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Abstract. In this work, we describe a Parallel Hierarchical A* (PHA*)
for path-finding in real-time using the Graphics Processor Units (GPUs).
The technique aims to find potential paths for many hundreds of agents
by building an abstraction graph of the input map in an off-line phase
and then using this representation to speed up the path-finding during
the on-line phase. The approach is appropriate in the case of scenarios
based on grid maps and is independent on a specific obstacle configu-
rations. In addition, we propose also a strategy to obtain smooth paths
during the search. We show that this approach fits well with the pro-
gramming model of the GPUs, enabling searching for many hundreds of
agents in parallel in real-time applications such as simulations. The paper
describes this implementation using the Compute Unified Device Archi-
tecture programming environment, and demonstrates its advantages in
terms of performance and quality of the paths founded comparing PHA*
with a GPUs implementation of Real-Time Adaptive A* and the classic
A* algorithm.

Keywords: path-finding, GPUs acceleration, simulation, real-time
search.

1 Introduction

Many types of simulations involve agents moving over maps. In particular, in
some simulations the agents have different characteristics and behavior and a
path planning algorithm is a key task for maintaining as an essential aspect of
plausible agent behavior such as collision avoidance and goal satisfaction. Path
planning also consumes a great part of the computation time during the simu-
lations, particularly in highly dynamic environments where most of the agents
are moving at the same time with varying goals. A fast path planning algo-
rithm is therefore essential for the agents to move smoothly around obstacles
and eventually with other moving agents.

Single-agent path planning, where the size of the search space is bounded by
the map size, can be tackled with a search algorithm such as A*[5]. Multi-agent
path planning is much more challenging than the single agent case in term of
CPU resources and memory requirements. Hence, despite its completeness and
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solution optimality guarantees, a centralized A* search has little practical value
in a multi-agent path planning problem. As the number of agents and the size
of the search space increase, searching tends to become computationally bur-
densome or intractable even for relatively small maps and collections of agents.
Trading the method completeness and the solution optimality for improved per-
formance is a typical feature of decentralized approaches, including the method
described in this paper.

In the last few years, Graphics Processor Units (GPUs) have increased rapidly
in popularity because they offer an opportunity to accelerate many algorithms.
In particular, applications that have large numbers of parallel threads that do
similar work across many data points with limited synchronization are good
candidates with which to exploit GPU acceleration. All of this means that in a
multi-agent scenario, we can take into account the idea that exploration of differ-
ent paths can be performed in parallel with large numbers of threads that explore
simultaneous paths. In this way, scalability to larger maps can be achieved with
decentralized approaches, which decompose the initial problem into a series of
parallel searches. However, a GPU-based path planning must takes into account
that it has limited access to the GPU and memory resources, which are allo-
cated with higher priority to other modules such as the graphics engine and
more recently to the physics engine.

In this paper, we describe Parallel Hierarchical A*, a path planning system for
agents that exploits the GPU to achieve real-time performance. The proposed
approach is appropriate in the simulation based on grid maps where a grid cell,
called tile, is the smallest unit space that can be occupied by a single agent.
Before the beginning of the simulation, the input map is decomposed in blocks.
Because these blocks are not guaranteed to be contiguous, they are further di-
vided into regions and each region within a block is represented by single tile.
Once the tiles have been established we compute edges between regions. At the
end of this process, we obtain an abstract graph which can be used at runtime to
find in parallel the potential high-level paths for many hundreds of agents. The
entire process from the building of the abstract graph to the planning path of
the agents are implemented on the GPU. We show that our Parallel Hierarchical
A* fits well with the parallel architecture of the GPU where many threads are
necessary to exploit the GPU fully. The method is simple and easy to imple-
ment using the programming model of the GPU as for instance the platform
chosen in this work NVIDIA’s Compute Unified Device Architecture (CUDA).
The empirical results demonstrate the performance scale advantage of the GPU
for a large number of agents compared to GPU implementations of RTAA* and
sub-optimal solutions compared to a CPU implementation of A*, then trading
optimality for improved execution performance.

2 Related Works

The first part of this section summarizes hierarchical approaches used for path-
finding which are more relevant for this work. The second part reviews related
work on path-finding using the GPU in a more general context.
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Path-finding approaches based on topological abstraction have been explored
in several domains such as computer games and robotics. Hierarchical Path-
Finding A* is a hierarchical approach for reducing problem complexity on grid
based maps. The works [6][11] are two approaches based on hierarchical repre-
sentations of a space with the goal of reducing the overall search effort. In [2],
Botea et al. presents and Hierarchical Path-Finding A* for reducing problem
complexity in path-finding on grid-based maps. The technique abstracts a map
into linked local clusters. At the local level, the optimal distances for crossing
the cluster are pre-computed and cached. At the global level, an action is to
cross a cluster in a single step rather than moving to an adjacent atomic loca-
tion. In [13], Sturtevant presents an extension of the Botea et al. approach to
build automated and minimal-memory state abstractions to speed path-finding.
Experimental results show that with 3% more memory, path-finding is up to 100
times faster than A*. We extend significantly this work to massive path-finding
scenario and also adapting it to the programming model of the GPU.

Researchers have recently developed parallel-based implementations of path-
finding that use the computational power of the GPU. These approaches show
that the GPU enables efficient path-finding to support large numbers of agents
moving through expansive and increasingly large dynamic environments. In 2008,
Bleiweiss [1] implemented the Dijkstra and the A* algorithms using CUDA. In
[7], Katz et al. present a cache-efficient GPU implementation of the all-pairs
shortest-path problem and demonstrate that it results in a significant improve-
ment in performance. In [12], Stefan et al. obtained speedups for breadth-first
search using a bit-vector representation of the search frontier on a GPU. In [8],
Kider et al. present a novel implementation of a randomized heuristic search,
namely R* search, that scales to higher-dimensional planning problems. They
demonstrate how R* can be implemented on a GPU and show that it consis-
tently produces lower-cost solutions, scales better in terms of memory, and runs
faster than R* on a Central Processing Unit (CPU). In [3], Erra et al. propose an
efficient multi-agent planning approach for GPUs based on an algorithm called
RTAA*. The implementation of RTAA* enables the planning of many thousands
of agents by using a limited memory footprint per agent.

3 The GPU Programming Model

In the last years, the increasing performance of the GPUs has led researchers to
explore mapping general non-graphics computation onto these new parallel archi-
tectures. The GPGPU phenomenon has shown some impressive results and the
demand to use the GPU as a more general parallel processor motivated NVIDIA
to release in 2006 a new generation of graphics cards that significantly extended
the GPU beyond graphics through a new unified graphics and computing GPU
architecture and the CUDA programming model [9].

From the point of view of hardware model, modern NVIDIA GPUs are fully
programmable many-core chips called CUDA cores. In a GPU, the number of
streaming multiprocessors (SMXs) ranges from 4 SMX at the low end to 15
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SMXs at the high end. For example, the GPU used in our experiments is an
economic device of new Kepler generation and it consists of 4 SMXs, each one
containing 192 CUDA cores. Each SMX is capable of supporting up to 2, 048
threads. Current NVDIA GPUs manage up to 16, 384 threads in real-time. All
thread management, including creation, scheduling and barrier synchronization
is performed entirely in hardware by the SMX with essentially zero overhead.

per block shared
memory

global
memory

grid 0

grid 1

thread block

thread

per thread local
memory

Fig. 1. Levels of parallel granularity and
memory sharing on the GPU [10]

From the point of view of soft-
ware model, CUDA is a minimal
extension to the C language which
permits the writing of a serial pro-
gram called kernel. A kernel executes
in parallel across a set of parallel
threads. Following the representation
in Figure 1, each thread has a private
local memory. The programmer orga-
nizes these threads into a hierarchy
of thread blocks and grids. A thread
block is a set of concurrent threads
that can cooperate among themselves
through barrier synchronization and
have access to the shared memory
with latency comparable to registers.
The grid is a set of thread blocks that
may each be executed independently.
All threads have access to the same
global, constant or texture memory. These three memory spaces are optimized
for different memory usages and thus have different time access. For example,
the read-only constant cache and texture cache are shared by all scalar proces-
sor cores and this speeds up reads from the texture memory space and constant
memory space.

4 The Proposed Approach

Our Parallel Hierarchical A* (PHA*) is appropriate for simulation that are based
on a grid map. In these simulations, the environment is subdivided into tiles that
are the smallest unit space that can be occupied by an agent. Each tile represents
a state of the search space and is connected to all nearby tiles. The cost of moving
from a tile to each of its neighbors is specified by an integer. This can be used to
model terrain elements that are difficult or impossible to pass, for example hills
and lakes. A common metric used to measure distance on grid maps, which we
adopt for this work, is the Manhattan distance.

In the subsequent sections, we first describe how to build an efficient abstrac-
tion graph of the input map by using an off-line phase, and then demonstrate
how use this graph during a real-time phase for multi agent path-finding.
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Fig. 2. A subdivision of a grid map in blocks. On the left, the regions identified using
a BFS. On the right, the abstract graph.

4.1 Abstract Graph

In this phase, we build a high-level map abstracting away all the details within
the tiles of the grid map. The grid map is divided into regular regions called
blocks. These blocks are all of the same size and decompose the grid map into
non-overlapping search sub-spaces. Because blocks are not guaranteed to be
contiguous, we divide the bocks further into connected component called regions.
The regions are identified by performing a breadth-first search (BFS) within a
block using the GPU as described in Harish et al. [4]. Because there could be
more than one region, the BFS is progressively invoked, with different start
position, on the same block until all the tiles of the block will be associated with
a region. Note that BFS is invoked in parallel over all blocks of the grid map. We
illustrate blocks and regions on the left of Figure 2. As for instance, the Block 0
has two regions named 0.a and 0.b.

Each region within a block is represented by a single tile taken at the weighted
center of the region. Once these regions have been established, we must compute
edges between regions using the following process. For each side of the block, we
have a thread that iterates along all the border tiles. The thread compares each
border tile of a region with the adjacent border tiles belonging to the nearest
region. This process enables to find all connected regions along the borders and
hence whenever we find a pair of these regions, we add an edge to the abstract
graph. As previously, this step is also performed in parallel and in particular for
each block we have four threads one for each cardinal direction. The result of
this process is illustrated on the right of Figure 2. As for instance, the region 0.a
has three edges to 1.a, 1.b, and 2.a.

In order to use a data structure that fits well to the programming model of
the GPU, we represent the graph in compact adjacency list form as illustrated
in Figure 3. The array R contains the representative tile of each region. The
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Fig. 3. Graph representation with vertex list pointing to a region list that pointing to
an edge list
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Fig. 4. A path from a start (S) to the goal (G) position. On the left, the path follows
the representative tile of each region. On the right, the path enters within the regions
and it heads toward the next region.

blocks of the grid map are represented as array Pr. Each entry Pr[i] points to
the regions of the block i. These regions are stored as an adjacency list in a large
array named Pe from the starting position bi. By using the index position j of a
region in the array Pe we are able to obtain its own representative tile from R[j].
The array Pe contains the edges of the graph. Each entry Pe[k] points to the
edges of the tile k. These edges are stored as an adjacency list in an array named
Pt from the starting positions rk. Finally, the array Pt contains pointers to the
representative tiles in the array R. This graph representation enables to obtain
from a given block all the regions and its adjacent regions but also to trace all the
adjacency regions from any given region. This feature is an essential requirement
for computing paths with Dijkstra in the next phase.

4.2 Path-Finding

Given a set of agents with corresponding start tiles and goal tiles the next step
of the path-finding is to find a path in the grid map using the abstract graph. We
compute the paths in two steps. In the first step, we use a GPU implementation of
Dijkstra[4] to find a path on the abstract graph. In particular, for each agent we
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Fig. 5. Detail of the abstract graph for the map den520d

have a thread that computes a complete abstract path. Once a path is found, the
second step is to refine this path crossing all the regional tiles using A*[5]. Also
in this case, we exploit the GPU for refining the path of each agent allocating a
thread per-agent. In both steps, we use the Manhattan distance as heuristic to
measure distances on the grid map.

Given a complete abstract path, there are many approach to use this informa-
tion for computing paths. A simple way to use the abstract path is to follow the
representative tile of each region. First search from the starting tile to the first
representative tile. Then, search between each region along the abstract path
crossing all the representative tile, and finally search between the final region to
the goal tile. The main drawback of this approach is that the path computed is
much further long as illustrated on the left of Figure 4.

Our solution is to obtain a smoothed path during the searching. The idea is
to follow the representative tile of each region but once an agent enters within
a region, we force the agent to search immediately for the representative tile of
the next region as illustrated on the right of Figure 4. Initially, for each start
position we calculate the region where each agent begins to plan the path. Sub-
sequently, the complete path is computed using iteratively search episodes. In
each episode, the search is restricted to a small part of the grid map that can
be reached from the current tile up to the next region using A*. In particular,
each A* search has a representative tile as final position but the stop condi-
tion is to reach a new region. Once the agent has stopped within a region, it
moves along the resulting trajectory and repeats the search episode process un-
til it reaches the goal tile. This approach is suitable in an environment which
tightly limit computational/temporal costs and thus the agents must alternate
searching/planning and navigation as for instance in visual simulation.

5 Evaluation and Results

In this section, we show the results of two types of experiments. The first ex-
periment demonstrates the efficiency of our approach. We compare PHA* with
RTAA* which are both used to perform searches for many thousands of agents.
We chose to compare PHA* with a GPU parallel version of RTAA* because
in previous work[3] this implementation was found to be faster than a parallel
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Fig. 6. GPU total times: PHA* vs RTAA*

length length inc. in % length inc. in % length inc. in % length inc. in %

den520d 128.50 164.46 28.23 149.08 15.92 142.56 11.19 137.09 6.67
tranquilpaths 195.75 249.59 27.59 227.13 16.12 216.98 10.98 215.19 10.69

Average Length Path and Percentage Increase

Map
PHA*

block size 4x4 block size 8x8 block size 16x16 block size 32x32
A*

Fig. 7. Quality of the trajectories: PHA* vs A*

CPU implementation of A*. The second experiment is related to the quality
of the trajectory found by using the abstract graph and concerns the length of
the path obtained from PHA* compared to the A*[5] which is used as optimal
path-finding algorithm.

The experiments were performed on two grid maps named den520d and tran-
quilpaths of sizes 256× 256 and 512× 512 respectively, coming from the public
repository of Moving AI Lab1. An example map with its abstract graph is shown
in Figure 5. Start and goal tiles were randomly chosen, and lookahead=3 for
RTAA*, which is the optimal value for achieving best performance on these two
maps. For each grid map, we launched several groups of agents ranging in size
from 512 to 4096 with blocks measuring 4 × 4, 8 × 8, 16 × 16, and 32 × 32.
Our tests were performed on an Intel Core i7-2600 3.40 GHz, NVIDIA Kepler
GTX 650 Ti 1GB, Windows 7. All the kernels were written using CUDA 5.0 and
Microsoft’s Visual C++ 2010 compiler.

Figure 6 reports GPU total times of the PHA* compared to RTTA*. For the
PHA*, we report both times for off-line and on-line phase. Note that off-line
times are approximately the same because depends only to the size of the block.
The results indicate that our approach is faster than RTAA*. The choice of the
block size strongly influences the required time for the off-line phase. In fact

1 http://www.movingai.com/benchmarks/

http://www.movingai.com/benchmarks/
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in this step, the greater effort is required to identify the representative tile of
each region (node of the graph) and their connections (edges of the graph). Use
smallest blocks mean small regions to explore, most of which corresponding to a
single block, contrary biggest blocks lead to big irregular regions requiring more
computation time. The same goes for the on-line phase in which the block size
determines the behavior of the searches. In this case smallest block corresponds
to a higher number of searches between consecutive regions in the abstract path
but each region will be quickly explorable. The opposite happens using bigger
block because there will be less regions to cross in the abstracted path but
more tile to explore in each region. This aspect suggests the versatility of this
approach, in the case of empty maps or with scattered obstacles should be useful
use biggest blocks while that became absolutely discouraged for map like those
used in the experiments. However, in this case our approach shows better results
when the block size is 8 × 8 because this represents the right balance between
region dimension and number of sub-paths in the abstract path.

Figure 7 lists the results of the quality test that compare PHA* and A*. This
test was executed with 100 searches on both maps using different block size. The
results indicate that the length of the paths retrieved with PHA* are worse than
the optimal solution. This deficiency caused by the fact that the final path is
composed by using the refining of different sub-path but is compensated for in
terms of efficiency as shown in performance experiments. However, as illustrate in
Figure 7 increasing the size of the blocks involves a path length near the optimal
solution because the final path is less affected by the presence of intermediate
representative tile and the A* search used for the on-line phase mitigates the
result. This different behavior still plays in favor of user that tuning the block size
parameter should reach the desired trade-off between speed and better path. For
example, in a real-time application, speed is the highest priority and suboptimal
paths may be acceptable.

6 Conclusions

In this work, we have demonstrated a parallel implementation of path-finding
for agent-based simulation. Through a hierarchical representation of the input
map, PHA* offers a simple and powerful way of planning trajectories for many
hundreds of agents using a thread to explore each potential path. We propose also
a strategy to obtain smooth paths during the search which enables to improve
path lengths. Our results show that the GPU implementation enables the real-
time use of this technique even in scenarios with a vast number of agents which
is common in applications such as simulation. The execution times showed that
both phases could be used also in real-time as for instance in scenario with
dynamic obstacles that occur in the grid map.

This aspect offers a starting point for interesting future works. Once the sys-
tem recognizes the presence of dynamic obstacles, our approach should be used
to rebuild the entire graph or only the portion of the abstract graph which corre-
sponds to the blocks where changes occurred. Thus, all retrieved paths combining
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multiple sub-paths should be able to adapt swiftly to changes in the map. For
this purpose, we are interested to further enhance the performance of the off-line
phase. Finally, we want to improve the quality of the path by exploiting in a
better way the knowledge of the map acquired during the off-line phase.
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