Skip to main content

Carotid Plaque Imaging with SPECT/CT and PET/CT

  • Chapter
  • First Online:
  • 2398 Accesses

Abstract

A major contributor to the occurrence of ischaemic stoke is the existence of carotid atherosclerosis. A vulnerable carotid atherosclerotic plaque may rupture or erode, thus causing a thrombotic effect. Currently, clinical decision making with regard to carotid endarterectomy or stenting is still primarily based on the extent of luminal stenosis, estimated with CT angiography and/or (duplex) ultrasonography. However, there is growing evidence that the anatomic impact of stenosis alone has limited value in predicting the exact consequences of plaque vulnerability. Various molecular processes have, independently of degree of stenosis, shown to be importantly associated with the plaque’s capability to cause thrombotic events. These molecular processes can be visualised with nuclear medicine techniques allowing the identification of vulnerable patients by noninvasive in vivo SPECT(/CT) and PET(/CT) imaging. This chapter provides an overview of SPECT(/CT) and PET(/CT) imaging with specific radiotracers that have been evaluated for the detection of plaques together with a future perspective in this field of imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Annovazzi A, Bonanno E, Arca M, D’Alessandria C, Marcoccia A, Spagnoli LG et al (2006) 99mTc-interleukin-2 scintigraphy for the in vivo imaging of vulnerable atherosclerotic plaques. Eur J Nucl Med Mol Imaging 33(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337(8756):1521–1526

    Article  CAS  PubMed  Google Scholar 

  • Barger AC, Beeuwkes R III, Lainey LL, Silverman KJ (1984) Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310(3):175–177

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM (2006) In vivo tumor angiogenesis imaging with site-specific labeled (99m)Tc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging 33(7):841–848

    Article  PubMed  Google Scholar 

  • Boyle JJ, Wilson B, Bicknell R, Harrower S, Weissberg PL, Fan TP (2000) Expression of angiogenic factor thymidine phosphorylase and angiogenesis in human atherosclerosis. J Pathol 192(2):234–242

    Article  CAS  PubMed  Google Scholar 

  • Bucerius J, Schmaljohann J, Bohm I, Palmedo H, Guhlke S, Tiemann K et al (2008) Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans–first results. Eur J Nucl Med Mol Imaging 35(4):815–820

    Article  PubMed  Google Scholar 

  • Bucerius J, Duivenvoorden R, Mani V, Moncrieff C, Rudd JH, Calcagno C et al (2011) Prevalence and risk factors of carotid vessel wall inflammation in coronary artery disease patients: FDG-PET and CT imaging study. JACC Cardiovasc Imaging 4(11):1195–1205

    Article  PubMed  Google Scholar 

  • Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC et al (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105(23):2766–2771

    Article  PubMed  Google Scholar 

  • Collingridge DR, Carroll VA, Glaser M, Aboagye EO, Osman S, Hutchinson OC et al (2002) The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 62(20):5912–5919

    CAS  PubMed  Google Scholar 

  • Corti R, Fuster V (2011) Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 32(14):1709–1719

    Article  PubMed  Google Scholar 

  • Dangas G, Mehran R, Harpel PC, Sharma SK, Marcovina SM, Dube G et al (1998) Lipoprotein(a) and inflammation in human coronary atheroma: association with the severity of clinical presentation. J Am Coll Cardiol 32(7):2035–2042

    Article  CAS  PubMed  Google Scholar 

  • Davies JR, Rudd JH, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ et al (2005) Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 36(12):2642–2647

    Article  PubMed  Google Scholar 

  • Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V et al (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114(1):55–62

    Article  PubMed  Google Scholar 

  • Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J et al (2010) Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 51(6):862–865

    Article  PubMed  Google Scholar 

  • Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C et al (2011a) In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med 52(3):362–368

    Article  PubMed  Google Scholar 

  • Derlin T, Toth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR et al (2011b) Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med 52(7):1020–1027

    Article  PubMed  Google Scholar 

  • Di Gialleonardo V, Signore A, Glaudemans AW, Dierckx RA, De Vries EF (2012) N-(4-18F-fluorobenzoyl)interleukin-2 for PET of human-activated T lymphocytes. J Nucl Med 53(5):679–686

    Article  PubMed  Google Scholar 

  • Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM et al (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59(17):1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Elkind MS, Rundek T, Sciacca RR, Ramas R, Chen HJ, Boden-Albala B et al (2005) Interleukin-2 levels are associated with carotid artery intima-media thickness. Atherosclerosis 180(1):181–187

    Article  CAS  PubMed  Google Scholar 

  • Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47(8 Suppl):C7–C12

    Article  CAS  PubMed  Google Scholar 

  • Faust A, Wagner S, Law MP, Hermann S, Schnockel U, Keul P et al (2007) The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-[18F]Fluoroethoxy)-benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q J Nucl Med Mol Imaging 51(1):67–73

    CAS  PubMed  Google Scholar 

  • Ferrara N, vis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25

    Article  CAS  PubMed  Google Scholar 

  • Forster S, Rominger A, Saam T, Wolpers S, Nikolaou K, Cumming P et al (2010) 18F-fluoroethylcholine uptake in arterial vessel walls and cardiovascular risk factors: correlation in a PET-CT study. Nuklearmedizin 49(4):148–153

    Article  CAS  PubMed  Google Scholar 

  • Frias JC, Williams KJ, Fisher EA, Fayad ZA (2004) Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 126(50):16316–16317

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto S, Hartung D, Ohshima S, Edwards DS, Zhou J, Yalamanchili P et al (2008) Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol 52(23):1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65(3):671–680

    CAS  PubMed  Google Scholar 

  • Glaudemans AW, Slart RH, Bozzao A, Bonanno E, Arca M, Dierckx RA et al (2010) Molecular imaging in atherosclerosis. Eur J Nucl Med Mol Imaging 37(12):2381–2397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golestani R, Zeebregts CJ, Terwisscha van Scheltinga AG, Lub-de Hooge MN, van Dam GM, Glaudemans AW, et al (2012) Feasibility of VEGF imaging in human atherosclerotic plaque using 89Zr-bevacizumab positron emission tomography. Mol Imaging 12(4):235–243

    Google Scholar 

  • Haider N, Hartung D, Fujimoto S, Petrov A, Kolodgie FD, Virmani R et al (2009) Dual molecular imaging for targeting metalloproteinase activity and apoptosis in atherosclerosis: molecular imaging facilitates understanding of pathogenesis. J Nucl Cardiol 16(5):753–762

    Article  PubMed Central  PubMed  Google Scholar 

  • Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J et al (2004) Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet 363(9420):1491–1502

    Article  CAS  PubMed  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Hermus L, Lefrandt JD, Tio RA, Breek JC, Zeebregts CJ (2010) Carotid plaque formation and serum biomarkers. Atherosclerosis 213(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Holm PW, Slart RH, Zeebregts CJ, Hillebrands JL, Tio RA (2009) Atherosclerotic plaque development and instability: a dual role for VEGF. Ann Med 41(4):257–264

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Law MW, Khong PL (2009) Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251(1):166–174

    Article  PubMed  Google Scholar 

  • Iuliano L, Signore A, Vallabajosula S, Colavita AR, Camastra C, Ronga G et al (1996) Preparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis 126(1):131–141

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo-Garcia D, Davies JR, Graves MJ, Rudd JH, Gillard JH, Weissberg PL et al (2009) Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke 40(1):86–93

    Article  PubMed  Google Scholar 

  • Jones CB, Sane DC, Herrington DM (2003) Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res 59(4):812–823

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Schober O, Ikeda M, Schafers M, Ishigaki T, Kies P et al (2009) Evaluation and comparison of 11C-choline uptake and calcification in aortic and common carotid arterial walls with combined PET/CT. Eur J Nucl Med Mol Imaging 36(10):1622–1628

    Article  CAS  PubMed  Google Scholar 

  • Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L et al (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350(14):1472–1473

    Article  CAS  PubMed  Google Scholar 

  • Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK et al (2003) Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108(25):3134–3139

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Honda N, Kono Y, Arai Y (2012) Radiolabelled agents for PET imaging of tumor hypoxia. Curr Med Chem 19(20):3282–3289

    Article  CAS  PubMed  Google Scholar 

  • Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG et al (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2(4):331–338

    Article  PubMed  Google Scholar 

  • Lees AM, Lees RS, Schoen FJ, Isaacsohn JL, Fischman AJ, Mckusick KA et al (1988) Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 8(5):461–470

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488

    Article  PubMed  Google Scholar 

  • Littlewood TD, Bennett MR (2003) Apoptotic cell death in atherosclerosis. Curr Opin Lipidol 14(5):469–475

    Article  CAS  PubMed  Google Scholar 

  • Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR et al (2000) Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 31(1):40–47

    Article  CAS  PubMed  Google Scholar 

  • Lu E, Wagner WR, Schellenberger U, Abraham JA, Klibanov AL, Woulfe SR et al (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108(1):97–103

    Article  CAS  PubMed  Google Scholar 

  • Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T et al (2012) Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71(5):709–718

    Article  PubMed  Google Scholar 

  • Masteling MG, Zeebregts CJ, Tio RA, Breek JC, Tietge UJ, de Boer JF et al (2011) High-resolution imaging of human atherosclerotic carotid plaques with micro 18 F-FDG PET scanning exploring plaque vulnerability. J Nucl Cardiol 18(6):1066–1075

    Article  PubMed Central  PubMed  Google Scholar 

  • Mauriello A, Servadei F, Sangiorgi G, Anemona L, Giacobbi E, Liotti D et al (2011) Asymptomatic carotid plaque rupture with unexpected thrombosis over a non-canonical vulnerable lesion. Atherosclerosis 218(2):356–362

    Article  CAS  PubMed  Google Scholar 

  • Morgan AR, Rerkasem K, Gallagher PJ, Zhang B, Morris GE, Calder PC et al (2004) Differences in matrix metalloproteinase-1 and matrix metalloproteinase-12 transcript levels among carotid atherosclerotic plaques with different histopathological characteristics. Stroke 35(6):1310–1315

    Article  CAS  PubMed  Google Scholar 

  • Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H et al (2007) In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48(8):1313–1319

    Article  CAS  PubMed  Google Scholar 

  • Naghavi M, Falk E, Hecht HS, Jamieson MJ, Kaul S, Berman D et al (2006) From vulnerable plaque to vulnerable patient–Part III: executive summary of the Screening for Heart Attack Prevention and Education (SHAPE) Task Force report. Am J Cardiol 98(2A):2H–15H

    Article  PubMed  Google Scholar 

  • Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114(14):1504–1511

    Article  CAS  PubMed  Google Scholar 

  • Nighoghossian N et al (2005) The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36(12):2764–2772

    Article  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7

    CAS  PubMed  Google Scholar 

  • Pichler BJ, Kolb A, Nagele T, Schlemmer HP (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336

    Article  PubMed  Google Scholar 

  • Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S et al (2009) 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 50(10):1611–1620

    Article  PubMed  Google Scholar 

  • Rossin R, Muro S, Welch MJ, Muzykantov VR, Schuster DP (2008) In vivo imaging of 64Cu-labeled polymer nanoparticles targeted to the lung endothelium. J Nucl Med 49(1):103–111

    Article  PubMed  Google Scholar 

  • Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911

    CAS  PubMed  Google Scholar 

  • Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N et al (2002) Imaging atherosclerotic plaque inflammation with [F-18]-fluorodeoxyglucose positron emission tomography. Circulation 105(23):2708–2711

    Article  CAS  PubMed  Google Scholar 

  • Sanidas EA, Mintz GS, Maehara A, Cristea E, Wennerblom B, Iniguez A et al (2012) Adverse cardiovascular events arising from atherosclerotic lesions with and without angiographic disease progression. JACC Cardiovasc Imaging 5(3 Suppl):S95–S105

    Article  PubMed  Google Scholar 

  • Sayed S, Cockerill GW, Torsney E, Poston R, Thompson MM, Loftus IM (2009) Elevated tissue expression of thrombomodulatory factors correlates with acute symptomatic carotid plaque phenotype. Eur J Vasc Endovasc Surg 38(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP et al (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109(21):2554–2559

    Article  PubMed  Google Scholar 

  • Signore A, Capriotti G, Scopinaro F, Bonanno E, Modesti A (2003) Radiolabelled lymphokines and growth factors for in vivo imaging of inflammation, infection and cancer. Trends Immunol 24(7):395–402

    Article  CAS  PubMed  Google Scholar 

  • Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA (2010) High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol 30(2):169–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417(6890):750–754

    Article  CAS  PubMed  Google Scholar 

  • Slart RH, Zeebregts CJ, Tio RA (2008) Can nuclear medicine shed light on the dark side of angiogenesis in cardiovascular disease? Nucl Med Commun 29(7):585–587

    Article  PubMed  Google Scholar 

  • Sluimer JC, Daemen MJ (2009) Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 218(1):7–29

    Article  PubMed  Google Scholar 

  • Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B et al (2009) Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 53(17):1517–1527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spagnoli LG, Mauriello A, Sangiorgi G, Fratoni S, Bonanno E, Schwartz RS et al (2004) Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. JAMA 292(15):1845–1852

    Article  CAS  PubMed  Google Scholar 

  • Szabo Z, Speth RC, Brown PR, Kerenyi L, Kao PF, Mathews WB et al (2001) Use of positron emission tomography to study AT1 receptor regulation in vivo. J Am Soc Nephrol 12(7):1350–1358

    CAS  PubMed  Google Scholar 

  • Takaya N, Yuan C, Chu B, Saam T, Polissar NL, Jarvik GP et al (2005) Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 111(21):2768–2775

    Article  PubMed  Google Scholar 

  • Van de Wiele C, Oltenfreiter R (2006) Imaging probes targeting matrix metalloproteinases. Cancer Biother Radiopharm 21(5):409–417

    Article  PubMed  Google Scholar 

  • van der Vaart MG, Meerwaldt R, Reijnen MM, Tio RA, Zeebregts CJ (2008) Endarterectomy or carotid artery stenting: the quest continues. Am J Surg 195(2):259–269

    Article  PubMed  Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25(10):2054–2061

    Article  CAS  PubMed  Google Scholar 

  • Wallis de Vries B, Hillebrands JL, van Dam GM, Tio RA, de Jong JS et al (2009) Images in cardiovascular medicine. Multispectral near-infrared fluorescence molecular imaging of matrix metalloproteinases in a human carotid plaque using a matrix-degrading metalloproteinase-sensitive activatable fluorescent probe. Circulation 119(20):e534–e536

    Article  CAS  PubMed  Google Scholar 

  • Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A (2002) 18 F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 32(1):70–76

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riemer H. J. A. Slart MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slart, R.H.J.A., Boersma, H.H., Zeebregts, C.J. (2014). Carotid Plaque Imaging with SPECT/CT and PET/CT. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Leenders, K. (eds) PET and SPECT in Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54307-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54307-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54306-7

  • Online ISBN: 978-3-642-54307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics