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Abstract. In HPC agent based applications, the complex interaction
rules would likely cause workload imbalances that negatively affect the
simulation time. In addition, the imbalance problem may vary during the
application execution in accordance to the behavior of the agents. Conse-
quently, a solution to this problem should be able to dynamically balance
the load. A dynamic load balancing scheme could be based on migrating
agents between processing units. In this paper, we propose a modification
of the agent-based simulation framework FLAME that provides the au-
tomatic generation of the routines needed to dynamically migrate agents
among different computational units. However, most agent-based simula-
tion frameworks do not include routines for migrating agents. Moreover,
we demonstrate their use in a simple load balancing scheme on a specific
application.

Keywords: Agent-based Simulation, FLAME, Migration Agents,
SPMD, Load Balancing, Application Tuning.

1 Introduction

Agent-Based Modelling (ABM) is a popular technique for simulating complex
systems in several domains such as economical, medical, biological and social
science. Basically, Agent-Based Modelling and Simulation (ABMS) describe the
system’s behavior through the interactions of a set of autonomous entities in the
environment.

Large ABMS applications facilitate the study of complex problems. In this
case, they should be deployed in a High Performance Computing (HPC) envi-
ronment to provide sufficient resources and be executed in a reasonable amount of
time because in most cases ABMS are CPU intensive and require large amounts
of memory [1].

Moreover, agent based applications show significant variations in the amount
of computing and communication time. These variations are given by the large
amount of interactions among agents, and the different rules of behavior exhib-
ited by most of these models. Moreover, the evolution of the simulation may
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Fig. 1. Degree of computing imbalance during the simulation of the SIR model

produce dynamic changes in the workload. Therefore, during the execution of
the simulation, load imbalances are likely to appear. Figure 1 shows the degree
of imbalance of a simulation of 50.000 agents in a cluster of 128 processes.

In order to solve such problems, schemas for dynamically adjusting the load
should be used. However, it would be very helpful for such dynamic schemas
that the parallel simulation environments include mechanisms that allow the
migration of agents between different computational units.

Currently, a few ABMS parallel applications oriented to HPC environments
can be found. Ecolab [2] is an object-oriented environment written in C++ and
MPI. Repast HPC [3] was recently released in 2012, and written in C++ using
MPI for parallel operations. Contrary to Ecolab, Repast HPC was created from
the beginning for large-scale distributed computing platforms. Although both
Ecolab and Repast HPC are based on a Single Program Multiple Data (SPMD)
paradigm, they do not include generic migration routines, so the developer should
deploy the whole migration code. Moreover, D-Mason [4] is a framework writ-
ten in Java, based on a master/worker paradigm. D-Mason is focused on using
the idle desktop workstations and subdividing the workload among these het-
erogeneous machines. In addition, recent improvements [5] of D-Mason provide
load balancing schema. Finally, FLAME [6] framework allows the production of
automatic parallelizable code to run on a large HPC infrastructure. This frame-
work is based on a SPMD paradigm, it has been continuously developed since
2006, and it used for economic modelling in the EURACE [7] project. FLAME
is written in C using MPI, and is aimed principally at the economical, medical,
biological and social science domains.

Current implementations of dynamic load balancing strategies are often de-
veloped using centralized or hierarchical approaches. On one hand, centralized
approaches commonly report a high computational cost and scalability problems.
In the other hand, decentralized approaches can present problems regarding the
quality of the balance because the neighboring processes exchange incomplete
information. In [8] a centralized load balancing based on space repartitioning is
proposed. In [9] a hierarchical multi-level load balancing strategy is presented,
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and centralized and hierarchical schemas are compared. In [10] a decentralized
algorithm based on moving the boundary between the neighbor region is de-
fined. In [11] three algorithms using recursive domain decomposition in a binary
tree structure are compared using balance speed and communication costs. In
[12] a complex partitioning approach based on irregular spatial decompositions
is presented. In [13] distributed cluster-based partitioning and load balancing
schema for problems of flocking behaviors are defined. In its current version, the
code generated by FLAME lacks the necessary routines to allow the migration
of agents; therefore, all migration routines should be implemented directly on
the generated code.

This paper describes amodification of the FLAME framework for automatically
generating, from the agents’s specification, the routines necessary for
migrating agents between different computational units. The approach aims to
implement dynamic policies for deterministic agent-based simulations, which de-
fine the agents as state machines.

The rest of this document is organized into five sections. First, Section 2 briefly
describes FLAME. Next, the migration routines are presented (3). The results
section shows how these routines have been used for implementing a simple load
balancing schema for a SIR ABMS application (4). The final section includes
the conclusions and the future work(5).

2 FLAME

In contrast to common ABMS environments, FLAME is a tool that enables
the necessary source code to be generated for the simulation; hence, it is not
a simulator in itself. FLAME automatically generates the simulation code in C
through a template engine. In the same way, FLAME provides a set of template
files that the template engine uses to generate the simulation code getting infor-
mation from the model definition. The model definition consists of X-Machine
Markup Language (XMML) files, which is a dialect of XML and the implemen-
tation of the agent functions contained in C files. The migration routines are
automatically generated from a set of extra template files as shown in figure
2(b). Figure 2(a) shows the files required by the FLAME framework to create
the simulation code, and figure 2(b) shows the FLAME diagram including the
proposed improvement.

2.1 Functional Description

The deployment of agents is based on finite state machines called X-machines,
which consist of a finite set of states, transitions between the states and actions.
To perform the simulation, FLAME keeps each agent as an X-machine data
structure, whose state is changed via a set of transition functions. Furthermore,
the transition functions perform message exchanges between agents if necessary.
Then, the simulation environment is composed mainly by a set of X-machines
defined by their state transitions, internal memory, and agent messages.
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(a) (b)

Fig. 2. Base-diagram of the FLAME framework and diagram with the improvement

The X-machines are kept in linked lists, one for each state of a specific agent.
When the simulation starts, the X-machines are inserted into the list related to
the initial state. Then the corresponding transition function is applied to each
X-machine. Once this has been done, these X-machines are inserted into the list
related to the next state. This process is repeated until the last state, which
determines the end of the iteration is reached.

2.2 Parallelization

In HPC environments, FLAME communications are managed by the Message
Board Library libmboard, which uses MPI to communicate between processes.
Libmboard handles the messages of the agents through message managing mech-
anisms and filtering before sending messages to local agents and agents belong-
ing to external processes. FLAME handles deadlocks through synchronization
points, which ensure that all the data is coordinated among agents using an
SPMD pattern.

Figure 3(a) shows the communication pattern between local agents and exter-
nal agents using libmboard library. This library sends all messages to the agents
through a coordinated communication between different MPI processes.

The parallel distribution of the agents in FLAME is based on two static parti-
tioning methods: geometric partitioning and round-robin partitioning. Currently,
FLAME does not have mechanisms to enable the movement of agents between
processes. Thus, the workload in each parallel process will rely on the initial
population of agents.

Consequently, evolution of the simulation may produce computation imbal-
ance causing overhead, and also may produce excessive external communications
due to the interaction among agents (as shown in figure 3(b)). Therefore, the
time required to complete the simulation will be negatively affected.

3 Migration of Agents

An agent migration mechanism is necessary to implement policies in order to
solve load/communication imbalance problems. However, developing this mecha-
nism can be a time consuming task because, among other reasons, the program-
mer must understand the code generated by the framework for each specific
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Fig. 3. (a) Parallel communication and synchronization via libmboard. (b) Workload
problems associated with the distribution of agents.

simulation code. Consequently, enhancing the tool for automatically generating
efficient routines for migration agents could be very helpful.

In order to achieve this new feature, the developer should only add three
new templates for generating the migration routines. Then, the template engine
processes these templates to obtain the information about the agent model from
the definition file. This information includes issues such as: agent types, the
variables (properties) of the agents and the size of each agent’s variable.

Internally, the template engine interprets the template’s information using
the information about the agent model, and generates migration routines with
the simulation code (as shown in figure 2(b)). Once the simulation code has
been created, the migration routines can be used for automatically adding and
removing agents from any process. The migration process can be subdivided into
two procedures: contribution and acquisition.

On one hand, contribution procedure consist of removing, packing and
sending the selected agents in the sender processes. In this procedure, the agents
to be migrated are held in a set of linked lists identified by the id of the target
process. Later, the agents are stored in a set of contiguous memory buffers to be
packed. At this point, the buffer sizes have been automatically calculated and
created by the routines. Finally, the sender processes will have a collection of
buffers to be sent as agent packages (one for each recipient process).

On the other hand, the acquisition procedure consists of receiving, un-
packing and adding the agents in the recipient processes. The packages of agents
are stored in buffers to be unpacked. Once the agents have been unpacked, they
are inserted with the other agents in the recipient process. Algorithms 1 and 2
show the procedures involved during the migration of agents.

In order to send the agents to a recipient process in a single communication,
the agents need to be stored in contiguous memory before being sent. This
migration is accomplished by packing and unpacking data using MPI functions.
Before being used, these MPI functions require memory buffers whose sizes
depend on the type and amount of agents. Additionally, the sending and receiving
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Algorithm 1 Contribution procedure

1: while agents to be sent do
2: remove of the current process
3: insert in the recipient list
4: calculate buffer sizes
5: pack the agents
6: send the agents

Algorithm 2 Acquisition procedure

1: ask how many agents should receive
2: preparation of memory buffers
3: receive the agents
4: while packed agents do
5: unpack agent
6: insert in the current process

of the agents has been deployed using MPI asynchronous functions to overlap
the costs of communication and computation.

Before performing the migration process, a criterion must be established to
decide which agents should be sent. Then the migration process starts through
the migration routines mentioned in section 3.1. The migration process should
also be required to decide when it should be performed. Nevertheless, this par-
tially depends on the criterion by which the agents were selected. Below, the
main migration features incorporated into FLAME are described.

3.1 Migration Routines

The migration routines are specifically generated for each type of agent in the
model, so it is possible to perform migrations after any transition. The following
list introduces the main migration routines. The prefix NAME indicates the
name of a specific type of agent.

– Init migration: Initializes global variables and data structures involved in
the migration.

– Pop NAME : Moves agents to a specific linked list and removes them from
the current process.

– Pack NAME : Packs all agents kept in the linked lists in contiguous memory
buffers, one for each recipient.

– send NAME/recv NAME : These routines are prototypes to define how to
send and receive agents.

– Unpack NAME : Unpacks the packed agents received. Then, inserts the re-
ceived agents to the X-machine list of the current process.

– Push NAME : Add an agent to the current process.

With these functions inserted into FLAME, it is possible to incorporate a load
balancing schema based on the migration of agents between processes.

4 Experimental Results

The main objective of this section is to demonstrate that, using the migration
routines, it is possible to migrate agents and correct imbalance problems in
ABMS applications. For testing purposes only, the SIR epidemic model described
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below is used [14]. The simulation workload changes dynamically due to the
random distribution of death and birth rates. In this experiment, the initial
distribution of agents is based on a round-robin distribution and performed
during 200 simulation steps.

The SIR model describes the spread of an epidemic within a population on a
2D toroidal space. The population is divided into three groups: the Susceptible
(S), the Infectious (I), and the Recovered (R). For this reason, this model is called
SIR. In summary, the susceptible are those individuals who are not infected and
not immune, the infectious are those who are infected and can transmit the
disease, and the recovered are those who have been infected and are immune.
Additionally, natural births and deaths during the epidemic are included in
this SIR model, so individuals could die from the disease or by natural death
due to aging. Consequently, births and deaths represent a dynamic creation
and elimination of agents; therefore, the workload can change as the simulation
proceeds.

In this example, generated functions are tagged as Person because agents are
defined as Person in the model specification. First, the function call Init migra-
tion() is inserted before the configuration section of the libmboard access mode.
Then, all configuration sections of the libmboard access mode are set up in
MB MODE READWRITE mode.

Algorithm 3. Overview of the load balancing schema described in [15]

1: collect all computing times for each process
2: tolerance ← threshold ∗ avg time
3: if ∀i ∈ procs,∃ proci/ |imbalance(proci)| � tolerance then
4: sort computing times in descending order
5: i, j ← index of the first and last process in the sorted list, respectively
6: while |imbalance(proci ∧ procj)| � tolerance do
7: contribution rangei ← exceeded timei ± tolerance
8: j ← index of the last process in the sorted list
9: while |imbalance(proci ∧ procj)| � tolerance do
10: acquisition rangej ← required timej ± tolerance
11: calculate expected migration for proci|procj
12: sort underloaded computing times
13: if |imbalance(proci)| � tolerance then break
14: j −−
15: sort overloaded computing times
16: i ← index of the first process in the sorted list
17: if |imbalance(proci)| � tolerance then break
18: Execute the asynchronous exchanges

For the load balancing schema, we used a schema for SPMD applications
described in [15]. This schema dynamically decides the global reconfiguration of
the workload using an imbalance threshold, a computing time, and the number
of agents. The computing times and the number of agents are monitored in each
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iteration during the simulation. This approach is executed by all the processes
without a central unit of decision. Therefore, each process knows the global
load situation and executes the algorithm with the same input. Consequently,
all processes calculate the same reconfiguration of the workload. The schema is
triggered when an imbalance factor is detected outside the tolerance range. This
factor indicates the percentage of imbalance in respect to the mean, and the
tolerance range defines the permissible degree of imbalance (see algorithm 3).

During the experiments, the load balancing schema is activated after the fifth
simulation step. After each load balancing activation, the schema is disabled
during one simulation step because the computing measurements vary when
the migration process has been launched. The migration routines were tested
using FLAME 0.16.2, libmboard 0.2.1 and OpenMPI 1.4.1. The experiments
were executed on an IBM Cluster with the following features: 32 IBM x3550
Nodes, 2xDual-Core Intel(R) Xeon(R) CPU 5160 @ 3.00GHz 4MB L2 (2x2),
12 GB Fully Buffered DIMM 667 MHz, Hot-swap SAS Controller 160GB SATA
Disk and Integrated dual Gigabit Ethernet. Tests consists of a case without
load balancing schema, and three imbalance tolerances: 0.3(30%), 0.15(15%)
and 0.05(5%).

The simulations were started with an initial population of 50.000 and 100000
agents (scenarios A and B, respectively), carrying capacity of 50.000 and 100.000,
and 10 of space dimensions of 1.000x1.000 and 900x900, respectively. The en-
vironmental configuration of the simulations for both scenarios were set up as
infected = 10, lifespan = 100, average offspring = 4, infectiousness = 65, chance
recovery = 50, and disease duration = 20. Moreover, for both scenarios, 16, 32,
64 and 128 cores were used.

Given that the agents were distributed through a round-robin distribution,
depending on the number of processes and the initial agents, the initial number
of agents per process can be equal or similar. Figures 4(a) and 4(b) compare the
execution time with a varying number of processes by comparing different val-
ues of tolerance with the original simulation without the load balancing schema.
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Fig. 4. Executions times in both scenarios
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Table 1. Summarize of the execution of scenario B, 100.000 agents for 128 processes

tolerance pack unpack agents-sent kbytes-sent exchanges exec-time(sec) gain(%)

- - - - - - 2462,49 -
0,30 0,007 0,005 19985 937,38 119 2206,21 10,4
0,15 0,008 0,006 24080 1129,97 249 2048,76 18,8
0,05 0,010 0,007 37283 1751,89 870 1953,43 24,8

Here, both scenarios have better results using the load balancing schema. More-
over, in most cases, if the imbalance tolerance is reduced the improvement is
better.

In Table 1, a reduced value of imbalance tolerance results in a better execution
time. By contrast, achieving a better balance involves a larger amount of agents
migrated and a larger amount of exchanges between processes. For this reason,
a load balancing schema should consider the communication overhead caused by
the amount of exchanges during the migration process.

5 Conclusion and Future Work

ABMS applications may present computational and communicational imbal-
ances during the simulation process. Therefore, the simulation environment
should be equipped with migration mechanisms to make modifications in the
workload of the overloaded and underloaded processes.

In this paper, a modification of the FLAME framework for automatically gen-
erating agent migration functions is presented. Using the same FLAME code gen-
eration methodology, the migration routines are automatically generated from
templates. Therefore, this improvement will allow the inclusion of load balancing
strategies. In this manner, the workload among the different processes can be
dynamically adjusted during the simulation.

It is planned to generalize a load balancing strategy and research on balancing
communication times.
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