Games for Research: A Comparative Study
of Open Source Game Projects

Stig Magnus Halvorsen!:?® and Kjetil Raaen!+23
1 NITH, Norway
2 Simula Research Laboratory, Norway
3 Department of Informatics, University of Oslo, Norway

Abstract. Video games have proved to be an interesting platform for computer
scientists as games demand the latest technology, fast response times and effec-
tive utilization of hardware. Finding the right games to perform experiments are
however difficult. Some researchers create their own smaller prototype games to
test their ideas, without performing tests in larger scale productions, which de-
creases the practical applicability of the conclusion. An important reason is the
lack of suitable games for research. This paper proposes a list of qualities and
features required by researchers for a video game to be suitable for computer
science research. Further, it evaluates four games with open source code and dis-
cuss their usefulness. We also consider the current state of open source games
and possibilities for enhanced cooperation between the professional and research
communities.

1 Introduction

Decades have passed by since the first commercially produced and published video
game was released, giving birth to the video game industry. Since then, both the popu-
larity and demand for video games has exploded with an insatiable audience demanding
more content and more technically advanced features for every major release. This has
resulted in one of the world’s toughest industries with high development costs and high
risks for failure. The industry is thus a technology promoter that keeps pushing hard-
ware and software to the limit in order to satisfy the ever demanding market.

This demand has since the late nineteen-nineties caught the eyes of computer scien-
tists. Computer games have been a tool for research (such as Petlund et al. [11], Raaen et
al. [12]), as well a topic of research (such as Claypool & Claypool [3], Eisert [10], Wa-
veren [17]). There are, however, some crucial differences between commercial game
developers and researchers. Game developers prioritize rapid creation of content and
implementation of a large system, while the computer scientists prioritize investigating
and researching individual components of the larger system. Scientists do not have the
resources to develop a complete industry standard video game, while game developers
rarely publish any results of their research. This indicates that cooperation between the
industry and the researchers is beneficial.

Commercial games are rarely available in source code form. New, the code is consid-
ered company secret while releasing older code is either ignored or can be too costly.
Developers are sometimes willing to co-operate with researchers, but will often limit

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 353-362, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

354 S.M. Halvorsen and K. Raaen

how much of the inner workings can be disclosed. This makes the research cumber-
some as well as difficult to reproduce, potentially decreasing the quality of the research
material.

The current situation makes it hard for computer scientists to get hold of industry
standard systems, resulting in researchers creating their own small prototype games
specialized for the use of their current research. Examples include White et al. [18]
and [12], which both try different concepts in simplified environments. This research
should be implemented and tested in complete massive multiplayer games in order to
achieve more realistic results.

Other researchers follow the same approach. Ideas need to be embedded in a full
scale production in order to get fully realistic results. There is thus a need for a uni-
versally available industry standard video game that can be freely used for scientific
purposes.

This paper seeks to collect, evaluate and structure scientists’ requirements of video
games to use in their research. These criteria have been used to evaluate and compare
a selection of open source computer games in order to investigate their suitability for
scientific work.

2 Method

The primary approach in this work is analyzing gameplay, source code and documen-
tation of open source video games and game engines. Features and qualities found in
each game were compared with requirements collected from a online survey.

The authors selected 60 different features both common and uncommon, that were
to be evaluated as either unimportant, research requirement, engaging requirement, or
both. Survey participants were also invited to provide additional requirements. An “en-
gaging requirement”, is a feature that is needed for a game to be engaging for potential
test subjects. The features were meant to cover most known technical features that are
currently realistic to implement in games. Both the basics, such as user input through
well-known devices, and less common features, such as voice control are covered.

The survey concerns software, and assumes that the necessary hardware and drivers
are in place and working properly for the various features to be fully functional.

The survey was active for approximately a month. We sent invitations to computer
scientists that had or were interested in using video games in their research. Most of
these researchers were based in Norway among them some scientists from “Simula
Research Laboratory” and “SINTEF”, but it was also sent to various known researchers
abroad. The survey had a total of 22 participants, which is a number that reflects the
fact that there were few computer scientists which replied that they felt their experience
and work was relevant for the survey.

Participants from the game industry were not invited, because the problem discussed
in this paper is unique to academic research.

Games were selected from the list of open source games at Wikipedia [20], from pre-
vious research, as well as from the authors’ own experience. This approach should give
a reasonable overview of which such games are available. Games from Wikipedia’s list
with updates prior to 2012 are considered inactive and therefore excluded. The games

Games for Research: A Comparative Study of Open Source Game Projects 355

we examined more thoroughly are, Doom 3 (FPS), OpenArena (FPS), Vega Strike (Ac-
tion Simulator) and PlaneShift (MMO).

The first phase of the data gathering process involved installing and playing the
respective games. It is a quick and an effective approach to get a great overview of
each game, indirectly providing information on various game mechanics, its quality
and whether or not it is a stable product. Graphics quality is evaluated visually while
playing the game. This gives an immediate indication on the quality of the graphics, and
whether more advanced graphical features, such as shaders, are supported or not. The
approach also reveals implemented user interface mechanisms, such as game menus,
buttons, in-game chat and similar.

Some information on embedded physics were retrieved by interacting with the games
in ways that might not have been considered by developers. This involves jumping off
various ledges, firing weapons at objects not usually considered targets, and experi-
menting with various game mechanics. Such gameplay reveals much about interaction
between objects in the game. Important information is also retrieved by looking at var-
ious menus and game settings. Setting up a local server will for instance let you know
how many interacting concurrent players the server supports.

The second phase was to retrieve information by collecting data from official web-
sites and documentation available for the games and engines. Primarily to find technical
specifications revealing features either implemented in the games, or “hidden” engine
features not used by the games. It can alone reveal a significant amount of features and
qualities not visible by simply playing the game. It is also more efficient than trying to
interpret features hidden within the source code. The amount and quality of the docu-
mentation is highly variable. Because open source games require extensive cooperation
between geographically distributed developers, much more documentation is available
than for commercially developed games.

The final phase is to investigate the undocumented features by studying parts of the
source code. This requires obtaining a copy of the source code from the official version
control repository or file server, and to open the files in the intended development envi-
ronment, if any. Some will immediately compile, link and run successfully, while others
require the retrieval of game data or additional resources. For games with commercially
licensed data, researchers need to purchase or in some way legally obtain these files.
These are not needed to analyze the source code, but can make it easier by allowing you
to navigate the code through testing and debugging.

The next step is to get an overview of the structure of the code to find out where
to look for various potential features. Analyzing the code reveals code standards, fea-
tures, and the code quality. It can be a time consuming task, we were only interested
in examining the code for specific functionality and overall quality, which does not re-
quire examining every line of code manually. Once done, a final in-depth search for the
unknown features are done, involving basic file search and reading. Some features are
easier to determine than others, due to their complexity and nature. Features are marked
as they are found or declared missing.

356 S.M. Halvorsen and K. Raaen
3 Results

The research process of collecting a list the most important features for a computer
game resulted in a surprising engagement from some of the researchers invited to par-
ticipate. A total of 22 researchers participated in the online survey. We received various
valuable and interesting feedback on both the contents of the online survey and the
research topic itself. The most important was regarding the content of the quantitative
survey, which was by some perceived as too limited and that a larger of scale qualitative
interviews would have been better.

Table 1. Evaluated features & games

Feature Require- Unimpor- Doom 3 Open Arena Vega Strike PlaneShift
ment tant (idTech 4) (ioquake 3) (Vega Strike) (Crystal Space)
%o %o
Performance 91 5
Logging system 77 18 v ~ v v
Latency intolerant 68 18 v v X v
Simple Physics 68 23 v v v v
3D Support 68 14 v v v v
Technical Documentation 68 5
Simple AI 64 27 v v v 4
2D Support 63 14 v v v v
Adaptability 59 23
Scripted Al 59 23 v v v v
Good Code Quality 59 18 v v X v
Computational Heavy Al 55 32 v v v v
Reliability 54 27 v v X X
Player vs Environment 54 23 v v v v
Large networked (13-64) 54 36 X X X v
Packet loss intolerant (TCP) 50 32 X X X X
Single Player Mode 50 45 v v v X
Player vs Player (PvP) 50 27 v v ~ v
Massive networked (65+) 50 41 X X X v
v implemented ~ partially X absent

The remainder of this section contains an in-depth analysis of the selected games,
examining them for the quality of the features we found are important in the survey. Re-
sults from the survey are presented in table 1, which shows the most requested features.
Qualitative features such as performance are not evaluated in the table, but described
further in the section for the individual game.

3.1 Doom 3 (IdTech 4)

Doom 3 including the idTech 4 engine is to the knowledge of the authors the most com-
plex and the most advanced both technically and visually open source game available
as of this date. Primary development on the engine was completed before the game’s

Games for Research: A Comparative Study of Open Source Game Projects 357

commercial release in 2004 [8]. The source code was published by Timothee Besset
(user “TTimo”) on GitHub in November 2011 [2].

However only the source code has been made freely available, and not the data files.
The data files can be obtained by purchasing the game and configuring the compiled
game to read these. However, you will not be able to publish new content or updates
with the original game data as this is only available under commercial license [1]. This
can be used for research, but the complete experimental setup can not be shared.

The engine is mainly written in C++, using OpenGL for 3D graphics, and contains
601032 lines of code [13]. The source code defines various shared libraries as well as
an executable.

The source code is of high quality with good naming conventions, some good com-
ments and it is relatively easy to read. It contains clear traces of optimization, which is
expected as it is a major production that sold more than 3.5 million copies [15]. This
is also an indication of stability, as it has been under industry standard tests and been
played by millions. Id Software have also implemented their own memory manager, or
garbage collector, for faster dynamic memory allocation.

The code contains some less common hacks, where the most notable one overrides
all protected and private keywords setting them to public. This is required by their
custom run-time type information (RTTI) functionality.

Doom 3 is primarily a single player FPS game, with a online multiplayer mode sup-
porting up to 8! players in four different Deathmatch modes, allowing free for all fights.
However, one of the programmers, John Carmack, has stated that the engine can sup-
port more than 4 players but that they decided to restrict it for game design reasons [7].
This can naturally be modified as the source code is freely available. The game is an
intense action FPS experience, implying the need for low response times as suggested
by [3]. This is reflected in the code with built in latency-hiding mechanisms. Trading
reliability for response time, the latency sensitive section of the network code uses the
UDP protocol.

A natural part of the single player functionality is the need for “savegames”, which
is fully supported by the engine. The game was released before the concept of Cloud
storage went public, so it is not a part of the engine itself but can be obtained by running
the game through Steam, although not open source.

The original project found on GitHub does currently only build on Windows using
Microsoft Visual Studio 2010 or later, and on OSX using Xcode 3.2 or later. It is us-
ing operating system (OS) specific libraries for various low level operations including
threading and network. It makes it somewhat cumbersome to port to other platforms,
but ports are already available. Some with their own open-source Git repositories (Bes-
set [1] and Sanglard [13]). Threads have been utilized for time-critical functions that
should not be limited to the frame rate of the game, including sound mixing.

Adapting the engine or game itself to be used for other game types than FPS is
possible as it is open source. The engine has, however, primarily been used by FPS
games [19], so it is likely that it will require a significant amount of work to modify it
into other genres.

! Original 4 players, the support for 8 players were added in the “Resurrection of Evil” expan-
sion.

358 S.M. Halvorsen and K. Raaen

There is unfortunately little or no official technical documentation of the engine
apart from the source code. An idTech developer published a engine modification guide
which is useful, though not totally complete. There is also a very good code/engine
review available by Fabien Sanglard [13] but it also lacks some information, includ-
ing networking. The only thing available close to design documentation is the game
manual, but no official documents have been published.

Other available and relatively industry standard engine features are logging, physics,
support for scripting, artificial intelligence (Al) and a library for graphical user inter-
face (GUI) components. See table 1 on page 356 for an overview of the most important
implemented features.

3.2 OpenArena (Ioquake 3)

OpenArena is a pure first-person shooter developed using ioquake3, an open source
community developed enhancement of the idTech 3 engine. idTech 3’s source code
was released as open source together with the game Quake III Arena’s source under
the "GNU General Public License" in 2005 [14]. The binary data files generating the
content of the game are as with Doom 3 still closed and copyrighted. OpenArena’s
intention is to provide a free and enhanced alternative to Quake 11l Arena. Quake 111
Arena is, as Doom 3 a commercial computer game, implying a polished and stable
game. The ioquake3 project claims to have fixed many known bugs in the original
engine, patched some security issues and that they have enhanced the overall stability
of the entire engine and gameplay.

The engine and the game is primarily developed using C, using OpenGL for ren-
dering 3D graphics. The original idTech 3 engine consists of 367815 lines of source
code [13], which is almost half the size of idTech 4. The idTech engine and OpenArena
are both well recognized and previously used in computer scientific research (such
as [17], [10], and Parry [9]). Threads are not utilized to balance the load in idTech
3 which can create uncommon, yet possible blocking issues in the games. ioquake3
has fixed this by utilizing threads through the Simple Directmedia Library (SDL) 1.2
(SDL_thread), and by using the platform independent OpenAL library for sound. The
engine also supports video playback, which is also true for the unmodified version.

OpenArena’s gameplay is as its predecessor, Quake III Arena, primarily focused on
the online multiplayer experience. It also supports a simple single player game mode,
which behaves as a multiplayer game where the opponents’ are pre-programmed Als
simulating players and the local machine runs the server. The bots are programmed
in C, using a well structured collection of functions for in-game artificial intelligence.
OpenArena natively supports up to 12 simultaneous players in one match. Single player
progress, achievements and settings are saved on the local hard drive. Multiplayer saves
primarily the settings, such as user name and character.

The code quality is in general well structured and documented, through naming con-
ventions, comments and file directory structure. There is a log system available, and an
in-game command window with various options. Technical documentation is found on
OpenArena’s and ioquake3’s official websites and Wikimedia based encyclopedias.

The game compiles and runs on Windows, OSX and most Linux based platforms and
it thus qualifies as easily portable. It is one of the enhancements made by the ioquake3

Games for Research: A Comparative Study of Open Source Game Projects 359

project, replacing platform specific libraries with cross-platform supported libraries.
Both the idTech 3 and ioquake3 engines are primarily FPS engines, somewhat limiting
the adaptability of the engine. It is possible to modify it to support other game genres,
but probably not without changing engine specific features.

3.3 PlaneShift (Crystal Space)

PlaneShift is an open source community developed multiplayer online role playing
game (RPG) developed using the open source Crystal Space engine. All code and the
engine is released under the “GNU General Public License” (GPL), while the data con-
tent files are copyrighted to “Atomic Blue Non Profit Corporation” and distributed un-
der the “PlaneShift Content License”. The license details can be found on their official
website [6]. There is only one game mode, multiplayer, where you are able to interact
and fight with other players or non-player characters (NPC). Each player needs an in-
dividual game account, stored in the game’s database, together with character progress
and other game data. This gives a “cloud like” storage solution with a globally avail-
able database, where you can access your game data from any computer. The official
database is however currently only one server, where your data may be erased at any
given time. This is because the game is still currently under development, even with
most of the key functionality is in place [S]. The game can therefore not be categorized
as completely stable, and optimized. Unexpected behavior and bugs do exist as we ex-
perienced while playing, but it never crashed. It is however of surprisingly high quality,
and will be an interesting candidate when finally released as stable.

Crystal Space, the game’s engine, is an highly portable and acknowledged open
source software development kit (SDK) for developing 3D applications. It is released
under the “GNU Lesser General Public License” and is developed using C++. Various
games have been created with the SDK, and it can be classified as highly adaptable. The
SDK includes all functionality required by a game, including physics, collision detec-
tion, graphics, user input, GUI, and more. It is also possible to find or develop plugins
for special needs [16].

The game itself is a more specialized piece of software, serving its purpose as a
multiplayer RPG. It is probably easier to adapt than the previous evaluated games, due
to the nature of the engine and that the engine provides development tools to make
content development easier. PlaneShift has a menu system, a 2D GUI system, some
physics and supports joystick as an alternate input device.

3.4 Other

The other games were rejected for various reasons. Most as they are perceived as too
old, including graphical rendering techniques which are obsolete for the project to rep-
resent a modern, near state of the art video game.

Vega Strike, an Action Spaceship Simulator, was evaluated but rejected as it turned
out to be an incomplete game without any official support for online multiplayer game-
play. The game’s graphics is also primarily 2D textures with few 3D models, and is
thus not considered as a game representative of the industry standards. Other unfin-
ished open source games are 0 A.D., Ancient Beast, Chaotic Rage, Dungeon Crawl

360 S.M. Halvorsen and K. Raaen

Soup, Flare, FreeCol, FreeOrion, Hedgewars, Minetest, SpaceZero, Teeworlds, X-moto,
SuperTuxKart, Sintel The Game, Rigs of Rods, Unknown Horizons, and Unvanquished.

Other quite popular games such as BZFlag([11]) a Tank FPS, and QuakeWorld
(Cordeiro et al. [4]) have been rejected even though they have been previously used for
computer science. This is primarily because the games origins back to the late 90ies [20]
and are not good enough, even though they are recently updated.

This also includes games as The Battle for Wesnoth, Battle City, Flight Gear, FreeCiv,
Open Hexagram, PokerTH, StepMania, Chocolate Doom, Tales of Maj’eyal, Advanced
Strategic Command, Angband, Biniax, OpenRA, Zero-K, Crossfire, M.A.X.R., TripleA,
UFO: Alien Invasion, Widelands, C-Dogs, Katana Shoujo, Mari0, CorsixTH, Exult,
Freesynd, Gigolomania and NX Engine.

Other games were also rejected as they were too similar, if not on the same engine,
as earlier selected and evaluated games. This includes games as Oolite, Red Eclipse,
Doom 3 BFG Edition, Xonotic, Cube 2: Sauerbraten, Smokin’ Guns and Warsow.

4 Discussion

Our results show that no single game is perfect for all scientists. We have evaluated the
features of some open source games on a individual project basis. Some projects are
so distinctive that their requirements will rarely be similar to the general perception of
important features. The feature evaluation scheme can also be used to evaluate the qual-
ities of other computer games for use in research. We find Doom 3 and OpenArena the
most useful games for research within the field of computer science. Both are initially
made of commercial projects. PlaneShift can be used if the experimental state of the
game is acceptable.

The quality of the open source games indicates that they are far behind the tech-
nology pushing commercially produced industry standard games. This is confirmed by
Doom 3 as it was released in 2004, and is still among the more polished and tech-
nically advanced open source games available. Commercial games and engines made
open source, like Doom 3 with the idTech 4 engine, has poor documentation compared
to open source games. Open source games and commercially produced games might be
considered as incomparable due to the usual great difference of dedicated resources for
the different project types.

Doom 3 reveal some interesting facts regarding the complexity when compared to the
older releases. It has a significant amount of more code than the other games, and the
project structure is in many ways more cluttered with functionality spread across a heap
of files. It is not a surprise as it is a vast game compared to the other, but it makes the
code harder to understand and work with. This is probably also true for many new and
even larger productions and should be considered when planning a research project.

5 Conclusions

This paper has gathered a list of features and qualities required of a video game suitable
for use in computer science research, and has evaluated the suitability of games released
with open source code. Our results shows that there are no ideal games that can be used

Games for Research: A Comparative Study of Open Source Game Projects 361

for all research purposes. We have, however, developed a list of features and qualities
that are worth considering when looking for attractive games, and found two computer
games that are potential candidates.

The two highest rated candidates, Doom 3 and Open Arena, are both made from
or based on commercial produced computer games with the source code made publicly
available. Among them is Doom 3 which was released in 2004, the latest, most polished
and professional production. It is negative as it is an almost ten year old release, and
still one of the best open source alternatives available. This is an indication of the open
source game industry’s current state, which is way behind the commercial industry. It
can be discussed whether or not open source and commercial projects are comparable
due to the vast difference in available and dedicated resources.

The rejected games have been flagged as rejected because they are either incomplete
and unstable, or no longer can be described as state of the art games; Games that are not
comparable to new commercial released games. Some will consider Doom 3 outdated
as well, but it is currently one of the most modern open source alternatives. Eventually
this game will also be obsolete. We hope better open source alternatives will emerge.

5.1 Limitations

The informal procedure for gathering the list of candidate games creates a risk that we
have missed some potential games. Due to the vast amount of code in each of these
projects, we might also have overlooked some undocumented features despite our thor-
ough search.

5.2 Future Research

Our findings should be used to verify previous research using large scale games, where
the research have purely been tested with smaller prototypes. The games evaluated as
suitable may be used directly to verify the research credibility, and the feature list may
be used to evaluate other open source games.

For a more generally useful result, similar work should be performed at a more global
level, contacting computer scientists at research institutions all over the world. Further,
qualitative work such as interviews with scientists experienced in using games for tech-
nical research or as topic for research could give more detailed results regarding require-
ments. There are other open source games available, and more should be evaluated to
obtain a greater list of suitable games. Future reevaluations are also required as games
of the current generation games will become outdated and new options will arrive.

Ideally we would like to see more game studios releasing their games as open source.
Researchers and industry could achieve mutual benefit from more cooperation on new
technologies. Releasing games as open source will require some time and effort from
the companies, and is thus usually not perceived as a good investment. Tighter cooper-
ation will alleviate this situation. Researchers could also co-operate with open source
projects to achieve a similar goal, but it will likely require more work on the part of the
researchers.

362

S.M. Halvorsen and K. Raaen

References

(1]
(2]
(3]
(4]

(3]
(6]
(71
(8]
(9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

Besset, T.: Doom 3 repository on github (November 2011),
https://github.com/TTimo/doom3 .gpl

Besset, T.: Ttimo/doom3.gpl/commit history (November 2011),
https://github.com/TTimo/doom3 .gpl/commits/master?page=2
Claypool, M., Claypool, K.: Latency Can Kill: Precision and Deadline in Online Games.
In: 1st ACM Multimedia Systems Conference (2010)

Cordeiro, D., Goldman, A., da Silva, D.: Load balancing on an interactive multiplayer game
server. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641,
pp. 184-194. Springer, Heidelberg (2007)

Atomic Blue Corporation. About planeshift (April 2013),
http://www.planeshift.it/about.html

Atomic Blue Corporation. Planeshift license (April 2013),
http://www.planeshift.it/license.html

GameFront. Game info: Doom 3 | multi player | overview (May 2013),
http://doom3.filefront.com/info/Multiplayer

GameSpot. Doom 3 tech info (May 2013),
http://www.gamespot.com/doom-3/techinfo/platform/pc/

Parry, L.: L3dgeworld 2.1 input & output specifications. CAIA Technical Report 070808A
(August 2007)

Peter Eisert, P.F.: Remote rendering of computer games. In: International Conference on
SIGMAP (2007)

Petlund, A., Evensen, K., Griwodz, C., Halvorsen, P.: Tcp enhancements for interactive
thin-stream applications. In: 18th International NOSSDAV Workshop, NOSSDAV 2008,
pp. 127-128. ACM, New York (2008)

Raaen, K., Espeland, H., Stensland, H.K., Petlund, A., Halvorsen, P., Griwodz, C.: Lears: A
lockless, relaxed-atomicity state model for parallel execution of a game server partition. In:
41st ICPPW, ICPPW 2012, pp. 382-389. IEEE Computer Society, Washington, DC (2012)
Sanglard, F.: Doom3 source code review (June 2012)

Shacknews. Quake 3 source code released (August 2005),
http://www.shacknews.com/article/38305/
quake-3-source-code-released

Shacknews. John carmack and id software’s pioneering development work in 3d game en-
gines recognized with two technology emmy awards (July 2008),
http://www.shacknews.com/article/38305/
quake-3-source-code-released

Crystal Space Team. Crystal space official site (April 2013),
http://www.crystalspace3d.org/main/Main_Page

van Waveren, J.: Quake III Arena Bot. PhD thesis, University of Technology Delft (2001)
White, W., Sowell, B., Gehrke, J., Demers, A.: Declarative processing for computer games.
In: The 2008 ACM SIGGRAPH Symposium on Video Games, Sandbox 2008, pp. 23-30.
ACM, New York (2008)

Wikipedia. Id tech 4 — wikipedia, the free encyclopedia (2013),
http://en.wikipedia.org/w/index.php?title=Id_ Tech_4 (Online; ac-
cessed April 9, 2013)

Wikipedia. List of open-source video games — wikipedia, the free encyclopedia (2013),
http://en.wikipedia.org/w/index.php?title=List_of_
open-source_video_games (Online; accessed April 2, 2013)

https://github.com/TTimo/doom3.gpl
https://github.com/TTimo/doom3.gpl/commits/master?page=2
http://www.planeshift.it/about.html
http://www.planeshift.it/license.html
http://doom3.filefront.com/info/Multiplayer
http://www.gamespot.com/doom-3/techinfo/platform/pc/
http://www.shacknews.com/article/38305/quake-3-source-code-released
http://www.shacknews.com/article/38305/quake-3-source-code-released
http://www.shacknews.com/article/38305/quake-3-source-code-released
http://www.shacknews.com/article/38305/quake-3-source-code-released
http://www.crystalspace3d.org/main/Main_Page
http://en.wikipedia.org/w/index.php?title=Id_Tech_4
http://en.wikipedia.org/w/index.php?title=Id_Tech_4
http://en.wikipedia.org/w/index.php?title=List_of_open-source_video_games
http://en.wikipedia.org/w/index.php?title=List_of_open-source_video_games

	Games for Research: A Comparative Study of Open Source Game Projects
	1 Introduction
	2 Method
	3 Results
	3.1 Doom 3 (IdTech 4)
	3.2 OpenArena (Ioquake 3)
	3.3 PlaneShift (Crystal Space)
	3.4 Other

	4 Discussion
	5 Conclusions
	5.1 Limitations
	5.2 Future Research

	References

