
Locally Updatable and Locally Decodable Codes

Nishanth Chandran1,�, Bhavana Kanukurthi2,��, and Rafail Ostrovsky3,� � �

1 Microsoft Research, India
2 Department of Computer Science, UCLA

3 Department of Computer Science and Mathematics, UCLA

Abstract. We introduce the notion of locally updatable and locally
decodable codes (LULDCs). In addition to having low decode locality,
such codes allow us to update a codeword (of a message) to a codeword
of a different message, by rewriting just a few symbols. While, intuitively,
updatability and error-correction seem to be contrasting goals, we show
that for a suitable, yet meaningful, metric (which we call the Prefix
Hamming metric), one can construct such codes. Informally, the Prefix
Hamming metric allows the adversary to arbitrarily corrupt bits of the
codeword subject to one constraint – he does not corrupt more than a
δ fraction (for some constant δ) of the t “most-recently changed” bits of
the codeword (for all 1 ≤ t ≤ n, where n is the length of the codeword).

Our results are as follows. First, we construct binary LULDCs for mes-
sages in {0, 1}k with constant rate, update locality of O(log2 k), and read
locality of O(kε) for any constant ε < 1. Next, we consider the case where
the encoder and decoder share a secret state and the adversary is com-
putationally bounded. Here too, we obtain local updatability and decod-
ability for the Prefix Hamming metric. Furthermore, we also ensure that
the local decoding algorithm never outputs an incorrect message – even
when the adversary can corrupt an arbitrary number of bits of the code-
word. We call such codes locally updatable locally decodable-detectable

� Email: nichandr@microsoft.com. Part of this work was done while this author
was at AT&T Labs - Security Research Center, NY.

�� Email: bhavanak@cs.bu.edu. Research supported in part by NSF grants CNS-
0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174;
and in part by the Defense Advanced Research Projects Agency through the U.S.
Office of Naval Research under Contract N00014-11-1-0392. The views expressed
are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

� � � Email: rafail@cs.ucla.edu. Research supported in part by NSF grants CNS-
0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174;
US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research
Award. This material is also based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Con-
tract N00014-11-1-0392. The views expressed are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S.
Government.

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 489–514, 2014.
c© International Association for Cryptologic Research 2014

mailto:nichandr@microsoft.com
mailto:bhavanak@cs.bu.edu
mailto:rafail@cs.ucla.edu

490 N. Chandran, B. Kanukurthi, and R. Ostrovsky

codes (LULDDCs) and obtain dramatic improvements in the parameters
(over the information-theoretic setting). Our codes have constant rate,
an update locality of O(log2 k) and a read locality of O(λ log2 k), where
λ is the security parameter.

Finally, we show how our techniques apply to the setting of dynamic
proofs of retrievability (DPoR) and present a construction of this prim-
itive with better parameters than existing constructions. In particular,
we construct a DPoR scheme with linear storage, O(log2 k) write com-
plexity, and O(λ log k) read and audit complexity.

1 Introduction

Standard error correcting codes (ECC) enable the recovery of a message even
when a large fraction of its codeword is corrupted. One disadvantage of ECCs
is that, in order to read even a single bit of the data, the entire codeword needs
to be decoded. This becomes very inefficient if a user frequently needs to access
specific parts of the underlying data. Locally decodable codes LDCs, introduced
by Katz and Trevisan [15], overcome this problem and allow recovery of a single
symbol of the message by reading only a few symbols of the potentially corrupted
codeword. Another disadvantage of standard ECCs is that, in order to change
even a single bit of the data, the entire codeword needs to be recomputed. A
natural question to ask is: can we obtain codes which also allow us to change
the underlying data by rewriting only a few symbols of the codeword? That is,

Can we build an ECC that allows you to decode and update the message by
reading and/or modifying sub-linear number of symbols of the codeword?

In this work, we explore this question and its cryptographic connection.

1.1 Codes with Locality

Locally Decodable Codes. As mentioned before, locally decodable codes (LDCs),
introduced by Katz and Trevisan [15] are a class of error correcting codes, where
every bit of the message can be probabilistically decoded by reading only a few
bits of the (possibly corrupted) codeword. In more detail, a binary locally decod-
able code encodes messages in {0, 1}k into codewords in {0, 1}n. The parameters
of interest in such codes are: a) the rate of the code ρ = k

n ; b) the distance δ,
which signifies that the decoding algorithm succeeds even when δn of the bits of
the codeword are corrupted; c) the locality r which denotes the number of bits
of the codeword read by the decoding algorithm; and d) the error probability ε
that denotes that for every bit of the message, the decoding algorithm success-
fully decodes it with probability 1 − ε. Ideally, one would like to minimize both
the length of the code as well as the locality; unfortunately, there is a trade-off
between these parameters. On the one hand, we have the Hadamard code that
has a locality of 2; however its length is exponential in k. (Indeed, the best code
length for LDCs with constant locality are super-polynomial in k [27,8,6].). On

Locally Updatable and Locally Decodable Codes 491

the other hand, the best known codes with constant rate, [16,11,13], have a lo-
cality of O(nε) for any constant 0 < ε < 1. For a survey on locally decodable
codes, see Yekhanin’s survey [28].

Locally Updatable and Locally Decodable Codes. As we mentioned before, LDCs
(and error correcting codes in general) are extremely useful as they provide
reliability even when many bits of the codeword may be corrupted; unfortunately,
the (unavoidable) price that we pay is that even small changes to the message
result in a large change to the codeword. In this work, we ask “can we have
locally decodable codes that are locally updatable?”. That is, can we have locally
decodable codes such that in order to obtain a codeword of message m′ from a
codeword of message m (where m and m′ differ only in one bit) one only needs
to modify a few bits of the codeword? We call such codes locally updatable and
locally decodable codes (LULDCs); the number of bits that are modified by the
update algorithm is then referred to as the update locality and the number of
bits read by the (local) decoding algorithm is referred to as the read locality.

The Prefix Hamming Metric. As in the case of LDCs, our goal is to tolerate a
constant fraction of errors while achieving subliniear locality (for both read and
update). However, a little thought reveals that updatability and error correction
are conflicting goals – if a code tolerates a δ-fraction of errors then, to change
even one bit of the data, at least 2δ-fraction of the codeword symbols do need
to be re-written.

In light of this, we consider a weaker, yet meaningful, adversarial model of
corruption. In this model, the adversary is still allowed to corrupt constant
fraction of the bits of the codeword. However, the bits of the codeword have
an “age” associated with them and the adversary is allowed to corrupt fewer
of the younger/newer bits and is allowed to corrupt many of the older bits.
Whenever we touch (i.e., write) a particular bit i of the codeword during an
update procedure, this bit becomes a young bit with an age less than every
other bit in the codeword. At this point of time, the ith bit of the codeword
is the youngest bit in the codeword. Now, suppose we touch the jth bit of the
codeword, then this bit becomes the youngest bit, with the ith bit now becoming
the second youngest bit of the codeword and so on. Note that if we were to now
touch the ith bit, it would once again become the youngest bit of the codeword.

We allow the adversary to corrupt a constant fraction of the bits of the code-
word subject only to one constraint – he never corrupts more than a δ fraction
of the t youngest bits (for all 1 ≤ t ≤ n). We call this metric the Prefix Hamming
Metric. This metric models a situation where the longer the time a bit of the
codeword resides in the system, the easier it is for an adversary to corrupt it.
That is, stored data (codeword bits) gets “stale” unless refreshed, and hence the
more time the data is untouched, the more errors it will have.

Comparison with Tree Codes. Our error model is similar to the one considered by
Schulman [23],[24] in his seminal work on Tree Codes. Tree codes were specifically
designed for streaming messages and allow the encoding of messages one bit

492 N. Chandran, B. Kanukurthi, and R. Ostrovsky

at a time; the corresponding codeword symbol for every bit of the message is
obtained by traversing down a tree. The codeword of the message is obtained
by simply concatenating all the individual codeword symbols. Schulman’s code
guarantees the following: consider any two (different) paths of length t beginning
at a particular node in the tree (that denote two different messages); then, the
codewords corresponding to these messages have Hamming distance at least αt
(for some constant α). Alternately viewed, at any given instance, as long as
the adversary does not corrupt more than a α fraction of the t most recently
transmitted codeword symbols, the codeword will decode to the correct message.
Tree codes were designed for arbitrary (polynomial length) messages; however,
we do not know of explicit constructions of tree codes with constant rate.

In our work, the message and codeword lengths are fixed in advance. But
the message bits can be updated in a streaming fashion by rewriting certain
bits of the codeword. Our adversarial error model says the following: at any
given instance, as long as the adversary does not corrupt more than a particular
constant fraction of the t most recently rewritten bits of the codeword (for all
t), the codeword will decode to the correct message.

1.2 Our Results

Information-Theoretic Codes. We first construct an LULDC in the information-
theoretic setting for the Prefix Hamming metric. We define this metric and such
codes in detail in Section 2; for now, we give an overview of the result and the
parameters that we achieve.

– Result 1 (Informal): We construct binary LULDCs for the Prefix Hamming
metric for messages in {0, 1}k. Our codes have a rate of O(1), an amortized
update locality of O(log2 k) and a worst case read locality of O(kε) for any
constant ε < 1. For codes that operate on a larger alphabet Σ, with |Σ| ≥
log k, we can improve the update locality to O(log k) (other parameters
remaining the same).

Computational Codes. Next, we consider a scenario where the encoder and de-
coder share a secret state S and where the adversary is computationally bounded.
In such a setting, we are able to provide the added guarantee that the (local) de-
coding algorithm never outputs an incorrect message, irrespective of the number
of corrupted bits in the codeword. For the sake of clarity, we refer to such codes
as locally updatable and locally decodable-detectable codes (LULDDCs). In ad-
dition to providing stronger guarantees, we also obtain dramatic improvements
over the parameters achieved by our information-theoretic LULDC construction.
In particular, we obtain the following parameters:

– Result 2 (Informal): We construct binary LULDDCs for messages in {0, 1}k.
Our codes have constant rate, an amortized update locality of O(log2 k) and
a worst case read locality of O(λ log2 k), where λ is the security parameter
of the system.

Locally Updatable and Locally Decodable Codes 493

Finally, we note that our techniques for building LULDDCs lend themselves
to the construction of a Dynamic Proof of Retrievability (DPoR) scheme. Below
we discuss our result on DPoR, which we believe, is of independent interest.

Dynamic Proofs of Retrievability. Informally, a proof of retrievability allows a
client to store data on an untrusted server and later on, obtain a short proof
from the server, that indeed all of the client’s data is present on the server. In
other words, the client can execute an audit protocol such that any malicious
server that deletes or changes even a single bit of the client’s data will fail to
pass the audit protocol, except with negligible probability in the security param-
eter1. Proofs of retrievability, introduced by Juels and Kaliski [14], were initially
defined on static data, building upon the closely related notion of sublinear au-
thenticators defined by Naor and Rothblum [18]. Several works have studied the
efficiency of such schemes [25,7,2,1] with the work of Cash, Küpçü, and Wichs [3]
considering the notion of proofs of retrievability on dynamically changing data;
in other words, they constructed a proof of retrievability scheme that allowed
for efficient updates to the data. Their DPoR scheme has O(k) server storage,
O(λ) client storage, O(λ log2 k) read complexity, O(λ2 log2 k) write and audit
complexity2. We improve their parameters and obtain the following result:

– Result 3 (Informal): We obtain a construction of a dynamic proof of re-
trievability with O(k) server storage, O(λ) client storage, O(λ log k) read
complexity, O(log2 k) write complexity and O(λ log k) audit complexity3.

1.3 Our Techniques

We now give a high-level overview of the techniques used to obtain our re-
sults. We shall make use of the hierarchical data structure introduced by Os-
trovsky [19],[20] in the context of oblivious RAMs. Oblivious RAMs [9,19] allow
efficient random access to memory without revealing the access pattern to an ad-
versary that observes the reads and writes made to memory. ORAM protocols
hide the access pattern by making use of several tools carefully put-together.
Here we distill out exactly what we need for our construction. In particular, we
will primarily make use of the hierarchical data structure, coupled with certain
other techniques, to construct LULDCs.

Hierarchical Data Structure. At a high level, this data structure comprises of
buffers buff0, · · · , buffτ of increasing size. Buffer buffi has 2

i elements and each

1 Formally, this guarantee is provided by requiring the existence of an extractor al-
gorithm, that given black-box rewinding access to any malicious server that passes
the audit with non-negligible probability, will extract all of the client’s data, except
with negligible probability.

2 The work of Cash et al. [3] considered the complexity without explicitly including
the (storage as well as verification) complexity of the MAC; if one did this, then
the parameters obtained will all be larger by a factor of O(λ).

3 These parameters include the cost for storage and verification of the MACs.

494 N. Chandran, B. Kanukurthi, and R. Ostrovsky

element in the buffer is of the form (index, value). In addition, there is a special
buffer, buff∗ which has all bits of the message in order (and hence without an
index). To read a value at a particular index i, we scan the buffers in top-down
manner. To write (or re-write) a value v at index i, we write it to the top
buffer. Writing to buffers evenutally fills them up. To handle this, buffers are
periodically combined and moved to an empty buffer in some lower level in a
careful manner.

LULDCs for the Prefix Hamming Metric. The first idea behind our construction
in the information-theoretic setting is as follows. To achieve local decodability,
we encode each buffer (including buff∗) with a locally decodable code (LDC).
Whenever we wish to update a bit of the message, we will write it to the topmost
buffer buff0 and re-encode the top buffer using an LDC to encode this latest
update. Naturally, the top buffer gets full after an update operation. Whenever
we encounter a full buffer, we move its contents to the buffer below it (that is,
we decode the entire buffer, combine top level buffers together and re-encode
them at a level below, once again using an LDC for the encoding). When we
wish to (locally) decode a particular index i of the message, we scan buffers
one-by-one starting with topmost buffer. Now, note that we need to check if
a particular index is found in a buffer or not. In order to do this, we always
ensure that buffers store (index, value) pairs that are sorted according to the
index value. This will enable us to perform a binary search (decoded via the
underlying LDC) to check if a buffer contains a particular index i or not. Since
we are performing the binary search via the decode algorithm of the underlying
LDC, we must ensure that the decode does not fail with too high a probability;
hence, we repeat the decode procedure at each level some fixed number of times
to ensure this and make sure that our overall local decoding algorithm succeeds
except with ε probability. When the index is found, we stop searching lower level
buffers and output the value retrieved (our construction will always ensure that
if an index value was updated, then the latest value of the index will be stored
at a high level buffer). If the index is not found, then we read the corresponding
element from the special buffer buff∗, once again using the underlying LDC.

Since we must store every updated element as a (index, value)-pair, the above
described technique will decrease the rate of the code by a factor of O(log k).
Hence, in order to ensure that our code has constant rate, we carefully choose
the total number of buffers τ + 1 in our construction to ensure that we obtain
constant rate codes and yet achieve good update and read locality.

Now, in the above construction, we first show that the decode and update
algorithms succeed (with small locality) as long as an adversary corrupts only
a constant fraction of the bits of each buffer. We then proceed to show that if
an adversary corrupts bits of the codeword according to the Prefix Hamming
metric, then he can only corrupt a constant fraction of the bits of each buffer
(within a factor of 2). This gives us our construction of LULDCs.

Computational LULDDCs. To obtain our construction in the computational set-
ting, at a high level, we follow our information-theoretic construction. However,

Locally Updatable and Locally Decodable Codes 495

there are three main differences. First, when decoding the ith bit of the codeword,
we still scan each buffer to see if a “latest” copy of the ith bit is present in that
buffer. However, now, because we are in the computational setting, we no longer
need to store the buffer in sorted order and perform a binary search. Instead, we
simply use hash functions to check if a particular index is present in a buffer or
not. Furthermore, we use cuckoo hash functions to minimize our read locality in
this case. Second, we store each buffer using a computational LDC that has con-
stant rate and O(λ) locality (such codes are obtained through the construction
of Hemenway et al. [12]). Third, we authenticate each bit of the codeword using
a message authentication code so that we never decode incorrectly (irrespecitve
of the number of errors that the adversary introduces).

The above ideas do not suffice for our construction: in particular, if we applied
these techniques, we do not obtain a constant rate code as MACing each bit of
the codeword would result in a O(λ) blowup in the rate of the code. One could
think of MACing O(λ) bits of the codeword, block by block, but then this would
result in a O(λ2) blowup in the read locality, as we must read λ bits now in
each buffer through the underlying LDC. In order to obtain our result, we MAC
each bit of the codeword using a constant size MAC; this technique is similar in
spirit to the use of constant size MACs when authenticating codewords in the
context of optimizing privacy amplification protocols [5]. To obtain our result,
we make a careful use of these constant size MACs to verify the correctness of a
codeword as well as to decode correctly (except with negligible probability).

Dynamic Proofs of Retrievability. Cash et al. [3] showed how to convert any
oblivious RAM (ORAM) protocol that satisfied a special property (which they
define to be next-read-pattern-hiding (NRPH)) into a dynamic proof of retriev-
ability (DPoR) scheme. We show that we do not need an ORAM scheme with
this property and the techniques used to construct LULDDCs can be used to
directly build a DPoR scheme. Moreover, we do not need to hide the read and
write access pattern, thereby leading to significant savings in the complexity. In
particular, we show, that by encoding each buffer of the ORAM structure using
a standard error correcting code (that is also appropriately authenticated with
constant size MACs), and additionally storing authenticated elements of the raw
data in the clear, we can use the techniques developed for LULDDCs to con-
struct a DPoR scheme with O(k) server storage, O(λ) client storage, O(λ log k)
read complexity, O(log2 k) write complexity and O(λ log k) audit complexity.
Moreover, these parameters include the cost for storage and verification of the
MACs.

1.4 Organization of the Paper

In Section 2, we introduce our notion of locally updatable and locally decod-
able codes as well as formally define the Prefix Hamming metric. We present
our construction of locally updatable and locally decodable codes for the Prefix
Hamming metric in Section 3. We consider the computational setting in Sec-
tion 4 and construct locally updatable and locally decodable-detectable codes.

496 N. Chandran, B. Kanukurthi, and R. Ostrovsky

Finally, we give our construction of a dynamic proof of retrievability scheme in
Section 5. Due to the lack of space, we present further details of our schemes
and proofs in the full version [4].

2 Definitions

Notation. Let k denote the length of the message. Let M denote a metric space
with distance function dis(,). Let the set of all codewords corresponding to a
message m be denoted by Cm – we will define this set shortly. Let n denote the
length of all codewords. m(i) denotes the ith bit of message m for i ∈ [k], where
[k] denotes the set of integers {1, 2, · · · , k}.

2.1 Codes with Locality

Locally decodable codes. We first recall the notion of locally decodable codes.
Informally, locally decodable codes allow the decoding of any bit of the message
by only reading a few (random) bits of the codeword. Formally:

Definition 1 (Locally decodable codes). A binary code C : {0, 1}k →
{0, 1}n is (k, n, rk, δ, ε)-locally decodable if there exists a randomized decoding
algorithm D such that

1. ∀m ∈ {0, 1}k, ∀i ∈ [k], ∀cm ∈ Cm, and for all ĉm ∈ {0, 1}n such that
dis(cm, ĉm) ≤ δn:

Pr[Dĉm(i) = m(i)] ≥ 1− ε,

where the probability is taken over the random coins of the algorithm D.
2. D makes at most rk queries to ĉm.

Locally updatable codes. We now define the notion of locally updatable and
locally decodable codes. A basic property that updatable codes must have is
that one can convert a codeword of message m into a codeword of message m′

(where m′ and m differ possibly only at the ith position), by changing only a few
bits of the codeword of m. However, we will obtain codes that have a stronger
property; namely, will ensure that we can convert any string that decodes to m
into a string that decodes tom′. That is, letm and m′ be two k-bit messages that
(possibly) differ only in the ith position, where m′(i) = bi. For some appropriate
metric space that defines a measure of closeness, given a string ĉm that is “close”
to a codeword for messagem, our update algorithm (that writes bit bi at position
i) must convert ĉm into a new string ĉm′ that is now “close” to a codeword for
message m′. Furthermore, the update algorithm must query and change only a
few bits of ĉm. Additionally, our code should also be locally decodable.

Before we present the formal definition of a locally updatable and locally
decodable code, we first need to define the set of codewords Cm for a message m.
Conceptually, with a locally updatable code, there are two kinds of codewords
that correspond to a message m – ones obtained by computing E(m) and those
obtained by computing updating the codeword of different message m′.

Locally Updatable and Locally Decodable Codes 497

We let mibi denote a message that is exactly the same as m except possibly

at the ith position (where it is bi). Note that mibi maybe equal to m itself.

Definition 2 (The set Cm). For a message m, if there exists a message m̄,
codeword cm̄ = E(m̄) (possibly m̄ = m and cm̄ = cm) and a (possibly empty) set

of indices {i1, · · · , it} such that m = m̄i1
b1 ···itbt and cm = u(....u(u(cm̄, i1, b1), i2,

b2),, it, bt), then cm is in the set Cm.

It is easy to see that Cm contains all the codewords that decode to m. We
now present the formal definition of a LULDC.

Definition 3 (Locally updatable and locally decodable codes
(LULDC)). A binary code C : {0, 1}k → {0, 1}n is (k, n, w, r, δ, ε)-locally
updatable and locally decodable if there exist (possibly) randomized algorithms
ELDC, U and D such that the following conditions are satisfied:

1. Local Updatability:

(a) Let m0 ∈ {0, 1}k and let cm0 = ELDC(m0). Let mt be a message obtained
by any (potentially empty) sequence of updates. (t = 0 corresponds to
the case where the codeword has not been updated so far.) Then ∀m0 ∈
{0, 1}k, ∀cm0 ∈ Cm0 , ∀t, ∀mt, ∀it+1 ∈ [k], ∀bt+1 ∈ {0, 1}, for all ĉmt ∈
{0, 1}n such that dis(ĉmt , cmt) ≤ δn,

– The actions of U ĉmt (it+1, bt+1), change ĉmt to u(ĉmt , it+1, bt+1) ∈
{0, 1}n, where dis(u(ĉmt , it+1, bt+1), cmt+1) ≤ δn for some cmt+1 ∈
Cmt+1 , where mt+1 and mt are identical except (possibly) at the itht+1

position, where mt+1(it+1) = bt+1.

(b) The total number of queries and changes that U makes to the bits of ĉm
is at most w.

2. Local Decodabilty:

(a) Let mt denote the latest message. ∀mt ∈ {0, 1}k, ∀i ∈ [k], ∀cmt ∈ Cmt ,
and for all ĉmt ∈ {0, 1}n such that dis(cmt , ĉmt) ≤ δn:

Pr[Dĉmt (i) = mt(i)] ≥ 1− ε,

where the probability is taken over the random coins of the algorithm D.
(b) D makes at most r queries to ĉmt .

2.2 The Prefix Hamming Metric

If we want codes that are truly updatable, the update locality w needs to be
<< δn. However, as mentioned earlier, we cannot hope to achieve such locality
for metrics where an adversary can arbitrarily corrupt a constant fraction of the
bits of the codeword. (Indeed, if we updated a codeword from cm to cm′ with a
locality of w, then by corrupting those w bits of cm′ , an adversary can ensure
that the decoding algorithm does not output the correct message – in particular,
the decode algorithm would output m instead of m′.)

498 N. Chandran, B. Kanukurthi, and R. Ostrovsky

In light of this, we turn to a new, yet meaningful metric, for which we can
guarantee that even if an adversary corrupts a bounded number of bits of the
codeword, though not in a completely arbitrary manner, our decode algorithm
still functions correctly. At a high level, bits of the codeword “age” and the
adversary can corrupt a fraction of the bits as a function of their age. Our
metric relies crucially on the order in which bits were written or updated during
the creation of a codeword – nonetheless, we abuse notation and refer to Prefix-
Hamming as a metric. We first define the “age-ordering” of a codeword.

Definition 4 (Age-ordering of a codeword). Let c ∈ {0, 1}n. Let w1 denote
the index/position of the most recent bit of the codeword that was either written
or updated. Let w2 denote the unique index of the next most recent bit that was
written/updated and so on, with wn denoting the index of the earliest bit written
(in comparison with the rest of the bits of the codeword). We call w1, · · · ,wn the
age-ordering of c. c(wi) denotes the bit value of the codeword at index wi. For
all 1 ≤ t ≤ n, let c[1, t] denote the bits c(w1), · · · , c(wt).

We are now ready to define how the adversary in our model can corrupt bits
of the codeword. That is, we define our metric space and its distance function.

Definition 5 (The Prefix Hamming Metric). Let c ∈ {0, 1}n. Let
w1, · · · ,wn denote the age-ordering of c. Let c′ ∈ {0, 1}n and for 1 ≤ t ≤ n,
let c′[1, t] denote the bits c′(w1), · · · , c′(wt). We say that the Prefix Hamming
distance between c and c′, denoted by Prefix(c, c′) is ≤ δn if for all 1 ≤ t ≤ n,
Hamm(c[1, t], c′[1, t]) ≤ δt, where Hamm(x, y) denotes the Hamming Distance
between any two strings x and y of equal length.

3 LULDCs for the Prefix Hamming Metric

3.1 Our Results

In this section, we show how to construct locally updatable locally decodable
error correcting codes (LULDCs) that are resilient to a constant fraction of
adversarial errors for the Prefix Hamming metric that we defined in Section 2.2.
Formally, we show:

Theorem 1. Let τ = log k−log(log k+1)−1. Let CLDC be a family of (ki, ni, ri, ε,
δ)−locally decodable code for Hamming distance with algorithms (ELDC,DLDC),
where ki = 2i(log k + 1) for all 0 ≤ i ≤ τ . Additionaly, let CLDC contain a
(k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where k∗ = k. Let
ρi =

ki

ni
for all i and let ρ∗ = k∗

n∗ . Then there exists a (k, n, w, r, ε, δ
2) − LULDC

code C = (E ,D,U) for the Prefix Hamming metric with:

– Length of the code (n): n = n∗ +
τ∑

i=0

ni.

– Update locality (w): w = (log k + 1)
τ∑

i=0

1
ρi

+ log k+1
ρ∗ , in the amortized

sense.

Locally Updatable and Locally Decodable Codes 499

– Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where

T = (log k + 1)

(

r0 +
∑

1≤j≤τ

jrj

)

, in the worst case.

As a corollary to Theorem 1, using the LDCs from [16,11,13] we obtain:

Corollary 1. For every ε, α > 0, there exists a (k, n, w, r, ε, δ) − LULDC code
C = (E ,D,U) for the Prefix Hamming metric achieving the following parameters,
for some constant 0 < δ < 1

4 :

– Length of the code (n): n = 2k
1−α .

– Update locality (w): w = O(log2 k), in the amortized sense.
– Read locality (r): r = O(kε

′
), for some constant ε′, in the worst case.

Large alphabet codes. We remark that for codes over larger alphabet Σ, with
|Σ| ≥ c log k for some constant c, we can modify our code to obtain a better
update locality of O(log k) (other parameters remaining the same).

3.2 Code Description

We will now construct the codes that will prove Theorem 1. Our codeword will
have a structure similar to that of the hierarchical data-structure used by Ostro-
vsky [19,20] in the construction of oblivious RAMs. Let τ = log k − log(log k +
1)−1. Each codeword of C will consist of τ+1 buffers, buff0, . . . , buffτ and a spe-
cial buffer buff∗. We will ensure that as updates take place, at any point of time,
buffi will be either empty or full (for all i > 0). A full buffer, buffi, will contain

an encoding of a set μi of 2
i elements. In particular, μi = [(a1i , v

1
i), . . . , (a

2i

i , v2
i

i)]

where aji is an address (between 0 and k−1) and vji is the value corresponding to
it. buffi (when non-empty) will store ψi = ELDC(μi). The special buffer buff

∗ will
contain an encoding of the bits of the entire message in order, without address
values; in particular, buff∗ stores ψ∗ = ELDC(m).

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m):

1. Creates the τ + 1 empty buffers (buff0, . . . , buffτ).
2. Let μ∗ = {m(1), · · · ,m(k)}, where m(i) denotes the ith bit of the message.

It computes ψ∗ = ELDC(μ
∗) and stores it in buff∗.

Local update algorithm. Our update algorithm updates a string ĉm (such that
Prefix(ĉm, cm) ≤ δn, for some cm ∈ Cm) into a string ĉ′m, setting m(i) to bi.

Algorithm U ĉm(i, bi):

1. If the first buffer is empty, computes ELDC(i, bi) and stores it in buff0.

500 N. Chandran, B. Kanukurthi, and R. Ostrovsky

2. If the first buffer is non-empty, it finds the first empty buffer. Let this be
buffj . It decodes all the buffers above it to get μ0 to μj−1

4. Recall that each
μh is a set of (a, v) pairs where a denotes the address (of length log k) and v
denotes a value (∈ {0, 1}). It merges all these pairs of values as well the pair
(i, bi) in a sorted manner (where the sorting is done on address) and stores
it in μj . Note, there are 2j elements and therefore μj is now a full buffer.
Handling Repetitions: While merging elements from multiple buffers, we
might encounter repetition of addresses. Instead of removing repetitions,
we simply ensure that all values stored in the buffers until j − 1 store only
the “latest value” corresponding to the repeated address. (The latest value
is easy to determine – it is the first value corresponding to the buffer that
you encounter when reading the buffers in a top-down manner. Of course,
for the address being inserted, namely i, the latest value will be bi.)

3. The update algorithm computes ψj = ELDC(μj) and stores it in buffj .
4. The buffers from μj−1 . . . μ0, in that order, are now set to empty by writing

special symbols into it. Looking ahead, the order in which this done is im-
portant as this ensures that buffh always has bits that are “younger” than
the bits in buffh+1 for all h (when considering the age-ordering of the bits).

5. If none of the buffers are empty, namely, all buffers buff0, · · · , buffτ are full,
then the update algorithm simply re-computes a new encoding of the message
using the LDC encode algorithm and stores it in buff∗. In other words,
the algorithm decodes all the buffers to obtain the latest value of each bit,
concatenates these bits together to form μ∗ = {m(1), · · · ,m(k)} and encodes
these bits to compute ψ∗ = ELDC(μ

∗). Once again, the buffers from buffτ to
buff0 are set to empty in that order by writing special symbols into it.

Local decode algorithm. Recall that our buffers satisfy the following conditions:

– The buffers are always sorted (based on the address a).
– If the address a “appears” in the same buffer multiple times, then all values

corresponding to this address are the same. (This is guaranteed by the way
we handle repetitions during our merging procedure.)

– Finally, across multiple buffers, the most recent value corresponding to an
address appears in the higher buffer (i.e. a lower buffer value).

Algorithm Dĉm(i):

1. The decode algorithm starts with the top-most buffer (buff0) and proceeds
downwards until it finds the address i.

2. To search a buffer buffj for the element i, it performs a binary search on
elements stored in that buffer. Because buffj contains an LDC encoding,
we additionally need to use DLDC() algorithm to access these j elements.
Since DLDC() might fail with ε probability to decode one coordinate of the
underlying message, we need to repeat DLDC() multiple (i.e. λ) times to
amplify the success probability (where λ is a carefully chosen parameter).

4 Here, these buffers need not be decoded using the local decoding algorithm and one
can obtain perfect correctness by simply running the standard decoding algorithm
for the error correcting code.

Locally Updatable and Locally Decodable Codes 501

3. If element i is not found in any of the buffers buff0 through buffτ , then the
algorithm simply (locally) decodes the ith element from buff∗ (which contains
an LDC encoding of the message).

3.3 Proof of Theorem 1

We shall now prove Theorem 1; namely, we show that the construction described
above in Section 3.2 is a locally updatable, locally encodable binary error cor-
recting code (for the Prefix Hamming metric) with the parameters listed in
Theorem 1. Instead of directly proving Theorem 1, we will instead show that
the construction is a LULDC for a metric that we call the Buffered-Hamming
metric. From this, the proof of Theorem 1 directly follows. We shall now define
the Buffered-Hamming metric and its associated distance function.

Buffered-Hamming Distance. Let c ∈ {0, 1}n comprise of buffers buff =
buff0, . . . , buffq of lengths n0, . . . , nq respectively. Let c′ ∈ {0, 1}n be another
string with buffers buff′ = buff′

0, . . . , buff
′
q. Then we say that Buffered-Hamming

Distance, BHdis(cm, c′) ≤ δn if ∀i Hamm(buffi, buff
′
i) ≤ δni.

Lemma 1. Let τ = log k − log(log k + 1) − 1. Let CLDC be a family of
(ki, ni, ri, ε, δ)−locally decodable code for Hamming distance with algorithms
(ELDC,DLDC), where ki = 2i(log k + 1) for all 0 ≤ i ≤ τ . Additionaly, let CLDC

contain a (k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where
k∗ = k. Let ρi =

ki

ni
for all i and let ρ∗ = k∗

n∗ . Then the construction described
above in Section 3.2 is a (k, n, w, r, ε, δ) − LULDC code C = (E ,D,U) for the
Buffered-Hamming metric achieving the following parameters:

– Length of the code (n): n = n∗ +
τ∑

i=0

ni.

– Update locality (w): w = (log k + 1)
τ∑

i=0

1
ρi

+ log k+1
ρ∗ , in the worst case.

– Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where

T = (log k + 1)

(

r0 +
∑

1≤j≤τ

jrj

)

, in the worst case.

Proof. Length of the code. Recall that we have buffers in levels 0, 1, . . . , τ .
Each buffer encodes a message μj of length kj = 2j(log k + 1); the encoding
is denoted ψj and is of length nj . Buffer buff∗ contains an LDC encoding of a

message of length k. It is easy to see that the length of the code n = n∗+
τ∑

i=0

ni.

Read Locality and Decode Correctness. We now analyze the read locality and
the decodability of our code. Let ĉm be the given (corrupted) codeword and
let ĉm be such that BHdis(ĉm, cm) ≤ δn, where cm ∈ Cm for the most “recent”

502 N. Chandran, B. Kanukurthi, and R. Ostrovsky

m ∈ {0, 1}k (obtained after an encoding of a message and possible subsequent
updates). We compute the read locality of our local decoding algorithm and
also prove that for all i ∈ [k], the decoding algorithm will output m(i) with
probability ≥ 1− ε.

Let μ = {μ0, . . . , μτ} and let ψ = {ψ0, . . . , ψτ}, where ψi = ELDC(μi). Let
Cj
LDC denote the locally decodable code used to encode μj . We use μx(y) to

denote the yth bit of μx. Recall that in order to read an index i of the message
m = m0, . . . ,mk, the algorithm Dψ(i) does a binary-search on the buffers in a
top-down manner to see if there is a value corresponding to address i. The worst
case locality occurs when mi has never been updated. In this case, the binary
search needs to be done on every buffer and will then conclude by performing a
(local) deocoding for the ith bit in buff∗ which contains ψ∗ = ELDC(m).

We first calculate the number of bits of μj (for j ≥ 1), one would need to
read, if we were doing the binary search directly over μj . There are 2j elements
i.e.,(a, v) pairs, in level j. So the binary search would need to look at j elements
(in the worst case). Each element has length log k+ 1. The total number of bits
of μj we access if we did a binary search over μj would be j(log k+1) (for j ≥ 1).

Dψ(i) learns these bits by making calls to Dψj

LDC which has locality rj . Therefore

the number of bits of ψj , read via calls to Dψj

LDC, is at most j(log k + 1)rj (for
1 ≤ j ≤ τ) and (log k + 1)rj (for j = 0). (Recall, that in buff∗, a binary search
is not performed and the decode algorithm simply decodes the (single) ith bit of
the message via LDC decode calls to ψ∗.)

Define a set Read and add (x, y) to it if μx(y) was accessed; let T = |Read|.
Then,

T = (log k + 1)

⎛

⎝r0 +
∑

1≤j≤τ

jrj

⎞

⎠ and (1)

the total decode locality r = Tλ+ r∗ (2)

Equation 2 follows from that fact that in order to read a bit of μj correctly,

we must amplify the success probability of Dψj

LDC, by taking the majority of
λ executions (Note, that just as in standard LDCs, even though our LULDC
allows a decoding error of ε, we cannot afford to have an error of ε while reading
every bit of our binary search in every buffer, as this would lead to an overall
worse error probabaility). If the element is not found in the buffers buff0 through
buffτ , then we only need to read 1 bit of the underlying message via a single
LDC decoding call to ψ∗ and hence we pay an additional r∗ in our read locality.

In order to determine r, all that is left, is for us to determine λ. Let the

variable #Succ(x, y) denote the number of calls such that Dψ′
x

LDC(y) = μ(x, y). Let
SuccRead(x, y) denote that event that #Succ(x, y) > λ

2 . First, since ĉm is such
that BHdis(ĉm, cm) ≤ δn, it follows that, Hamm(ψ′

j , ψj) ≤ δ|ψj | for all 0 ≤ j ≤ τ

Locally Updatable and Locally Decodable Codes 503

and Hamm(ψ∗′
, ψ∗) ≤ δ|ψ∗|. Now, since Cψ′

j

LDC has error-rate ε, E[#Succ(x, y)] =

λ(1 − ε). By the Chernoff bound5, Pr[#Succ(x, y) ≤ λ
2] ≤ p = e−

λ(1−2ε)2

8(1−ε) .
In other words,

Pr[SuccRead(x, y) = 0] ≤ p = e−
λ(1−2ε)2

8(1−ε) (3)

i.e.,
∑

(x,y)∈Read

Pr[SuccRead(x, y) = 0] ≤ Tp. (4)

Our goal is to ensure that

Pr

⎡

⎣
∧

(∀(x,y)∈Read)

SuccRead(x, y) = 1

⎤

⎦ (≥ 1− Tp) ≥ 1− ε.

In other words, we need to set λ such that Tp ≤ ε. Substituting for p =

e−
λ(1−2ε)2

8(1−ε) , we get that

λ ≥ 8(1− ε)

(1 − 2ε)2
log

(
T

ε

)

.

By setting λ = 8(1−ε)
(1−2ε)2 log

(
T
ε

)
and substituting in Equation 2, we get that

the decode locality,

r =
8(1− ε)

(1 − 2ε)2
T log

T

ε
+ r∗.

This proves the correctness and the read locality of our decoding algorithm.

Update Locality and Correctness. First, we count the number of coordinates
accessed in order to rewrite one bit of the message mi. This includes the total
number of coordinates read and written.

It is easy to see that in algorithm UCm(x, bx), buffer buffj (for 0 ≤ j ≤ τ)
is rewritten every 2j steps. Buffer buff∗ is re-written every 2τ+1 steps. In 2j

updates (when j < τ + 1), therefore, the total number of bits re-written is

= 2j
|μ0|
ρ0

+ 2j−1 |μ1|
ρ1

+ . . .+ 20
|μj |
ρj

= 2j|μ0|
∑

0≤i≤j

1

ρi
(since μi = 2μi−1, ∀i)

When j ≥ τ + 1, buff∗ is re-written and hence, in this case, the total number
of bits re-written is

5 Recall that for a variable X with expectation E(X), the Chernoff bound states

that for any t > 0, Pr[X ≤ (1 − t)E(X)] ≤ e−
t2E(X)

2 . In this case, X =
#Succ(x, y);E(X) = λ(1− ε); t = 1−2ε

2−2ε
.

504 N. Chandran, B. Kanukurthi, and R. Ostrovsky

= 2j
|μ0|
ρ0

+ 2j−1 |μ1|
ρ1

+ . . .+ 2j−(τ+1) |μτ |
ρτ

+ 2j−(τ+1) |k∗|
ρ∗

= 2j |μ0|
∑

0≤i≤τ

1

ρi
+ 2j−(τ+1) |k∗|

ρ∗

The amortized update locality w per update is

|μ0|
∑

0≤i≤τ

1

ρi
+

|k∗|
2τ+1ρ∗

= (log k + 1)
∑

0≤i≤τ

1

ρi
+

log k + 1

ρ∗
.

Achieving a Worst-Case Guarantee. Note that, similar to the constructions of
oblivious RAMs, one can convert the amortized update locality into a worst-
case guarantee on the write locality, by distributing the work over many write
operations. At a high level, this works by maintaining an additional “working
copy” of data structure. Once levels 1, . . . , i − 1 of the first data structure are
filled in, the contents of level i are computed. This process takes place even as
levels 1, . . . , i − 1 of the second data structure are being filled in. This gives us

a worst case write locality of w = (log k + 1)
τ∑

i=0

1
ρi

+ log k+1
ρ∗ for the Buffered

Hamming metric. Note, however, that a similar argument does not translate to
the setting of the Prefix Hamming metric (since one would need to re-write parts
of buffers at various levels at various points of time) and hence we only get an
amortized bound for this metric.

To show update correctness, we must now argue, that if we begin the update
algorithm with a corrupted codeword ĉmt , such that BHdis(ĉmt , cmt) ≤ δn and
update the message mt to mt+1 (where mt and mt+1 differ (possibly) only at
the itht position, where mt+1(it) = bt+1), then we modify ĉmt to ĉmt+1 where
BHdis(ĉmt+1 , cmt+1) ≤ δn for some cmt+1 that is a codeword of mt+1. To see
this, observe that, the update algorithm decodes all buffers buff0, · · · , buffj for
some 0 ≤ j ≤ τ and possibly re-encodes these buffers into buffj+1. Additionally,
the update algorithm sets buffers buffj , · · · , buff0 to empty. In certain cases, the
update algorithmmight re-write buffer buff∗. Note that if buffj+1 was written/re-
encoded, then all buffers buffj through buff0 were also re-encoded. Similarly, if
buff∗ was re-encoded, then all buffers buffτ through buff0 were also re-encoded.
Now, since BHdis(ĉmt , cmt) ≤ δn, it follows that all the buffers that were de-
coded by the update algorithm, decoded correctly and these buffers were then
re-encoded without any errors. Hence, for all these buffers 0 ≤ h ≤ j+1 in ĉmt+1 ,

Hamm(ψ̂h, ψh) ≤ δ|ψh|. For buffers that were not touched, since no change was

made to these buffers, we still have that Hamm(ψ̂h, ψh) ≤ δ|ψh| (for h > j + 1
and for ψ∗). From these, it follows that BHdis(ĉmt+1 , cmt+1) ≤ δn.

This proves the update correctness as well as the update locality of our update
algorithm. This completes the proof of Lemma 1.

Locally Updatable and Locally Decodable Codes 505

Lemma 2. Let C = (E ,D,U) be the above described (k, n, w, r, ε, δ) − LULDC
code for the Buffered-Hamming metric. Then C is a (k, n, w, r, ε, δ

2) − LULDC
code for the Prefix Hamming metric.

Proof. Note that in our code construction, during a write/update operation, we
never change the bits of the codeword in a buffer buffi without changing the bits
of the codeword in a buffer buffj for any j < i. Furthermore, even when we change
the bits of the codeword in a buffer buffi, we then change the bits of the codeword
in buffers buffi−1, · · · , buff0 in that order. This means that if we consider the
age-ordering of cm, denoted by w1, · · · ,wn, then the indices corresponding to
a buffer buffj will always precede indices corresponding to a buffer buffi, for
any i > j. Now, since every buffer buffi+1 is twice the size of buffer buffi, it
follows that if two codewords cm and ĉm are such that Prefix(cm, ĉm) ≤ δn

2 , then
BHdis(cm, ĉm) ≤ δn, which gives us our result.

The proof of Theorem 1 now follows by simply combining Lemmas 1 and 2.

4 Computational Setting

4.1 Codes for Computationally Bounded Adversaries

In the previous section, we showed how to construct LULDC codes for the Prefix-
Hamming metric. As noted before, we cannot construct LULDCs for metrics
where the adverary can arbitrarily corrupt a constant fraction of the bits of
the codeword. Since it is impossible to construct codes for the case of arbitrary
adversarial errors, one could consider a setting where the decode algorithm will
either decode to the correct message or detect if it is not able to do so; in other
words, the decode algorithm will never output an incorrect message. Here too,
it is easy to see that, unfortunately, one cannot have such information-theoretic
error correcting codes. However, we show that by moving to the computationally-
bounded adversarial setting, and by allowing the encoder/decoder to maintain
a secret state S, one can construct error correcting codes with optimal rate that
are locally updatable. Our code will provide the following guarantees:

– If the Prefix Hamming condition is satisfied, then every bit of the message
will be locally decodable.

– Additionally, the (local) decoding algorithm will never output an incorrect
bit of the message.

These guarantees allow us to achieve a tradeoff between detecting arbitrary
adversarial errors and decoding a smaller class of errors. We will provide such a
guarantee even when the adversary gets to observe the history of updates/writes
made to the codeword; we denote the history of updates/writes made by hist6.

6 While this is the same guarantee that we provide even in the information-theoretic
setting, we make this explicit here as we wish to endow the computationally
bounded adversary with as much power as possible.

506 N. Chandran, B. Kanukurthi, and R. Ostrovsky

We now define such locally updatable locally decodable-detectable error cor-
recting codes (LULDDC). As before, we provide our definition for the binary
case, but this can be generalized to codes for larger alphabet Σ. Let λ be the
security parameter and neg(λ) denote a function that is negligible in λ. We begin
with the definition of the Prefix Hamming metric for the computational setting.

Definition 6 (The Computational Prefix Hamming Metric). Let E ∈
{0, 1}r7. Let c be of the form E1, . . . ,En. Let w1, · · · ,wn denote the age-ordering
of c. For some c′ of the form E1, . . . ,En and for 1 ≤ t ≤ n, let c′[1, t] denote the
elements c′(w1), · · · , c′(wt). We say that the Computational Prefix Hamming8

distance between c and c′, denoted by Prefixcomp(c, c′), is ≤ δn if for all 1 ≤ t ≤ n,
Hamm(c[1, t], c′[1, t]) ≤ δt, where Hamm(x, y) denotes the Hamming Distance
between any elements x and y.

Definition 7 (Locally updatable and locally decodable-detectable
codes for adversarial errors (LULDDC)). A binary code C : {0, 1}k →
{0, 1}n is (k, n, w, r, λ, S)-locally updatable and locally decodable/detectable if
there exist randomized algorithms U and D such that the following conditions
are satisfied:

1. Local Updatability:

(a) Let the state be initialized to S0. Let m0 ∈ {0, 1}k and let cm0 =
E(m0, S0). Let mt be a message obtained by any (potentially empty) se-
quence of updates. (Note that the state S is updated everytime an update
is made.) Let hist contain the entire history of updates made on poten-
tially corrupted codewords. Let ĉmt be the final codeword obtained.
Then ∀m0 ∈ {0, 1}k, ∀t, ∀mt, ∀i ∈ [k], ∀b ∈ {0, 1}, for all probabilis-
tic polynomial time (PPT) algorithms A, for all hist and for all ĉmt ∈
{0, 1}n output by A(mt, i, b, hist), the following condition holds with all
but a negligible probability:

– If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then the ac-
tions of U ĉmt (i, b, St), change ĉmt to u(ĉmt , i, b, St) ∈ {0, 1}n, where
Prefixcomp(u(ĉmt , i, b, St), cmt+1) ≤ δn for some cmt+1 ∈ Cmt+1 , where
mt+1 and mt are identical except (possibly) at the ith position, and
mt+1(i) = b.

(b) The total number of queries and changes that U makes to the bits of ĉmt

is at most w.

2. Local Decodabilty-Detectability:

7 We will think of E as a bit bi followed by its constant sized authentication tag
σi = MAC(bi).

8 While the definition of the distance function is not computational, we call it the
computational prefix hamming distance, as this distance function is used only
for the computational LULDDC construction. In our LULDDC codes, security
guarantees will hold for codeword corruptions made by computationally bounded
adversaries.

Locally Updatable and Locally Decodable Codes 507

(a) Let mt ∈ {0, 1}k denote the latest message, as determined by hist. Then
∀hist, ∀mt ∈ {0, 1}k, ∀i ∈ [k], for all probabilistic polynomial time (PPT)
algorithms A and for all ĉmt ∈ {0, 1}n output by A(mt, i, hist):
– If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then

Pr[Dĉm(i, S) = m(i)] = 1− neg(λ),

where the probability is taken over the random coin tosses of the
algorithm D and randomness used to generate S.

– If ∀cmt ∈ Cmt ,Prefix
comp(ĉm, cm) > δn, then

Pr[Dĉm(i, S) = m(i) or ⊥] = 1− neg(λ),

where the probability is taken over the random coin tosses of the
algorithm D and randomness used to generate S.

(b) D makes at most r queries to ĉmt .

4.2 Our Results

In this section, we present a construction of a LULDDC in the computational
setting. In particular, we show:

Theorem 2. There exists a (k, n, w, r, λ, S) locally updatable and locally
decodable-detectable error correcting code C = (E ,D,U), for the Computational
Prefix Hamming metric, achieving the following parameters, for some constant
0 < δ < 1

4 :

– Length of the code (n): n = O(k).
– Update locality (w): w = O(log2 k), in the amortized sense.
– Read locality (r): r = O(λ log2 k), in the worst case.

Similar to the information-theoretic consturction, we use a heirarchical data
structure to store our codewords. In addition, we use cuckoo hashing and private
key locally decodable codes, details of which can be found in the full version.

LULDDC Overview. We start by recalling the construction of the information-
theoretic LULDC code from Section 3.2. Recall that codewords had τ buffers.
Each buffj encoded 2j (address, value) pairs, stored in a sorted manner. We
performed a binary search to search for a particular address, a within buffj .
The first difference is that we now use computational locally decodable codes to
encode each buffer. (Such codes were introduced by [21]. In this work, we use the
construction due to [12].) The next difference in the secret key setting is that we
optimize the search performed on the buffers by using cuckoo hash functions9. In

9 Cuckoo hash functions were first used in conjunction with the hierarchical data
structure [19],[20] by Pinkas and Reinman [22] to obtain an ORAM construc-
tion. While it was shown that this construction does not hide the access pattern
(i.e., which elements were read/written) [10],[17], as we will see, the underlying
data structure coupled with cuckoo hashing can still be used securely to obtain a
LULDDC code.

508 N. Chandran, B. Kanukurthi, and R. Ostrovsky

particular, an element (a, v) is inserted at location h
,1(a) or h
,2(a). To search
for an address a in a particular buffer buff
, our decode algorithm only needs
to read locations h
,1(a) and h
,2(a). (Of course, as in the information-theoretic
case, we don’t store the buffers in the clear. Rather we store an encoding of
the buffers, now computed using the codes of [12] and the locations, h
,1(a)
and h
,2(a), are read via calls to the underlying decode algorithm.) The second
difference from the information theoretic construction is that we now use message
authentication codes to detect a scenario where the codeword has too many
errors. (To ensure local decodability, we need to authenticate each bit of the
codeword separately.) This guarantees that our computational LULDDC code
never decodes to an incorrect message.

Optimizing Parameters. While the above approach does give us an LULDDC
construction, it doesn’t give us our desired parameters. In particular, message
authentication tags need to be of length at least λ, causing a blow-up of at least
λ in the parameters. To avoid this, we use constant-size MACs instead.

Constant-Size Message Authentication Codes. Such message authentication
codes (MAC) authenticate each bit of the message being authenticated (in this
case, the codeword) with a tag of length O(1). While, individually, such MACs
can be forged with constant probability, as we will see in our construction, they
can be made secure when we are checking ω(λ) MAC values at a time.

At a high-level our decode algorithm will work as follows: we check the au-
thenticity of λ randomly chosen bits of the codeword in each buffer. If most of
the tags verify, we get a guarantee that less than a certain constant fraction
of the bits of the codeword are corrupted. (Indeed, since each tag is computed
with an independent MAC key, the odds that an adversary forges λ tags on his
own, is negligible.) This, in turn, ensures that less than a constant fraction of
bits of each codeword are corrupted, except with negligible probability10, and
therefore the codeword will decode correctly. (To the best of our knowledge, the
idea of combining constant sized MACs with error correcting codes in such a
way, was first used in the context of optimizing privacy amplification protocols
in [5].) This combined with certain other ideas, give us the construction with
parameters stated in Theorem 2. We now present the LULDDC construction
and provide the proof of Theorem 2 in the full version.

4.3 LULDDC Construction

We now build our code (denoted Ccomp) in the secret key setting. The secret
state S consists of a counter ctr (that is incremented everytime an update takes
place), and a key to a PRF. S is used to generate the various keys used by the
code. Similar to the information-theoretic case, each codeword c of Ccomp consists

10 This condition remains true only if all the buffers contain codewords that are at
least λ-bits long. We will ensure this by starting our buffers only at a particular
level.

Locally Updatable and Locally Decodable Codes 509

of τ + 1 buffers, buff0, . . . , buffτ , where τ = log
(

k
log k

)
. In addition, there is a

special buffer, buff∗, which has a structure different from the other buffers.
μi contains (1+γ)2i cells (for some γ > 1) – each being either a “non-empty”

cell containing a (address, value)-pair or an “empty” cell containing a special sym-
bol π. There are at most 2i non-empty elements in μi at any point of time, and
these elements are stored using cuckoo hash functions (hi,1, hi,2). The remaining
locations of μi are filled with empty elements. We let ψi = ELDC(μi). For each bit
j of ψi, let σi(j) = MAC(ψi(j)). Set ηi = {(ψi(j)||σi(j))}. buffi contains ηi. μ

∗

contains all the bits of m in order (without the address values). ψ∗ = ELDC(μ
∗)

and η∗ = {(ψ∗(j)||σ∗(j))}. The codeword is cm = [buff0, . . . , buffτ , buff
∗]. Let α

be a constant. We will pick α (as a function of δ and ζ) later on appropriately.

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m, S):

1. Let μ∗ = m(1), · · · ,m(k), where m(i) denotes the ith bit of the message. Let
ψ∗ = ELDC(μ

∗) and η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth bit of ψ∗

and σ∗(j) = MAC(ψ∗(j)).
2. Creates the τ + 1 empty buffers (buffτ , . . . , buff0) in that order; i.e., the

underlying μi contains only special symbols.

Local Update Algorithm. The update algorithm takes as input a (potentially
corrupted) codeword ĉ, an index i, a bit bi, and the latest state S. Let the
latest value of the message, as determined by hist, be m. Then if there exists
some codeword cm such that c ∈ Cm and Prefixcomp(ĉ, c) ≤ δn, then the update
algorithm outputs ĉ′ where Prefixcomp(ĉ′, c′) ≤ δn such that c′ ∈ Cm′ and m′ and
m are identical except possibly at the ith position, where m′(i) = bi.

Recall that each codeword has multiple buffers of the form ψi(j)||σi(j)
where ψi(j) is one bit of the codeword and σi(j) is its constant sized message
authentication tag. We refer to each of these ψi(j)||σi(j) as an element of buffi.

Algorithm U ĉm(i, b, S):

1. If the first buffer is empty, compute ψ = ELDC(i||b); σ = MAC(ψ) and insert
η = (ψ||σ) into the first buffer.

2. If the first buffer is non-empty, find the first empty buffer – note this can be
determined easily from ctr. Let the first empty buffer be at level j.

3. Store (i, bi) as well as all the non-empty elements from μ0 to μj−1 into μj .
To do this, we decode ψ0, · · · , ψj−1, insert the elements into μj and then
compute ELDC(μj) to obtain ψj . We compute ηj(�) = {ψj(�), σj(�)}. (The
authentication tags σj(�) are recomputed with the latest key corresponding
to level j.) When decoding ψ0, · · · , ψj−1, ensure that at least (1 − δ)|ψj |
MACs in every buffer verify; otherwise, output ⊥.

4. Starting from buffj−1 up to buff0, fill each of the buffers with empty
elements in order. In other words, set the underlying μ
s for each of the

510 N. Chandran, B. Kanukurthi, and R. Ostrovsky

buffers to contain only special symbols.

We refer the reader to the full version for further details.

Local Decode Algorithm. The algorithm for reading the ith bit works as follows:

Algorithm Dĉm(i, S):

1. Randomly select λ elements from each of the buffers.
2. For each of the elements, verify that σ(j) = MAC(ψ(j)). (Note that this

verification is done with appropriate MAC keys generated from S.)
3. If, for even one level, less than αλ of the tags verify, then output ⊥.
4. The decode algorithm starts with the top-most buffer (buff0) and proceeds

downwards until it finds the address i.
5. For now, assume that buffj contains μj instead of its encoding. Then to

search a buffer buffj for an index i, we read the locations hj,1(i) and hj,2(i).
If either of these locations contains an entry (i, v) then v is the output of the
algorithm. Since buffj contains {ψj(�), σj(�)}, the steps we just described
are implemented via calls to the underlying decoder DLDC.

6. If we reach the last buffer, buff∗, we read the element v stored at address i in
the buffer – once again, via calls to DLDC. v is the output of the algorithm.

5 Dynamic Proof of Retrievability

A proof of retrievability scheme enables a client, storing his data on an untrusted
server, to execute an audit protocol such that a malicious server that deletes or
changes even a single bit of the client’s data will fail to pass the audit protocol,
except with negligible probability in the security parameter. Proofs of retriev-
ability, introduced by Juels and Kaliski [14], were initially defined on static data
building upon the closely related notion of sublinear authenticators defined by
Naor and Rothblum [18]. The work of Cash, Küpçü, and Wichs [3] considers
this notion for dynamically changing data; in other words, they constructed a
proof of retrievability scheme that allowed for efficient updates to the data. We
show that the techniques used to construct LULDDCs can be used to build a
DPoR scheme. In addition to being conceptually simple, our construction also
significantly improves the parameters achieved by [3].

A dynamic PoR scheme [3] comprises of four protocols PInit,PRead,PWrite,
and Audit between two stateful parties: the client C and a server S who is un-
trusted. The client stores some data m with the server and wishes to perform
read, write, and audit operations on this data. In detail, the protocols are:

– PInit(1λ, Σ, k): In this protocol, the client initializes an empty data storage
on the server of length k, where each element in the data comes from an
alphabet Σ. The security parameter is λ.

– PRead(i): In this protocol, the client reads the ith location of the data and
outputs some value vi at the end of the protocol.

Locally Updatable and Locally Decodable Codes 511

– PWrite(i, vi): In this, the client sets the ith location of the data to vi.

– Audit(): In this protocol, the client verifies that the server is maintaining
the data correctly so that they remain retrievable. The client outputs either
accept or reject.

The (private) state of the client is implicitly assumed in all the above protocols
and the client may also output reject during any of the protocols if it detects
any malicious behavior on the part of the server. A dynamic PoR scheme must
satisfy three properties: correctness, authenticity, and retrievability. We refer the
reader to [3] for the formal definitions of these properties.

Overview of Construction. At a high-level, our construction follows the same
approach as our LULDDC scheme. One main difference is that in addition to
storing encoded messages in buff0 to buffτ and buff∗, we will store the decoded,
authenticated, message of every buffer in another set of τ+2 buffers (denoted by
plain0 to plainτ and plain∗). The read algorithm works by reading these buffers
(instead of the encoded buffers) and verifying their respective MACs. The write
algorithm works the same as before – except that it writes to both encoded and
unencoded buffers. The audit algorithm works by checking λ randomly chosen
locations of each of the encoded buffers and verifying their MACs. Additionally,
to obtain good write complexity, we use linear time encodable and decodable
standard error correcting codes [26] to encode each buffer, as opposed to using
locally decodable codes. We shall also use two types of message authentication
codes: to MAC the elements of buffers buff0 to buffτ and buff∗ (that store code-
words), we shall use constant size MACs; however, to MAC the elements of
buffers plain0 to plainτ (that store elements of the message in the clear), we shall
use MACs with MAC length λ. We shall abuse notation and denote both these
MACs by MAC (it will be clear from context which type of MAC we use).

– PInit(1λ, Σ, k): This protocol is very similar to the Encode algorithm of
our LULDDC. Namely, when storing data m = m(1), · · · ,m(k) = μ∗

on the server, with m(i) ∈ Σ, the client computes ψ∗ = Elin(μ∗) and
η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth element of ψ∗ and σ∗(j) =
MAC(ψ∗(j)). The client stores η∗ in buff∗. Additionally the client will also
store every element of m along with its MAC in plain∗11.

– PWrite(i, vi): To write element vi into position i, C does as follows:

• If the first buffer is non-empty, find the first empty buffer – this can be
determined using ctr, but for now, we just assume that we learn this by
decoding buffers in a top-down manner and scanning them to see if they
contain any non-empty element. Let the first empty buffer be at level j.

• Update S to S′ so that it now contains an incremented counter.

11 In order to reduce the storage complexity, every λ
|Σ| elements are grouped together

and MACed so that the storage complexity remains at O(k) and does not become
O(kλ).

512 N. Chandran, B. Kanukurthi, and R. Ostrovsky

• We store (i, bi) as well as all the non-empty elements from μ0 to μj−1

into μj . To do this, we decode ψ0 · · ·ψj−1, insert the elements into μj and
then compute Elin(μj) to obtain ψj . We compute ηj(�) = {ψj(�), σj(�)}.
(The authentication tags σj(�) are recomputed with the latest key cor-
responding to level j, which in turn is computed from S′).

• Additionally, we store the plain message μj in plainj . Note, that whenever
reading an element, we read the element along with its MAC and reject
if the MAC does not verify.

• The buffers from buffj−1 . . . buff0, as well as plainj−1 . . . plain0, are now
set to empty by writing special elements into it (along with appropriate
MAC values).

– PRead(i): To read the ith element of the most recent message stored on the
server, the client does the following:
• The algorithm starts with the top-most buffer (plain0) and proceeds
downwards until it finds the address i.

• Note that plainj contains μj in plaintext. To search a buffer buffj for
an index i, we read the locations hj,1(i) and hj,2(i). If either of these
locations contains an entry (i, v) then v is the output of the algorithm.

• If we reach the last buffer, plain∗, we read the element v stored at address
i in plain∗. If the tag σ does not verify, for any element read (in any of the
buffers), then the algorithm outputs reject, otherwise v is the output12.

– Audit(): The audit protocol works as follows:
• For every buffer buff0 to buffτ as well as buff∗, pick λ locations of the
codeword ψj (stored in buffj) at random and read these λ elements along
with their MAC values.

• If all the MACs verify, then output accept, otherwise output reject.

We defer the proof of correctness and security for construction to the
full version. For now, we simply state the parameters that this construction
achieves. The (worst case) complexity of the PWrite protocol is O(log2 k). The
complexity of the PRead protocol is simply O(λ log k) as we need to read a
constant number of elements in each buffer (along with their MACs of length
λ). Finally, the complexity of the Audit protocol is O(λ log k) as we read λ
elements of the codeword in each buffer, along with their constant-size MACs.
The client storage is O(λ).

Acknowledgments. We thank the anonymous reviewers of TCC 2014
for their very valuable feedback.

References

1. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic iden-
tification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 319–333. Springer, Heidelberg (2009)

12 Note, that because of the way we MAC the plaintext values in plain buffers, when
we read a single element from plain, we may have to read an additional λ

|Σ| elements
in order to verify the MAC; we ignore this in the description for ease of exposition.

Locally Updatable and Locally Decodable Codes 513

2. Bowers, K.D., Juels, A., Oprea, A.: Proofs of retrievability: theory and implemen-
tation. In: Proceedings of the First ACM Cloud Computing Security Workshop,
CCSW 2009, pp. 43–54 (2009)

3. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivi-
ous RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 279–295. Springer, Heidelberg (2013)

4. Chandran, N., Kanukurthi, B., Ostrovsky, R.: Locally updatable and locally de-
codable codes. Cryptology ePrint Archive, Report 2013/520 (2013),
http://eprint.iacr.org/

5. Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification
with asymptotically optimal entropy loss. In: Proceedings of the 42nd ACM Sym-
posium on Theory of Computing, STOC 2010, pp. 785–794 (2010)

6. Chee, Y.M., Feng, T., Ling, S., Wang, H., Zhang, L.F.: Query-efficient lo-
cally decodable codes of subexponential length. Computational Complexity 22(1),
159–189 (2013)

7. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplifi-
cation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

8. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC,
pp. 39–44 (2009)

9. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
rams. In: STOC, pp. 182–194 (1987)

10. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

11. Guo, A., Kopparty, S., Sudan, M.: New affine-invariant codes from lifting. In:
Innovations in Theoretical Computer Science, ITCS, pp. 529–540 (2013)

12. Hemenway, B., Ostrovsky, R., Strauss, M.J., Wootters, M.: Public key locally de-
codable codes with short keys. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim,
J.D.P. (eds.) RANDOM 2011 and APPROX 2011. LNCS, vol. 6845, pp. 605–615.
Springer, Heidelberg (2011)

13. Hemenway, B., Ostrovsky, R., Wootters, M.: Local correctability of expander codes.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
I. LNCS, vol. 7965, pp. 540–551. Springer, Heidelberg (2013)

14. Juels, A., Kaliski, B.: Pors: proofs of retrievability for large files. In: Proceed-
ings of the 2007 ACM Conference on Computer and Communications Security,
pp. 584–597 (2007)

15. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, STOC, pp. 80–86 (2000)

16. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding.
In: STOC, pp. 167–176 (2011)

17. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
ram and a new balancing scheme. In: SODA, pp. 143–156 (2012)

18. Naor, M., Rothblum, G.N.: The complexity of online memory checking. In: 46th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005,
pp. 573–584 (2005)

19. Ostrovsky, R.: An efficient software protection scheme. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 610–611. Springer, Heidelberg (1990)

http://eprint.iacr.org/

514 N. Chandran, B. Kanukurthi, and R. Ostrovsky

20. Ostrovsky, R.: Efficient computation on oblivious rams. In: Ortiz, H. (ed.) STOC,
pp. 514–523. ACM (1990)

21. Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 387–398. Springer, Heidelberg (2007)

22. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

23. Schulman, L.J.: Communication on noisy channels: A coding theorem for compu-
tation. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS,
pp. 724–733 (1992)

24. Schulman, L.J.: Deterministic coding for interactive communication. In: Proceed-
ings of the 25th Annual ACM Symposium on Theory of Computing, STOC,
pp. 747–756 (1993)

25. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

26. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. In:
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, STOC, pp. 388–397 (1995)

27. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego

28. Yekhanin, S.: Locally decodable codes. Foundations and Trends in Theoretical
Computer Science 6(3), 139–255 (2012)

	Locally Updatable and Locally Decodable Codes
	1 Introduction
	1.1 Codes with Locality
	1.2 Our Results
	1.3 Our Techniques
	1.4 Organization of the Paper

	2 Definitions
	2.1 Codes with Locality
	2.2 The Prefix Hamming Metric

	3 LULDCs for the Prefix Hamming Metric
	3.1 Our Results
	3.2 Code Description
	3.3 Proof of Theorem 1

	4 Computational Setting
	4.1 Codes for Computationally Bounded Adversaries
	4.2 Our Results
	4.3 LULDDC Construction

	5 Dynamic Proof of Retrievability
	References

