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Abstract. Trends in high performance computing are bringing
increased heterogeneity among the computational resources within a sin-
gle machine. The heterogeneous CPU/GPU platforms, however, exacer-
bate resilience problems faced by current large-scale systems. How to
design efficient resilience strategies is critical for the wider adoption of
heterogeneous platforms for future exascale systems. The conventional
resilience strategy for GPU brings significant performance and power
overhead, because they employ a one-size-fits-all approach to enforce
uniform data protection. In addition, the isolation between CPU and
GPU protection loses potential optimization opportunities provided by
the heterogeneous CPU/GPU platforms. In this paper, we explore the
viability of using an application-driven CPU/GPU cooperative method
to detect faults occurred on GPU global memory. By selectively protect-
ing application-critical data and leveraging time and space redundancy
in CPU to detect faults, we bring only 2.2% performance overhead while
capturing more than 90% errors that cause incorrect application results.
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1 Introduction

Trends in high performance computing are bringing increased heterogeneity
among the computational resources within a single machine. For example, the
GPU accelerator, a major source of heterogeneity today, is already adopted in
HPC systems. With appropriate mapping between workloads and heterogeneous
resources, the heterogeneous platforms can accelerate performance and/or im-
prove energy efficiency for applications with varying performance characteristics.
However, the heterogeneous platforms exacerbate resilience problems faced by
current large-scale systems. First, the GPU-like accelerator brings higher proces-
sor density and memory bandwidth consumption, which tends to cause higher
error rates. Second, the diversity of devices demands various fault protection
mechanisms, and these mechanisms must be customized to the needs of archi-
tecture and system software. How to design efficient resilience strategies for het-
erogeneous platforms is an open question. The answer to this question is critical
for the wider adoption of heterogeneous platforms for future exascale systems.

The conventional resilience mechanism usually employs a one-size-fits-all ap-
proach: a uniform protection is enforced, regardless of application semantics.
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As a result, a number of resilience mechanisms (e.g., hardware ECC, process
replication, and system-level checkpoint/restart) come with large performance
and power overhead. However, our recent work [1] reveals that the application
data structures can display diverse vulnerability because of variant application
behavior and memory access patterns. It is possible to use an application-driven
approach to selectively protect data, such that we can reduce fault tolerance
overhead.

Furthermore, the conventional resilience strategy enforces isolated protection
in most cases. For example, on high-end computing systems, the main mem-
ory on the CPU side can be protected by heavyweight Chipkill ECC, while
the global memory on the GPU side has no protection or has protection with
lightweight SECDED ECC. There is no cooperation for data protection between
CPU and GPU, and also the resilience mechanisms are separated from each
other. However, heterogeneity provides new opportunities to improve resilience.
In particular, each computing unit (e.g., CPU or GPU) can provide space and
time redundancy to another. Hence, it is possible to implement a cooperative re-
silience mechanism by shifting some protection responsibility for one computing
unit to another. This cooperative methodology can potentially reduce overhead
accompanied with resilience mechanisms.

In this work, we rethink the traditional resilience strategy on a heterogeneous
CPU/GPU platform, and explore the viability of using an application-driven
CPU/GPU cooperative method to detect faults occurred on GPU global mem-
ory. In particular, we investigate a software-based fault detection mechanism on
GPU. This resilience mechanism provides protection to data based on application
knowledge and data vulnerability analysis, and greatly reduces fault detection
overhead. We reveal that this resilience mechanism, however, is not suitable to
be completely implemented on GPU, because it has abundant control flow and
limited parallelism. This results in low occupancy and poor power efficiency on
GPU. In addition, completely implementing the fault detection on GPU may
increase memory footprint, which prohibits us from using GPU computing with
larger input problems. To solve the above problems, we shift parts of GPU fault
detection logic to CPU and embrace a cooperative fault detection. Our method
brings only 2.2% performance overhead while capturing more than 90% errors
that cause incorrect application results.

2 Related Work

The GPU was originally designed for applications that are intrinsically fault tol-
erant (e.g., image rendering). Hence it did not have any resilience mechanism.
However, the wide adoption of GPU for scientific applications makes GPU reli-
ability become a concern. In fact, recent work has shown that the error rate on
some GPUs can be as high as four failures per week [4].

Hardware-Based Resilience on GPU: Fermi is the first GPU that sup-
ports hardware ECC. Fermi’s register files, shared memory, L1 and L2 caches
and DRAM memory are SECDED ECC protected [9]. With hardware ECC,
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the application can suffer from large performance loss. For example, LAMMPS
suffers from 30% performance loss [5], FFT, S3D and SCAN suffer from 21%,
20% and 28% respectively based on our own experience. Jeon and Annavaram
propose a hardware-based approach to opportunistically detect GPU computa-
tion errors [6]. They exploit idle resource (idle cores from underutilized warps or
idle execution unit) to implement dual modular redundancy. Similarly, Tan and
Fu [7] leverage the idle time in GPU streaming processors during branch diver-
gence and pipeline stalls to implement computation redundancy to detect errors.
Sheaffer et al. [8] introduce a series of architecture modification to implement
hardware redundancy (e.g., redundant ALU).

In general, hardware-based resilience demands architectural support and lacks
flexibility. It is difficult to inform hardware of the application semantics for error
detection, and hence the hardware-based approach cannot provide flexibility
required by adaptive low-overhead protection.

Software-Based Resilience on GPU: Yim et al. [10] introduce a guardian
process to intercept crash events and restart the GPU kernel using checkpoints.
They also instrument the source code, duplicate non-loop code, and insert range
checking code for loops. Dimitrov et al. [11] investigate three software redun-
dant execution approaches. In the first approach, they simply duplicate memory
copy and kernel executions; in the second approach, they selectively duplicate
instructions to interleave redundant execution with the original code; in the
third approach, they leverage thread-level parallelism by assigning redundant
computation to redundant thread blocks.

The above software-based approaches can introduce significant performance
overhead (15%-100%), because they are ignorant of data vulnerability difference
and enforce a uniform protection. Our work is different from them by selectively
protecting data. Also, we partition the fault detection functionality between
CPU and GPU, and leverage time and space redundancy provided by the het-
erogeneous platform to reduce protection overhead.

3 Approach

We aim to implement a software-based fault detection (SBFD) mechanism for
GPU. Compared with hardware-based mechanisms, the SBFD provides great
flexibility to control how to enforce protection. SBFD allows programmers to im-
plement tunable protection according to application-specific vulnerability with-
out introducing hardware overhead. Our study focuses on fault detection on
GPU main memory. We assume that data resident on other architectural sub-
systems (e.g., register file and data bus) is well protected by hardware ECC or
MCA [3]. In addition, we limit our study to the silent soft error because of its
concealing nature to applications and programmers. Any soft error that causes
bit flips on memory cells should be captured by our method.

To evaluate the viability of our approach, we select the benchmark k-means
from Rodinia benchmark suite [12], since k-means is extensively used for many
data intensive scientific applications, including geo-statistics, astronomy, and
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1 do{

delta = 0.0 F;

/* The clustering loop offloaded to GPU */

for(tid =0; tid <nthreads; tid ++)

6 {

for (ii=0; ii <_UNROLLFAC_ ; ii++) {

i = tid + ii*nthreads;

max_dist = FLT_MAX;

11 /* find the cluster center id with min distance to pt */

...

/* if membership changes , increase delta by 1 */

if (membership [i] != index) delta += 1.0F;

16
/* assign the membership to object i */

membership [i] = index;

/* update new cluster centers */

21 partial_new_centers_len [tid ][ index]++;

for (j=0; j<nfeatures ; j++)

partial_new_centers [tid ][ index][j] += feature[i][j];

}

}

26
/* Array reduction performed on CPU */

for (i=0; i<nclusters; i++) {

for (j=0; j<nthreads; j++) {

new_centers_len [i] += partial_new_centers_len [j][i];

31 partial_new_centers_len [j][i] = 0;

for (k=0; k<nfeatures; k++) {

new_centers [i][k] += partial_new_centers [j][i][k];

partial_new_centers [j][i][k] = 0.0F;

}

36 }

}

/* replace old cluster centers with new_centers on CPU */

for (i=0; i<nclusters; i++) {

41 for (j=0; j<nfeatures; j++) {

if (new_centers_len [i] > 0)

clusters[i][j] = new_centers [i][j] / new_centers_len [i];

new_centers [i][j] = 0.0F;

}

46 new_centers_len [i] = 0;

}

} while (delta > threshold && loop++ < 500)

Listing 1.1. The major computation loop of k-means

computer vision. The pseudo-code for the major computation loop of k-means
is shown in List 1.1. In general, k-means divides a set of data objects into clus-
ters (represented by the array membership) according to object features (the
array feature). Each cluster is represented by the mean value or centroid (the
array new centers). The number of data objects in each cluster is represented by
the array new centers len. The algorithm iteratively associates each data object
with its nearest centroid based on some chosen distance metric. Within each
iteration, the new centroid is re-calculated by averaging the features of all data
objects within each cluster. The benchmark offloads the data intensive clustering
workload into GPU, while updating centroid happens on CPU. The arrays par-
tial new centers and partial new centers len save temporal data where the GPU
clustering produces and consumes. These two arrays are iteratively offloaded to
CPU, and CPU performs reduction operations on them to update centroids.

In this section, we will first present our vulnerability study for five data struc-
tures (i.e., clusters, feature, membership, partial new centers and
partial new centers len) in the k-means GPU kernel in Section 3.1. These data
structures take close to 100% of global memory footprint of the GPU kernel.
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There are other thread-private data (e.g., tid, nclusters, and nthreads). These
data are used within control flows and array indices, and hence they are critical
to the application resilience. However, these data structures are small in terms of
size. They can be protected by heavyweight hardware ECC (e.g., double-chipkill)
without causing noticeable performance and energy overhead; hence they are not
the focus of our study. Based on the vulnerability study in Section 3.1, we discuss
our selective data protection method and present how it is implemented with a
cooperative CPU/GPU approach in Section 3.2.

3.1 Fault Injection

We develop a user-level fault injection framework to emulate single-bit and multi-
bit transient faults by flipping bits in specific program variables (e.g., a data
array). The framework consists of a set of C library functions to inject faults
and an enhanced GPU CUDA compiler. To inject faults, the user needs to decide
the fault injection target (i.e., which program variable), the condition to inject
faults (e.g., the fault should occur after a specific program statement or occur at
a specific iteration), and the specific faulty position within the target variable.
The compiler then inserts the fault injection function calls into the GPU kernel
based on user decisions. At runtime, a GPU thread will trigger bit flips based
on those function calls.

To study vulnerability of data structures, we fully emulate the randomness of
fault occurrences. In particular, we emulate both temporal and spatial random-
ness. The temporal randomness means that the fault occurs randomly during
the GPU kernel execution; the spatial randomness means that the fault occurs
randomly in any position with the target variable. To minimize computation and
memory overhead for emulating the random fault injection on GPU, we use a
CPU/GPU cooperative approach. In particular, CPU generates necessary ran-
dom numbers and passes them to GPU either through GPU kernel parameters
or through GPU global memory, and then GPU performs actual fault injections
using those random numbers.

Figure 1 shows the fault injection results. We perform fault injection tests for
each data structure for 200 times. In each test, we use a randomly selected GPU
thread to randomly inject one fault (either single-bit, 2 bits, or 4 bits) into the
target data. The figure indicates that membership is the most resilient to errors;
this is due to two factors: self error containment and self error correction. As
shown in List 1.1, the corruption in membership may change the value of delta
(line 15 in List 1.1), which in turn may increase the number of invocations of
the enclosing do-loop (line 48 in List 1.1). However, the error is not propagated
to any other code section (i.e., the self error containment), and a correct value
will be re-assigned to the membership in the next iteration of the do-loop (line
18 in Listing 1.1) (i.e., the self error correction).

In fact, partial new centers and partial new centers len data structures also
have the similar self-error-correction property; even though corruptions in these
data may be propagated to CPU regions, CPU will reset these data at each
iteration of the do-loop (line 31 and 34 in List 1.1). However, Figure 1 reveals
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that these two data structures display very diverse vulnerability; partial
new centers len is very vulnerable, while partial new centers is not. This diver-
gent error behavior is mainly due to the accuracy difference between integer
operations and floating point operations on GPU. The integer addition, which
is the main operation performed on partial new centers len, does not lose ac-
curacy as long as there is no overflow. Therefore, most of the faults in par-
tial new centers len can affect the application output data, clusters. On the
other hand, the floating point addition, which is the main operation for par-
tial new centers, may lose accuracy due to truncation and roundoff errors inher-
ited in floating point operations. This fundamental inaccuracy loss sometimes
works as a filter to remove errors. For example, if a fault accidentally happens
to the exponent portion of an array element in partial new centers, the addition
operation may truncate out the faulty element during internal normalization
when the corrupted value is much smaller than the original value. In this case,
if the original value was zero or already much smaller than the other operand
, this truncation will not affect the output. Therefore, not all faults injected to
partial new centers are propagated to the output data clusters. Moreover, prop-
agation of errors in partial new centers to the output data is dependent on other
data, new centers len (line 42 in List 1.1); if new enters len has a zero value,
the corresponding element of the output data will not be updated. In this case,
the errors in partial new centers will not be propagated to that element of the
output data.

We also found that the output data clusters is less susceptible to fault in-
jection than other data structures. This is because k-means has an inherent
fault-tolerant property. The main do-loop repeats computations until the out-
put data meet certain conditions. If a fault is injected to clusters, it is likely that
the corruption changes the output data in a way not to meet the termination
condition. Therefore, errors in the output data may increase the number of it-
erations of the do-loop, but the increased iterations may self-correct the output
data.

Fig. 1. Fault injection results. pnc=partial new center, pncl=partial new center len.
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3.2 Cooperative CPU/GPU Fault Detection

Based on the fault injection and application knowledge, we conclude the data
structures feature and partial new center len are the most vulnerable. Assum-
ing that bit errors are uniformly distributed across time and memory space and
independent of each other, only capturing the errors in these two data structures
will capture 99% (1 bit error), 97%(2 bits error) and 92% (4 bits error) errors
in global memory that cause incorrect application results. Moreover, only pro-
tecting these two data structures instead of all application data can reduce fault
detection overhead.

We explore efficient protection for the two data structures at the software
level. The array feature[NOBJS][NFEATURES] (NOBJS is the number of data
objects, and NFEATURES is the number of features) is a read-only two di-
mensional array in the GPU kernel. A specific element feature[x][y] specifies the
yth feature value for the xth data object. In general cases, the number of data
objects is much larger than the total number of GPU threads, and each thread
is in charge of UNROLLFAC data objects ( UNROLLFAC = 100); also
the number of features is much less than the total number of GPU threads. To
protect feature, we add a checksum value for each data object. The checksum i is
the summation of all feature values for the data object i. The baseline checksums
are calculated before the do-loop, and saved for checksum verification. At the
end of the GPU kernel, the checksums are re-calculated and verified with the
baseline. If there is any difference, the fault is detected at the feature array.

With the above checksum-based fault detection, each thread is involved in a
limited number of floating-point addition operations (i.e., O(NFEATURES)),
and the load is well balanced between threads. However, to completely implement
the above algorithm, we must transfer the baseline checksums to the GPU global
memory before each kernel invocation. The size of the baseline checksums is in
proportion to NOBJS. Furthermore, uploading the baseline checksums to GPU
exposes them to the same memory architecture as other GPU data, and hence
they suffer the similar error rate and there is no sufficient protection for the
baseline checksums.

To solve the above problem, we leverage memory space redundancy on the
CPU side to save the baseline checksums. On the CPU side, the main memory
is usually better protected with hardware ECC. Hence, we ask CPU to keep the
baseline checksums. Furthermore, we decouple the fault detection into checksum
calculation and checksum verification, and ask CPU to perform the checksum
verification. In addition, the checksum verification can be overlapped with the
GPU computation, hence removing the verification overhead off the computation
critical path.

The data structure partial new center len[NTHREADS][NCLUSTERS]
(NTHREADS is the total number of GPU threads, and NCLUSTERS is the
number of clusters) is an array with both read and write accesses. Because it is
not read-only, the above checksum-based approach cannot work. To detect faults,
we leverage an implicit invariance existing in partial new centers len. In partic-
ular, each element partial new centers len[x][y] is reset as zero before the GPU
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kernel invocation, and then adds by at most 1 at each iteration of the inner loop
(the line 21 in List 1.1). Hence, after the GPU kernel is finished, we can bound
the value of each element in partial new centers len by [0, UNROLLFAC ].
We check the validness of each element with CPU after the kernel is finished.
This fault detection method does not add any extra computing on GPU. The
element value validation occurred on CPU can also be overlapped with the GPU
kernel execution, hence minimizing the fault detection overhead.

Discussion: We do not claim the full fault coverage with the above fault
detection algorithms. For feature, like other checksum-based fault tolerance al-
gorithms [13] [14], the checksum can result in false negative tests when the error
effects from multiple array elements are nullified when calculating checksum.
However, this kind of scenario is extremely uncommon, given the rareness of soft
errors. In addition, the error in partial new center len can still make the element
value fall within the bound, hence resulting in false negative tests. However, this
kind of scenario is much less common than the other scenarios detectable by our
algorithm, assuming that the error has an even chance to occur on every data
bit. Hence, the invariance-based algorithm can still capture most of errors.

4 Evaluation

We evaluate our approaches in this section. Figures 2 and 3 compare data transfer
size and performance for three fault detection scenarios, including no resilience
(i.e., the original code), GPU-only (i.e., fault detection implemented on GPU
only), and GPU+CPU (i.e., cooperative fault detection)

Figure 3 shows that GPU-only brings 11.1% performance loss, comparing
with no resilience scenario. The performance loss is due to two reasons: first,
the extra data transfer from CPU to GPU (shown in Figure 2) occurs to fetch the
reference feature checksum data to GPU; second, the extra fault detection logic
is added into the application critical path on GPU. GPU+CPU significantly
reduces the data transfer from CPU to GPU by 23%, because data verification
logic is offloaded to CPU, and the reference checksum data does not have to
be uploaded to GPU. However, the data transfer from GPU to CPU increases,
because GPU has to offload updated checksums to CPU for verification at each
iteration. As a result, the total data transfer size between GPU and CPU for
the GPU+CPU is the same as that for GPU-only. However, the performance of
GPU+CPU is improved by 8.1%, comparing with that ofGPU-only. Considering
the same data transfer size for the two scenarios, the performance improvement
must come from the overlapping of CPU and GPU work. Note that we have to
synchronize CPU and GPU when overlapping CPU and GPU work. However,
even with the synchronization overhead, we still get performance improvement.
In general, the optimized cooperative CPU/GPU fault detection brings only
2.2% performance loss, comparing with no resilience scenario.

Furthermore, considering the fact that the data verification logic with
GPU+CPU is implemented with only one single CPU thread, while with GPU-
only the logic is implemented with massive parallelism with low GPU occu-
pancy, we derive that the GPU-only implementation is not as power efficient as
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Fig. 2. Compare data transfer size be-
tween various resilience scenarios

Fig. 3. Compare performance between
various resilience scenarios

GPU+CPU, because CPU can power down the idle cores (CPU only uses one
thread) while GPU cannot. Also, the thermal-design power (TDP) of the main
stream GPU is comparable or even much larger than CPU. Hence, using CPU
to implement data verification is more power-efficient.

Figure 4 displays the fault injection results with our fault detection mecha-
nism. There are four groups of bars within the figure. The first two groups of
bars (i.e., feature and r feature) are for the results when injecting faults into
feature, while the last two groups of bars (i.e., pncl and r pncl) is for par-
tial new centers len. The first and the third groups of bars represent the per-
centage of fault injection tests that causes incorrect application results. These
bars are already shown in Figure 1, but we list here again to show if our fault
detection mechanisms have captured them. The second and the fourth groups of
bars represents the percentage of faulty tests captured by our mechanism. We
perform 200 fault inject tests for each test. The y axis represents the percentage
of tests that have incorrect application results (i.e., visible errors) for the first
and the third groups of bars, or the percentage of tests that have errors detected
by our mechanism for the third and the fourth groups of bars.

The figure shows that for feature and pncl our mechanism captures all of errors
that cause incorrect application results. However, our mechanism reports more
errors than necessary (i.e., having false positive cases). Those cases do not cause
incorrect application results because of statistical nature in k-means. However,

Fig. 4. Fault injection results with cooperative fault detection.
pnc=partial new center, pncl=partial new center len; r * refers to the cases with fault
detection enforced.
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our mechanism only focuses on data structures themselves without application
algorithm knowledge, hence resulting in false positive fault detection.

5 Conclusions

In this paper, we target on reducing fault detection overhead on a heteroge-
neous CPU/GPU platform. Based on the fault injection tests and application
knowledge, we selectively protect data according to data-structure-specific vul-
nerabilities, instead of using a one-size-fit-all approach to protect data. This
application-driven approach can capture most of errors that cause incorrect ap-
plication results, while resulting in reduction in resilience overhead. Furthermore,
by dismantling the fault detection mechanism and offloading part of it to CPU,
we can further reduce the detection overhead.
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