundant multithreading is based on monitoring and in-
ference of fault events by a runtime system. This selective and adaptive use of
redundancy seeks to minimize the large performance overheads associated with
complete replication. We present an initial framework and preliminary results,
and discuss future research directions for future exascale systems.

The rest of the paper is organized as follows: Section 2 looks at various redun-
dancy based fault tolerance approaches in hardware and software and makes the
case for adaptive redundancy. Section 3 explains the programming construct, its
syntax and semantics. Section 4 describes the role of the runtime, and Section
5 presents the experimental evaluation and some initial results while Section 6
describes the ongoing and future work.

2 Background

In HPC systems, studies have argued for multi-modular redundancy in compute
nodes and have shown to accommodate a reduction in individual component
reliability by a factor of 100-100,000 to justify the 2x or 3x increase in cost and
energy [4]. Ferreira et. al [5] evaluate the costs and benefits of using MPI process
replication as an alternative to the widely used checkpoint restart protocols,
while Stearley et. al [6] observe that partial process replication helps increase the
Job Mean Time to Interrupt (JMTTI) of tasks, but that there is no alternative
to full process replication for highly resilient operation. However, given the scale



692 S. Hukerikar, P.C. Diniz, and R.F. Lucas

of future exascale systems in terms of number components and the complexity
of applications, complete node-level or process-level multi-modular redundancy
would incur exorbitant overhead to costs, performance and energy.

Hardware solutions that employ redundancy are transparent to the supervisor
software and application programmer, but require specialized hardware. In the
domain of commercial transaction processing, fault tolerant servers such as the
Tandem Non-Stop [7] and later the HP NonStop [8] used two redundant proces-
sors running in locked step. Later the IBM G5 [9] employed two fully duplicated
lock-step pipelines to enable low-latency detection and rapid recovery. The over-
heads of energy and cost to widely employ such hardware techniques for exascale
HPC systems however, would be extremely high. Approaches that leverage mul-
tiple contexts in Simultaneous Multithreaded (SMT) processors have also been
studied. Such RMT approaches show slightly lower power and performance over-
heads in comparison to redundant locked-step processor based systems [10] [11].

Software-based redundant multithreading approaches tend to offer more flex-
ibility and are less expensive in terms of silicon area as well as chip development
and verification costs. SWIFT [12] is a compiler-based transformation which
duplicates all program instructions and inserts comparison instructions during
code generation and the duplicated instructions fill the scheduling slack. The
DAFT [13] approach uses a compiler transformation that duplicates the entire
program in a redundant thread that trails the main thread and inserts instruc-
tions for error checking.

The primary limitation of complete replication approaches is that they indulge
in preemptive robustness and therefore they account for neither the type of
faults, their location and frequency, nor the requirements of the application code
and any algorithm specific fault tolerance features of the application.

3 Programming Language Extensions

Many classes of algorithms used in scientific applications selectively require ro-
bust computation. However, there are no convenient mechanisms for the pro-
grammer to partition the application code into such regions and for the system
to utilize such knowledge. For example the Fault Tolerant Generalized Minimal
Residual (FTGMRES) algorithm [14] can be partitioned into reliable and un-
reliable phases. Robust computation is required of only the reliable phases for
eventual convergence to the right solution. Several iterative linear solvers [15]
and multigrid solvers [16] contain phases that tend to show different fault re-
silience features. Rather than complete program level redundancy, only the code
contained within these programmer defined regions can be executed by multiple
redundant threads.

We present a programming model extension that is based on a preprocessor
pragma directive that enables delineating code into regions that require robust
computation. The compiler inserts the code that enables such regions to be run
by multiple independent threads and to compare their respective outputs. The
syntax is depicted below:



A Case for Adaptive Redundancy for HPC Resilience 693

#pragma robust shared<va r i ab l e l i s t . . . >
{

/∗
code
. . . ∗/

}

The language extension provides OpenMP style data scoping clauses: shared
to specify the global variables that the code section may consume as input or
output; and a private clause (not shown above) to list variables whose scope is
limited to the section. The compiler used in this work is based on the ROSE [17]
source-to-source compiler infrastructure. We use source outlining to extract the
code section encompassed by the #pragma robust directive to create an outlined
function whose pointer can be passed to a threading library. We also extend the
application code through source level transformations that insert instructions
that compare the values of the sentinel value generated by the redundant threads
and informs the runtime system in case of a mismatch in values. In this initial
implementation, we also create a duplicate copy of the global data that the
section modifies to avoid data races and synchronization issues between the
redundant threads.

4 Runtime System

4.1 Runtime Adaptation

While the programmer driven partitioning described in Section 3 seeks to man-
age the application performance overhead to some extent, most redundancy ap-
proaches also do not take into account the fault tolerance state of the system
which may alter due to external environmental factors as well as operational fea-
tures of the system. Soft errors are random external events attributed to alpha
particles that originate from within the chip packages and high-energy neutrons
from cosmic radiation. Power management techniques that dynamically scale
the voltage and frequency also impact the reliability of circuits [18]. Faults at-
tributed to silicon aging that emerge due to temperature induced stresses and
other ambient conditions tend to manifest themselves gradually. The occurrence
of such faults may be distributed in bursts or as random individual events and
therefore the robustness offered by redundant execution would be best served
when the system state is vulnerable.

Our runtime system adapts to the changing fault tolerance state of the under-
lying system by enabling RMT execution when the fault tolerance state degrades,
for example, if the system experiences too many ECC errors in the caches, or if
an application level algorithm based fault tolerance (ABFT) method detects er-
rors once too often. The runtime is implemented as an independent light-weight
process that monitors the state of the application and interfaces with the oper-
ating system through an interrupt handler mechanism. The runtime maintains
a log of fault events in the system. It also maintains a Dynamic Resilience Map



694 S. Hukerikar, P.C. Diniz, and R.F. Lucas

(DRM) [19] which contains the mapping of program-level data structures, func-
tions and code segments, their program-level address offsets, and the correspond-
ing mapping in physical memory, so that it can reason about the significance of
the location of the error in the context of the application’s logical address space.

For this initial implementation of the runtime system, the notion of a fault
event is generalized and may represent a corrected ECC error in the memory, a
processor exception or even an error detected by an application level algorithmic
fault tolerance method. Also, the current implementation uses a threshold value
of event count when deciding whether to initiate the redundant multithreading.
The development of better heuristics that base the decision of whether to enable
and subsequently disable redundant multithreading on the type and location of
the fault, whether the event occurred as an isolated event, or shows a pattern
over a period of time, is the subject of ongoing work.

4.2 Core Mapping Policies

The runtime system also makes possible spatial redundancy such that it can
leverage multiple processor cores in the context of shared memory multiproces-
sor (SMP) by assigning the redundant threads to separate processor cores. We
explore two policies:

– Adaptive RMT - Trailing Thread: This policy executes the duplicate thread
on the same processor core so that the input data variables can be shared
by both threads and therefore has some data locality advantages.

– Adaptive RMT - Core Mapping: This policy maps the RMT threads on a
separate core in a SMP. This provides more complete fault coverage since
the redundant threads are executed on separate hardware, but needs the
input data to be replicated and communicated to the private cache of the
core that runs the duplicate redundant thread.

The runtime can therefore make a reasoned trade-off between the fault cover-
age requirement and performance overhead. For this implementation the policy
for core affinity of the redundant threads is configured at initialization and we
are currently exploring heuristics that can dynamically select between the two
policies based on type and frequency of fault events.

5 Experimental Evaluation

5.1 Methodology

We analyze the impact of adaptive redundant multithreading approach with
DGEMM, a double-precision matrix-matrix multiplication kernel that is a basic
building block for dense matrix linear algebra. We utilize the partitioning based
on the #pragma robust directive described in Section 3 on the inner product
of DGEMM. We evaluate application performance to understand the benefits
achieved from the programmer guided selective redundancy and the runtime
based adaptive enabling of RMT for the following cases:



A Case for Adaptive Redundancy for HPC Resilience 695

– Baseline: Process level redundancy where the program is executed by inde-
pendent operating system created processes.

– Complete RMT - Trailing Thread : The runtime is configured so that re-
dundant multithreading is enabled throughout the application run but only
the #pragma robust annotated sections are executed by a redundant thread
that trails the main thread on the same processor core.

– Complete RMT - Core Mapped Thread : A redundant thread is also created
for all annotated sections, but the runtime maps the redundant threads to
different cores.

– Adaptive RMT - Trailing Thread: The redundant multithreading is enabled
dynamically by the runtime upon occurrence of fault events and all subse-
quent #pragma robust annotated sections are executed by a trailing thread
on the same processor core.

– Adaptive RMT - Core Mapping: RMT is also enabled based on runtime
inference but the redundant threads are mapped to separate processor cores.

The objective of the complete RMT experiments is to evaluate the perfor-
mance benefit of selective application of redundancy to only the inner product
of the DGEMM rather than the complete program. The adaptive RMT config-
urations evaluate performance benefit of turning on robustness only when the
system experiences fault events. Our fault injection framework allows injection
of faults at any point in the application execution and these are logged by the
runtime. We generate a single fault event per application run and the instant of
event generation is randomized across experiment runs and we perform 10000
runs per matrix problem size. For these experiments, the runtime system is
configured such that the threshold for switching the application into redundant
multithreading mode is a single error event. The evaluation platform is an Intel
TMXeon 8-core 2.4 GHz compute node running the Linux operating system.

5.2 Results

The figure 1 shows the average execution time for each configuration. The base-
line is the performance of process level redundancy where the entire program
is executed twice and the final results compared. When redundancy is applied
to only programmer annotated regions, but all sections in the DGEMM are re-
dundantly executed, the average execution time (of all problem sizes) is 85% of
the baseline time for the trailing thread configuration. Further benefit is realized
when the redundant thread is assigned to a separate processor core and the aver-
age execution time is 25% lower than the baseline and shows much as 42% lower
execution time for the largest matrix problem size. For the runtime adaptation,
the performance results reflect the average execution time across the 10000 ex-
perimental runs. For these runs redundant multithreading is enabled only upon
detecting a fault event by the runtime system and the average execution time
for all problem sizes is 65% of the baseline execution time with trailing redun-
dant threads. When the dynamically enabled redundant threads are mapped to
separate cores, the average execution time is 41% faster than baseline and as
much as 52% faster than baseline for the largest problem size.



696 S. Hukerikar, P.C. Diniz, and R.F. Lucas

Fig. 1. Results: Performance Comparison of Adaptive Redundant Multithreading

6 Conclusion and Future Work

Redundancy is an effective strategy in the detection and in some cases correc-
tion of errors but incurs extremely high overheads. In this paper we presented
a software based adaptive application of redundant multithreading that allows
for a balanced and reasoned trade-off between application resiliency and perfor-
mance overheads incurred. Redundancy is enabled based on runtime inference
of the system’s fault tolerance state and through a simple language extension
the programmer’s requirements for robustness are incorporated. The initial re-
sults suggest that the approach holds promise in managing the trade-off between
performance and fault coverage, but much work remains to be done. We are cur-
rently broadening the definition of events to include more fault models and fault
distribution patterns that are relevant to future exascale systems. This will allow
design of effective runtime heuristics that will intelligently enable and eventually
disable RMT as well as guide core assignment of redundant threads.

References

1. Shivakumar, P., Kistler, M., Keckler, S., Burger, D., Alvisi, L.: Modeling the effect
of technology trends on the soft error rate of combinational logic. In: International
Conference on Dependable Systems and Networks, pp. 389–398 (2002)

2. Kogge, P., Bergman, K., Borkar, S., et al.: Exascale Computing Study: Technology
Challenges in Achieving Exascale systems. Technical report, DARPA (September
2008)



A Case for Adaptive Redundancy for HPC Resilience 697

3. Riesen, R., Ferreira, K., Stearley, J., et al.: Redundant computing for exascale
systems. Technical report, Sandia National Laboratories (December 2010)

4. Engelmann, C., Ong, H.H., Scott, S.L.: The Case for Modular Redundancy in
Large-scale High Performance Computing Systems. In: International Conference on
Parallel and Distributed Computing and Networks, pp. 189–194 (February 2009)

5. Ferreira, K., Stearley, J., Laros III, J.H.: et al.: Evaluating the viability of process
replication reliability for exascale systems. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
pp. 1–12 (2011)

6. Stearley, J., Ferreira, K., Robinson, D., et al.: Does Partial Replication Pay off? In:
IEEE/IFIP 42nd International Conference on Dependable Systems and Networks
Workshops, DSN-W (2012)

7. McEvoy, D.: The architecture of tandem’s nonstop system. In: Proceedings of the
ACM 1981 Conference. ACM, New York (1981)

8. Bernick, D., Bruckert, B., Vigna, P., Garcia, D., Jardine, R., Klecka, J., Smullen,
J.: NonStop Advanced Architecture. In: International Conference on Dependable
Systems and Networks, pp. 12–21 (2005)

9. Slegel, T., Averill III, R.M., Check, M., et al.: IBM’s S/390 G5 Microprocessor
Design. Micro, pp. 12–23. IEEE (1999)

10. Reinhardt, S.K., Mukherjee, S.S.: Transient fault detection via simultaneous mul-
tithreading. SIGARCH Computer Architecture News, 25–36 (May 2000)

11. Vijaykumar, T., Pomeranz, I., Cheng, K.: Transient-Fault Recovery using Simul-
taneous Multithreading. In: 29th Annual International Symposium on Computer
Architecture, pp. 87–98 (2002)

12. Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D.: SWIFT: Software
Implemented Fault Tolerance. In: International Symposium on Code Generation
and Optimization, pp. 243–254 (2005)

13. Zhang, Y., Lee, J.W., Johnson, N.P., August, D.I.: DAFT: Decoupled Acyclic Fault
Tolerance. In: Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT 2010, pp. 87–98 (2010)

14. Bridges, P.G., Ferreira, K.B., Heroux, M.A., Hoemmen, M.: Fault-tolerant linear
solvers via selective reliability. CoRR (2012)

15. Bronevetsky, G., de Supinski, B.: Soft Error Vulnerability of Iterative Linear Al-
gebra Methods. In: Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS 2008, New York, NY, USA, pp. 155–164 (2008)

16. Casas, M., de Supinski, B.R., Bronevetsky, G., Schulz, M.: Fault resilience of the
algebraic multi-grid solver. In: Proceedings of the 26th ACM International Confer-
ence on Supercomputing, ICS 2012, New York, NY, USA, pp. 91–100 (2012)

17. Rose Compiler, http://www.rosecompiler.org
18. Melhem, R., Mosse, D., Elnozahy, E.: The interplay of power management and

fault recovery in real-time systems. IEEE Transactions on Computers 217–231
19. Hukerikar, S., Diniz, P.C., Lucas, R.F.: A Programming Model for Resilience in

Extreme Scale Computing. In: IEEE/IFIP 42nd International Conference on De-
pendable Systems and Networks Workshops, DSN-W (2012)

http://www.rosecompiler.org

	A Case for Adaptive Redundancy for HPC Resilience
	1 Introduction
	2 Background
	3 Programming Language Extensions
	4 Runtime System
	4.1 Runtime Adaptation
	4.2 Core Mapping Policies

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion and Future Work
	References




