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Abstract. In this paper, the estimation of the illuminant in color con-
stancy issues is analysed in two perceptual color spaces, and a variation
of a well-known methodology is presented. Such approach is based on
the Gray-World assumption, here particularly applied on the chromatic
components in the CIELAB and CIELUV color spaces. A comparison
is made between the outcomes on imagery for each color model consid-
ered. Reference images from the Gray-Ball dataset are considered for
experimental tests. The performance of the approach is evaluated with
the angular error, a metric well accepted in this field. The experimental
results show that operating on perceptual color spaces improves the il-
luminant estimation, in comparison with the results obtained using the
standard approach in RGB.
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1 Introduction

Color is an important feature for pattern recognition and computer vision fields.
Typical applications include feature extraction [1], image classification [2], ob-
ject recognition [3,4], scene categorization [5,6], human-computer interaction [7]
and color appearance models [8]. Colors observed in images are determined by
the intrinsic properties of objects and surfaces, as well as by the color of the il-
luminant. For a robust color-based system, effects generated by the illumination
should be removed [9].

The ability of a system to recognize the correct colors, independently of the
color source present in a scene, is known as color constancy [10]. Remarkably,
the human visual system has a natural capability to correct the color effects of
the light source. However, the factors that are involved in this capability is not
yet fully understood. The same process is not trivial to machine vision systems
in an unconstrained scene [11].

Most color constancy algorithms use assumptions to simplify the computa-
tional estimation of the illuminant. The Gray-World (GW) [12] is one of the
well-known approaches. This assumes that the average illumination reflected by
the objects (reflectance) in a scene under a white light source, is achromatic.
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White Patch (WP) is another algorithm commonly used. It is based on the as-
sumption that the maximum response in the channels of the RGB space is caused
by a perfect reflectance [13]. Some other methods rely on simple statistics of the
images, like the Shades-of-Gray algorithm [14], the Gray-Edges (GE) algorithm
[15] and the Local Color Space Average [16].

Originally the GW approach was proposed on the non-perceptual RGB color
space, despite that color is a property of the human vision that depends on indi-
vidual perception. Actually, most color constancy algorithms have been proposed
and implemented in the RGB color space [17], and, in spite of the existence of
a considerable number of methods, there is not a general solution for the color
constancy problem.

Among the few research works addressing on the estimation of the illuminant
on perceptual color spaces we can mention the study by Kloss [18], where the illu-
minant was estimated using WP and GW algorithms on CIELAB. Even though
this method succeeds for chromatic adaptation purposes, the performance of the
approach is not evaluated using the computed illuminant, leaving the accuracy
of the estimation unverified. Similarly, experiments on the WP were done for
image enhancement issues [19)].

In this study, we propose the estimation of the illuminant directly on a per-
ceptual color space. Thus, we focus on solving the color constancy problem.
The GW assumption is analysed in two perceptual color spaces. Specifically, the
well-known CIE 1976 L*a*b* (CIELAB) and the CIE 1976 L*u*v* (CIELUYV)
in order to provide a simple and fast transformation. For these two spaces, the
Euclidean distance between two points in the space is proportionally uniform
to the perceptual difference of the corresponding colors at the points [8]. The
performance of the method is evaluated computing the accuracy between the
estimated illuminant and a known reference value. Also, the outcomes using the
standard GW approach on the non-perceptual RGB color space, are included for
reference purposes. In addition, the GE algorithm is included in the comparison
because of its outstanding performance [15].

The rest of this paper is organized as follows. In Section 2, the GW algorithm,
the color space transformations and our approach, are presented. Section 3 in-
cludes the experimental results in the test series, and the observations from the
data obtained. Finally, the concluding remarks are given in Section 4.

2 Methodology

In this paper, the outcomes of GW approach in two perceptual color spaces are
compared with those obtained using the standard GW, as depicted in Figure 1.
Basically, the methodology consists in the next modules:

e [lluminant estimation using the Gray-World algorithm, for all images in
RGB.

o [lluminant estimation using the Gray-World algorithm proposed, for all
images in CIELAB.
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Fig. 1. Methodology for the experimental tests

e [lluminant estimation using the Gray-World algorithm proposed, for all im-
ages in CIELUV.

e The evaluation of the accuracy by the angular error between the illuminant
estimated and its corresponding ground truth, for each approach.

e The comparison of the outcomes and the measures obtained.

The implementation of these modules requires the study of the image trans-
formation from RGB to the CIELAB or CIELUV, and the corresponding inverse.
Also, the assumption particular to the GW method must be given. These issues
are addressed now.

2.1 Image Transformation

The algorithm considered throughout this work assumes that the illumination
is uniform across the scene. Equation (1) gives the relationship for the color
intensity,

fi(xv:w = G(xvy)Ri(x’:wIi’ (1)

where, f;(z,y) is the pixel intensity at the position (x,y) in an image or a
frame, G(x,y) is a factor that depends on the scene geometry, R;(z,y) is the
reflectance of the object point displayed at position (z,y) in the image and, I;
is the illuminant in the scene. Index i denotes the corresponding color channel
in the image.

Once a color constancy algorithm is applied over an image f;(x,y), the out-
come, o;(x,y), only depends on G(z,y) and R;(z,y) assuming that I; = 1, that
is, there is a white source illuminating the scene. In this case,
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2.2 Gray-World Assumption

The GW assumption is the most popular algorithm for color constancy. Pro-
posed by Buchsbaum [12], it is used as reference for other algorithms. The GW is
based on the assumption that, on average, the real world tends to gray, and esti-
mates the illuminant using the average color of all pixels. It is assumed that the
information given by the average of each channel of the image is representative
of the gray level.

The first step in the GW algorithm, is to compute the average a;, as indicated
in (3),

M—-1N-1
a; = MNZ > A{filz )}, (3)
=0 y=0
where M and N are the number of columns and rows, respectively. Likewise, a;
can be represented by

M—-1N-—
v Z (@ 9)1: @
=0

M—1N—
a; = ZZ (z,y)Ri(z, y), (5)
aﬁzhEmRﬂ:LEKﬂEmJ (6)

The function F[GR;] is the expected value of the geometry factor G multiplied
by the reflectance R;. Both can be considered as independent random variables,
as there is no correlation between the color and the shape of an object. Assuming
that many different colors are present in the scene and each color is equally likely,
the reflectance can be considered to be a random variable drawn from the range
[0,1], and

EWWW&—M@(AxM)—EWg, (1)
a; ~ I,E[G];, (8)
2

Once this global value is known, the illuminant I; is computed. Assuming that
there is a perpendicular orientation between the object and the camera, E[G] = 1.
Since fi(z,y) = G(x,y)R;(x,y)I;, the outcome image is given by

0ilz,y) = fz(z Y _ fi(Q:Z,iy). (11)
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2.3 Color Transformations

The perceptual space transformations used in this study are applied to the
CIEXYZ color space [20]. In order to transform an image from RGB to CIEXYZ,
the RGB space needs to be determined. Here, sSRGB is used because it is based
in a colorimetric RGB calibrated space [21]. All images need to be transformed
from sRGB to CIEXYZ, applying (12) where {r, g,b} € [0, 1] are the normalized
color components

X 0.4124 0.3576 0.1805 r
Y [ =10.2126 0.7152 0.0722 | | g |, (12)
Z 0.0193 0.1192 0.9505 b

whereas the inverse transformation is given by (13),

r 3.2410 —1.5374 —0.4986 | | X
g| =1-0.9692 18760 0.0416 Y |. (13)
b 0.0556 —0.2040 1.0570 A

The color space CIELAB is computed from CIEXYZ using (14)-(17), obtain-
ing the components of this space.

L* =116f(Y/Y,) — 16, (14)

a® =500 [f(X/Xn) — f(Y/Y,)], (15)

b* =200 [f(Y/Yn) — f(Z/Z2)], (16)
t1/3 if t>03

1) = {t/(302) +16/116  otherwise, (17)

where X,,, Y,, and Z,, are the coordinates of the reference white for the scene in
CIEXYZ, t can be X/X,,,Y/Y, or Z/Z,, and o = 6/29.

For the inverse transformation, three intermediate variables are required, fy,
fx and fz, shown in (18)-(20),

fy = (L* +16)/166, (18)
fx = fy + (a"/500), (19)
fz = fy — (b"/200). (20)
Finally, (21)-(23) are used to obtain the inverse transformation.
_ [ if fy>o
Y= {fy ~16/116  otherwise (21)

_ anjs( if fX >0
X = {fX —16/116  otherwise (22)

_ an% if fz >0
Z= {fz —16/116  otherwise (23)
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The transformation from XYZ to CIELUV begins by computing two interme-
diate variables, u’ and v, given by

4X
r_
YT X 415y 4327 (24)
Y
’ i (25)

YT X415y 432
!/

Also, it is necessary to obtain the variables u/, and v}, which are given by
the coordinates for the reference white (X,,, Y,, and Z,), using the same set of
equations. Finally, the L*, u* and v* components are computed applying the
following equations

I (2/0)%Y/)Y, if Y/Y, <03 (26)
1 116(Y/Y,)? — 16  otherwise,

ut = 13L" (v —u,,), (27)

v =13L* (v —v,,), (28)

where o = 6/29. The inverse transformation is given by Equations (29)-(33).

*

/ u ’
= 2
W= g T (29)
’U* ’
[
V= ags + v, (30)
Y, L*(c/2)? if L*¥<8§
Y = . 3 31
Y, (L JGIG) otherwise (31)
9u’
X=Y 2
(41}’) (32)
12 — 34’ — 200’
=Y 33
( 40’ ) ( )

2.4 Gray-World Assumption on Perceptual Color Spaces

The Gray-World theory assumes that the average color in an image tends to
a gray color. In other words, the mean of each chromatic component tends to
this gray color. This assumption, originally was applied to the RGB color space,
which has three color components. We propose to apply this assumption on two
perceptual color spaces.

The reason for transforming the input image into a perceptual color space is
the estimation of the illuminant. Perceptual color spaces are conformed by two
chromatic components, additionally to lightness. These two chromatic compo-
nents are used in our approach while the lighting information is omitted.
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CIELAB is the first perceptual color space taking into account. This space is
perceptually uniform, and the chromatic components, a* and b*, are not corre-
lated with the lightness component L*. This last, corresponding to a perceptual
scale of brightness and excluding any color information. Given an image f;(z,y),
where i € {R, G, B}, we compute the component of each pixel, L*, a*, and b*, of
the corresponding image on the CIELAB space, using Egs. (12) and (14)-(17).
Following the Gray-World assumption, the average value for each chromatic
component is then computed as

] M-1N-1
Iyv = MN Z Z a*(x,y), (34)

y=0 =0

| M-oiN-1
I = S by, (35)

y=0 z=0
where M and N are the number of columns and rows in the image, respectively.
These two values are very important because they represent the color of the

illuminant in this perceptual space.

In order to increase the lighting in the outcome image, for completing the
illuminant estimation we suggest the use of Ir+ = max{L*(z,y)} as a third
component. That is, we assume that the lightness value for the approximate gray
is the highest possible in the image. Experimental tests support this assumption.
Therefore, we can consider this approach as a combination between the White-
Patch and the Gray-World methods.

Now, the output image will be that obtained using the calculated illuminant.
For this purpose, such illuminant must be in the RGB space. For the computation
of lic(r,a,By, the Ijc(r+ =~y illuminant is mapped by the sequential inverse
transformations from CIELAB to XYZ using (18)-(23), and then from XYZ to
RGB using Eq. (13). Finally, the accuracy for the illuminant I; is evaluated and
the outcome image is computed using (2).

CIELUYV is the second perceptual color space considered in this study. Al-
though it has some similar properties than CIELAB (two chromatic components
and lightness), CIELUV incorporates a different formulation for the chromatic
adaptation. Transformations in this space are performed using Equations (24)-
(33), applied in a manner similar to the aforementioned process.

3 Experimental Results

In order to test our approaches, we compare their performance with the corre-
sponding outcomes using the standard approach in RGB. We use the Gray-Ball
[22] benchmark image set for the experiments. This image set is commonly used
for the evaluation of color constancy algorithms as it is labeled with ground
truth illuminants. More than 11000 images belong to this image set, however
most of these images are highly correlated. Thus, Bianco et al. [5] propose the
use of a subset containing approximately the 10% of the complete set. We use
this subset, which includes 1135 images.
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Fig. 2. Curve fitting for each approach showing the trend of the angular errors given
by the outcomes. The lower the angular error is, the better the estimation is.

Table 1. Statistical angular errors for the different approaches

Algorithm Mean Median Max
Gray-World (RGB) 7.2 6.0 333
Gray-World (CIELAB) 6.5 5.7 259
Gray-World (CIELUV) 6.2 5.5 27.1
274 order Gray-Edge 6.1 51 240
1% order Gray-Edge 6.0 4.9 237

3.1 Performance Evaluation

In order to evaluate the performance of the color constancy algorithms, a metric
of performance must be considered. In this case, color constancy must be evalu-
ated according to the estimated color of the illuminant. Hordley and Finlayson
[23] proposed a metric well suited for the evaluation of the color constancy, the
angular error. In such study, they discussed three good descriptors for the angu-
lar error distribution, which are the mean, median and maximum error values.

This metric is given by
LI
o —1 rle
Cang = COS (|IT|I€|) , (36)

where I, is the known illuminant in the scene (ground truth) and I. is the
illuminant estimated by an algorithm under test. It is important to note that
for the evaluation of the color constancy, a ground truth is always necessary.
These reference values should be provided by the authors of the image dataset.
We must note that the lower the angular error is, the better the estimation is.
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Fig. 3. Three examples out of the 1135 images where the angular error is shown in the
gray ball. The ideal image is included. a) ApacheTrial frame no. 01520, b) CIC2002
frame no. 10150, ¢) DeerLake frame no. 00140.

Table 2. Computing time for each approach

Algorithm Time (ms)
Gray-World (RGB) 0.57
Gray-World (CIELUV) 15.73
Gray-World (CIELAB) 31.22
1%* Gray-Edge 130.44

27 Gray-Edge 216.20
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3.2 Data Obtained and Comparison

The experiment was conducted on a comparative analysis between the outcomes
from our approaches and the outcomes from the classical approach using RGB
discussed in Section 2. Therefore, 1135 illuminants were obtained, and the an-
gular error was calculated for these outcomes. In order to clarify the behavior of
the outcomes, the angular errors obtained were approximated by curve fitting.
This approximation was computed using three terms of the Fourier Series, such
that the fitted curve describes the trend of the particular approach, as shown in
Fig. 2.

Three examples of outcomes using the algorithms under evaluation are shown
in Fig. 3. Each image is presented under diverse light conditions and is processed
using the three approaches. In addition, the corresponding ideal image is shown.
An ideal image is one that is corrected using the ground truth illuminant. GW
applied in RGB, generally introduces a saturation which is not found in the
source images. In contrast, this algorithm applied on perceptual color spaces
preserves better the relation of the colors. We can appreciate this in Fig. 3.

Table 1 shows the three descriptors for the angular error distribution suggested
in Section 4.1. According to these descriptors, the application of GW on any
perceptual color space is significantly better than using RGB. However, the
GW algorithm applied on CIELUV is marginally better than the algorithm
on CIELAB. The Gray-Edge (GE) algorithm is included in the experiments
for comparison purposes. This algorithm has shown the best performance for
this image set [5], and belongs to the group of static color constancy algorithms.
However, this has the particular disadvantage of requiring a tuning process using
training images. Particularly, the method depends of three parameters, which
must be correctly chosen to improve the performance. For this work, GE operates
using the parameters proposed by Bianco et al. [24]. Nevertheless, the difference
in performance between GW using a perceptual space and GE is very small. The
main difference is that the GW algorithm in any color space does not require
any tuning process.

Table 2 shows the processing time taken by each approach. The specifications
of the computer are the following: iMac Apple, 2.5 GHz Intel Core i5, 4GB ram
1333MHz DDR3. We can appreciate that the difference in computing time be-
tween GE and GWs approaches is significant. The GW algorithm using CIELUV
was the best in performance, except in comparison with GE. However, GW is
about 8.3 times faster than the 15¢ order GE, and 13.7 times faster than the 274
order GE.

4 Conclusion

A variation of the method using the GW assumption for color constancy has been
analyzed in the CIELAB and CIELUYV color spaces. Given a test image, the illu-
minant is estimated and then compared against a reference value. Experimental
tests are conducted comparing the outcomes of the proposed methods with out-
comes using the standard GW in RGB and the GE algorithm. According to the
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results, we conclude that outcomes from our approach, a GW assumption in a
perceptual color space, are better than those obtained using the standard pro-
cedure in RGB. Despite that the outcomes using the GE algorithm are slightly
better than those using our approach, for practical applications we can choose
the latter, because it is significantly faster and does not require a tuning pro-
cess. Also, we can appreciate that GW on CIELUYV is marginally better than
on CIELAB according to the accuracy of the estimated illuminant. Moreover,
the processing time is considerably faster on CIELUV. For these reasons, our
approaches, particularly the GW using CIELUV, can be considered well-suited
preprocessing methods for real-time applications in the pattern recognition and
computer vision fields.
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