
Supporting the Exploratory Nature of Simulations
in D-MASON

Gennaro Cordasco1, Rosario De Chiara2,
Fabio Fulgido3, and Mario Fiore Vitale3

1 Dipartimento di Psicologia
Seconda Università degli Studi di Napoli, Italy

gennaro.cordasco@unina2.it
2 Centro Ricerca e Sviluppo

Poste Italiane, Italy
dechia24@posteitaliane.it

3 ISISLab - Dipartimento di Informatica
Università di Salerno, Italy

{f.fulgido,mvitale86}@gmail.com

Abstract. Agent-Based Models (ABM) are a class of models which, by sim-
ulating the behaviors of multiple agents (i.e., independent actions, interactions
and adaptation), aims to emulate and/or predict complex phenomena. The “emer-
gence” of such complex phenomena is often computation intensive and requires
tools, libraries and frameworks, capable of speeding up and facilitate the design
of complex simulations.

In this paper we present new developments on D-MASON, that is a distributed
version of MASON, a well-known and popular library for writing and running
Agent-based Simulations.

The new developments are: a) a tool that allows the parallel exploration of
the behavior parameter space; b) an infrastructure that improves the management
of distributed simulations in terms of easy deployment of new simulations, auto-
matic update, versioning control and distributed logging.

Keywords: Agent-Based Simulation, Distributed Systems, System Management.

1 Introduction

Agent-based modeling is a style of modeling in which multiple agents and their interac-
tions with each other and their environment are explicitly represented in a program with
the aims of understanding and generating complex phenomena. An agent-based model
(ABM) consists of: a set of agents, a set of agent relationships and an environment to
host the agents and where they take action. ABMs have become very popular in vari-
ous research fields, such as biology[25], ecology, economics[1], political science, social
science[15] etc.. A fundamental benefit of ABMs is the discovery and explanation of
emergent behavior. Emergent behaviors of complex systems are patterns that do not de-
pend on individual components of a system but are generated by their interaction to one
another. For instance, emergent behavior is ubiquitous in biological systems (chemical

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 555–564, 2014.
© Springer-Verlag Berlin Heidelberg 2014



556 G. Cordasco et al.

interactions among cells) and in groups of animals (flocking of birds and schooling of
fish).

In [12] the very nature of simulations implemented by a computer program is de-
scribed, such programs are involved in an exploratory process where the model is iter-
atively refined, as the problem it is meant to be simulated is better understood. For this
reason the framework which is used must provide facilities to debug the model, support
the re-runs of experiments and to the collection of the generated data.

A common approach for improving the efficiency of ABM is to distribute the overall
computation on a number of Logical Processors (LPs). Parallelization and distribution
of the computational load has two important motivations in the Agent-Based Modeling
field:

– the speed running a model faster allows, in the same time, to make more thorough
exploration of the (possible) complex behavior. An efficient simulator should allow
to run experiments long enough to make emergent behaviours evident;

– the size of the models can be crucial to ensure that the emerging behavior is indeed
shown and made evident; when models are too small, some of the effects might be
hidden, not evident and/or emerge very late.

Several parallel implementation of ABMs frameworks have been proposed [5,6,8,19].
A good parallel implementation should face several conflicting issues: (a) balance

the overall load distribution among the LPs; (b) minimize the communication overhead
due to the interdependencies existing between the tasks executed on the LPs; (c) syn-
chronize the evolution of the simulation among the LPs that provide the computing
power.

The general behaviors of a simulation associated to an ABM can be quite complex
and therefore it is not possible to apply analytical methods to understand what is hap-
pening. This is particularly true when one looks at the parameters’ space of an ABM: a
common approach is to sample the parameter space in order to figure out the behavior
of the model over a wide range of different conditions.

Speeding up such exploration is important for the researcher because the emergence
of some phenomena might be evident just for some specific subsets of the parameters:
small changes made to a single parameter may lead to a radical modification of the
dynamics of the whole system.

In this paper we present a tool that increases the support for the exploratory nature of
simulations by implementing a parallel behavioral parameter space exploration. Indeed
a parallel architecture can be easily exploited by letting multiple simulations run at once
with different parameters distribution on multiple machines [3].

An alternative to parallel behavioral parameter space exploration is proposed by the
authors in [11]. They run a simulation and store information about its states and transi-
tions between them. Under the assumption that multiple runs are often similar, they try
to save computing time by reusing event computations done during the first simulation.
This approach requires to build an updateable model for the simulation, along with a
comparison predicate in order to evaluate if two states of a simulation are similar (i.e.
applying the same transition to both leads to the same destination state, and therefore
the previously computed destination state can be reused) or different (a new destination



Supporting the Exploratory Nature of Simulations in D-MASON 557

state have to be computed and the simulation needs to be updated). This kind of frame-
work seems to be effective for computing-intensive simulations but less adaptable to
agent-based massive simulations, due to the difficulty to build a comparison predicate
and to the large memory footprint needed to store the state of such massive simulation.

2 Distributed Simulation and D-MASON

Some aspects of ABMs implementation, like the parameter space exploration, can be ef-
fectively parallelizable. Other aspects, like running massive simulation (i.e., simulating
a large number of agents) and/or simulations which deal with complex agents, that is,
computationally intensive agents, are more difficult to be parallelizable. A common ap-
proach to the parallelization of massive simulations is just an instance of a more general
problem of parallelizing a sequential computation by dividing it into smaller computa-
tions (subtasks) and assigning them to different processes for parallel executions. This
two phases represent two key steps in the design of parallel algorithms [16]. The com-
munication and the synchronization between the different subtasks are typically some
of the greatest obstacles in getting good performances.

As an example a simple way to partition the whole computation into subtasks is to
assign a fixed number of agents to each available LP. This approach named agents par-
titioning enables a balanced workload distribution but usually introduces a significant
communication overhead (all–to–all communications are required to synchronize the
simulation).

Other strategies which partition the work in a smarter way [7] have been proposed
in order to reduce the time due to the communication and synchronization between
processes.

Agent-Based Simulations are designed accordingly to a discrete-event paradigm
where the simulation time is split in steps named simulation steps, often but not neces-
sarily, of the same duration. So, as the simulation advances, the step number increases.

We used D-MASON [6] a general purpose framework for discrete-event ABMs.
D-MASON enlists the aid of two or more LPs to carry out the simulation: each of the
LPs is derived from MASON and is in charge of a portion of the set of the agents.

MASON [17,18] toolkit is a discrete-event simulation core and visualization library
written in Java, designed to be used for a wide range of ABMs. The toolkit is composed
of two independent layers: the simulation layer and the visualization layer. The main
reasons that suggested the development of a distributed version of MASON are:

– MASON is one of the most expressive and efficient library for ABMs (as reported
by many reviews [2,20,22]);

– MASON architecture, that clearly separates visualization by simulation, greatly
helped during the process of development of a distributed version of the
library[17,18];

– the significant amount of research and simulations already present in MASON,
which can be easily ported to D-MASON, makes it particularly cost effective for
the scientists.

Considering that most ABMs are inspired by natural models where agents are placed
in a bi-dimensional (or tri-dimensional) space (some examples are [10,13,14,21,24])



558 G. Cordasco et al.

Fig. 1. The Architecture of D-MASON

and agents’ communications/interactions are limited to a delimited area of interest
(AOI), D-MASON exploits a space partitioning approach: the space to be simulated
(the field) is partitioned into regions (see Fig. 1.(a)). Each region, together with the
agents it contains, is assigned to a LP; each LP is in charge of: simulating the agents
that belong to the assigned region, handling the migration of agents between regions
and managing the synchronization between neighboring regions (see Fig. 1.(b)).

Since the AOI extension of an agent is small compared with the size of a region
it belongs to, the communication is often limited to local messages within the same
LP. LPs in charge of the simulation of neighboring regions, are locally synchronized
in order to let the simulation run consistently. LPs communicate by using a publish–
subscribe mechanism design pattern: a multicast channel is assigned to each region.

D-MASON is released under a Free and Open Software license and is available at [9].

3 D-MASON Enhancements

In this section we describe the extensions of the D-MASON system management. These
extensions add new features to D-MASON aimed at improving the usability of the envi-
ronment for the researcher who is designing a simulation. We extended D-MASON by
adding two facilities: a tool for the parallel exploration of the behavior parameter space
and an infrastructure that improves the management of distributed simulations.

3.1 Exploring Parameter Space

As observed in Section 1, the exploration of the parameters’ space requires the exe-
cution of a large number of simulations with different parameters distributions [3,23].
These executions are independent therefore can be safely carried out in parallel.

In the following we present a semi-automatic tool that supports such exploration. The
tool performs three functionalities: selection of parameters, management of parameters
and execution.

Selection of parameter. D-MASON allows the programmer to select, via Java anno-
tations, which parameter of the simulation can be explored. The programmer can also



Supporting the Exploratory Nature of Simulations in D-MASON 559

annotate, for each parameter, its domain and/or its suggested value. A portion of an an-
notated source Java file is in Figure 2. In this specific case, both the parameters width,
height and numFlockers are annotated using the keyword @batch. Moreover for
the parameter height the programmer has also defined the domain (100 − 300) and
the suggested value (250).

public class DFlockers extends DistributedState<Double2D>
{

private static final long serialVersionUID = 1L;
public DContinuous2D flockers;
private static boolean isToroidal=true;
@batch
public double width = 150;
@batch(

domain = ''100−300'',
suggestedValue = ''250''

)
public double height = 150;
@batch
public int numFlockers = 20;

...
}

Fig. 2. A portion of a source file with annotations

Management of parameters. D-MASON includes a tool, named Batch Wizard, which
takes in input the .jar file of a specific D-MASON simulation and extracts the list of
annotated parameters. Then, by using the application depicted in Figure 3, the user is able
to define for each parameter the set of values to be analyzed (to explore the parameter
space) and the number of runs to be executed for each fixed set of parameter (to evaluate
the stability of the model). Each parameter can be explored in four different ways:

Fixed: the parameter has a single fixed value, which can be the one suggested by the
programmer by annotations or another value chosen by the user.

By values: the user provides a set of values to be evaluated.
Range: the user defines a range of values by providing a lower endpoint, an increment

and the upper endpoint.
Distribution: the values of the parameter are picked from a probability distribution.

In this case the number of runs is used to pick different values. Three probability
distributions are currently available: uniform, normal and exponential. For each
probability distributions, its parameters (for instance, mean and standard deviation
for the normal distribution) can also be selected by the user.

The last two options (Range and Distribution) are available only for numeric parame-
ters. During the setup phase of the simulation the tool provides to the user the number
of tests necessary, for the exploration of the parameters, in the current configuration.

Other options are the number of LPs nLP for each run and the possibility of enabling
or not the load balancing functionality, see [4]. The output of the Batch Wizard is an
XML file similar to the one in Figure 4.



560 G. Cordasco et al.

Fig. 3. The management of parameters via the Batch Wizard

<?xml version=''1.0'' encoding=''UTF−8'' ?>
<Batch>
<simulationName>vampires.jar</simulationName>
<neededWorkers>10</neededWorkers>
<isBalanced>false</isBalanced>
<simulationParams>
<paramFixed name = ''numRoosts'' type = ''int'' runs = ''10'' mode = ''fixed''>
<value>10</value>

</paramFixed>
<paramList name = ''numBats'' type = ''int'' runs = ''5'' mode = ''list''>
<item>200</item>
<item>2000</item>

</paramList>
...

</Batch>

Fig. 4. An example of XML file generated by the Batch Wizard

Execution. At the execution time the XML file described above is read and validated
and the system prepares the sets of simulations to run. The system builds two sets: a test
list which is the list of all the configurations to be executed, and a LPs list which is a
partition of available LPs, such that each set in the list contains at least nLP LPs. The
user can choose whether the execution must be sequential or parallel. During a parallel
batch execution each set of LPs, in the LPs list, executes at the same time a different test.
However, different runs will use, concurrently, a single communication server (CS).



Supporting the Exploratory Nature of Simulations in D-MASON 561

Fig. 5. Batch execution

The execution of a batch is performed by several Batch Executors (on sequential
batch executions a single Batch Executor is used). A Batch Executor is in charge of
starting and stopping a single run of a simulation. Briefly, a batch executor manages a
set of LPs and as soon as the execution of the simulation terminates, it picks another
test from the test list and starts its execution (see Figure 5).

3.2 A Novel Management Infrastructure

We present now a novel infrastructure that improves the management of distributed sim-
ulations in terms of easy deployment of new simulations, automatic update, versioning
control and distributed logging. The novel architecture is depicted in Figure 6. An FTP
Server has been added to the system with the goal of enabling the exchange of files
between the console (master) and the LPs. The use of the FTP server is explained in the
following.

Deploy of New Simulations and LP Software Update. First of all the FTP server is
exploited for the deployment of new simulations. In the previous version of D-MASON

(v. 2.0) , simulations were encoded within the D-MASON package, and consequently the
development of a new simulation required to rebuild the entire package and restarting the
entire system (i.e. Console, LPs and CS). In this enhanced version of D-MASON(v. 2.1),
new simulations are compiled separately in a .jar file and are added to the system via
the Console application (see Figure 7). The .jar file and a corresponding digest file are
store into a specific directory of the FTP Server. Then the Console application sends, via
the CS, a message to the LPs, containing the name of the simulation file, the address and
the port of the FTP server. Each LP then check checks whether it already has that specific
simulation and, if so, it checks, using the digest file, if it has the correct version. If the
LP does not have the simulation file, or if the digest files do not match (that is, the new
simulation file is an update of a previous version), then the LP download the simulation
file from the FTP server and, in the case of update, it replaces the previous file.



562 G. Cordasco et al.

Fig. 6. The novel infrastructure

Fig. 7. Deploy of a new simulation

A similar approach is used to update the software running on each LP. Since the
upgrade processes affects only the LPs connected to the system, we have also developed
a mechanism that allows each LP, during the connection to the system, to check whether
there have been updates or new simulation files have been deployed. Moreover, before
starting a new simulation the console checks that all the LPs are aligned to the same
software version and the same simulation file.

Distributed Logging. The novel management infrastructure is also exploited to collect
and aggregate the log files generated by each LP. When a simulation is completed, the
Console sends a gather command to the LPs. When the LPs receive this command, they



Supporting the Exploratory Nature of Simulations in D-MASON 563

upload the log files on the FTP server, so that they can be aggregated into a single file
that can be used for subsequent analysis.

4 Discussion and Conclusion

This paper reports on an currently undergoing project, D-MASON, that has been devel-
oped with the purpose of speeding up the performances of MASON, a very well known
and quite widespread framework for ABMs.

This work has been motivated by the the need for a system management facility
that is extremely important for the deployment, the tuning and the analysis of complex
simulations on multiple machines.

We have shown a) a tool that allows the parallel exploration of the behavior param-
eter space, and b) a simple architecture that speeds the deployment and the analysis of
distributed simulations.

References

1. Agents of Change. The economist, July 22 (2010)
2. Berryman, M.: Review of Software Platforms for Agent Based Models. Technical Report

DSTO-GD-0532, Australian Government, Department of Defence (2008)
3. Calvez, B., Hutzler, G.: Parameter space exploration of agent-based models. In: Khosla, R.,

Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 633–639. Springer,
Heidelberg (2005)

4. Carillo, M., Cordasco, G., De Chiara, R., Raia, F., Scarano, V., Serrapica, F.: Enhancing
the Performances of D-MASON - A Motivating Example. In: SIMULTECH, pp. 137–143.
SciTePress (2012)

5. Collier, N., North, M.: Parallel agent-based simulation with Repast for High Performance
Computing. In: SIMULATION: Transactions of the Society for Modeling and Simulation
International (2012)

6. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: Bring-
ing together efficiency and effectiveness in distributed simulations: the experience with D-
MASON. In: SIMULATION: Transactions of The Society for Modeling and Simulation In-
ternational (2013)

7. Cosenza, B., Cordasco, G., De Chiara, R., Scarano, V.: Distributed Load Balancing for Par-
allel Agent-based Simulations. In: Proc. of the 19th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing, PDP 2011 (2011)

8. Deissenberg, C., van der Hoog, S., Dawid, H.: Eurace: A massively parallel agent-based
model of the european economy. Applied Mathematics and Computation 204, 541–552
(2008)

9. Distributed-Mason Project (2011), http://www.isislab.it/projects/dmason/
10. Dykstra, P., Elsenbroich, C., Jager, W., de Lavalette, G.R., Verbrugge, R.: Put your money

where your mouth is: Dial, a dialogical model for opinion dynamics. Journal of Artificial
Societies and Social Simulation 16(3), 4 (2013)

11. Ferenci, S.L., Fujimoto, R.M., Ammar, M.H., Perumalla, K., Riley, G.F.: Updateable simula-
tion of communication networks. In: Proceedings of the Sixteenth Workshop on Parallel and
Distributed Simulation, PADS 2002, pp. 107–114. IEEE Computer Society, Washington, DC
(2002)

http://www.isislab.it/projects/dmason/


564 G. Cordasco et al.

12. Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist. Open University Press
(2005)

13. Hartshorn, M., Kaznatcheev, A., Shultz, T.: The evolutionary dominance of ethnocentric co-
operation. Journal of Artificial Societies and Social Simulation 16(3), 7 (2013)

14. Hatna, E., Benenson, I.: The schelling model of ethnic residential dynamics: Beyond the
integrated - segregated dichotomy of patterns. Journal of Artificial Societies and Social Sim-
ulation 15(1), 6 (2012)

15. Levin, S.A., Strogatz, S.H. (series eds.), Epstein, J.M. (ed.): In: (ed.) Generative Social Sci-
ence: Studies in Agent-Based Computational Modeling. Princeton University Press (2007)

16. Xu, Z., Hwang, K.: Scalable parallel computing: technology, architecture, programming.
WCBMcGraw-Hill (1998)

17. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: MASON: A new multi-agent simulation
toolkit. In: Proceedings of the SwarmFest Workshop, May 9-11, Ann Arbor, Michigan, USA
(2004)

18. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A Multiagent Sim-
ulation Environment. Simulation 81(7), 517–527 (2005)

19. Lysenko, M., D’Souza, R.M.: A framework for megascale agent based model simulations on
graphics processing units. Journal of Artificial Societies and Social Simulation 11(4) (2008)

20. Najlis, R., Janssen, M.A., Parkerx, D.C.: Software tools and communication issues. In: Proc.
Agent-Based Models of Land-Use and Land-Cover Change Workshop, pp. 17–30 (2001)

21. Patel, A., Crooks, A., Koizumi, N.: Slumulation: An agent-based modeling approach to slum
formations. Journal of Artificial Societies and Social Simulation 15(4), 2 (2012)

22. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and
development recommendations. Simulation 82, 609–623 (2006)

23. Szabó, A., Bocsi, R., Ferschl, G., Bálint, B., Gulyás, L.: Experiments with complex agent-
based systems using the meme tool: A case study. In: ASME (2009)

24. White, A.: An abstract model showing that the spatial structure of social networks affects
the outcomes of cultural transmission processes. Journal of Artificial Societies and Social
Simulation 16(3), 9 (2013)

25. Wimsatt, W.C.: False models as means to truer theories, pp. 23–55. Oxford University Press,
London (1987)


	Supporting the Exploratory Nature of Simulations in D-MASON
	1 Introduction
	2 Distributed Simulation and D-MASON
	3 D-MASON Enhancements
	3.1 Exploring Parameter Space
	3.2 A Novel Management Infrastructure

	4 Discussion and Conclusion
	References




