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Abstract. Recent studies on human motion capture (HMC) indicate the need for
a likelihood model that does not rely on a static background. In this paper, we
present an approach to human motion capture using a robust version of the ori-
ented chamfer matching scheme. Our method relies on an MRF based segmenta-
tion to isolate the subject from the background, and therefore does not require a
static background. Furthermore, we use robust statistics and make the likelihood
robust to outliers. We compare the proposed approach to the alternative methods
used in recent studies in HMC using the Human Eva I dataset. We show that our
method performs significantly better than the alternatives despite of not assuming
a static background.

1 Introduction

Human motion capture (HMC) is a challenging and an important area of research
in the vision community. Though there is a large body of literature on HMC
[18,7,22,1,21,19,8,15,12], most recent methods on HMC [20,7,8] rely on either chroma
keying or a static background for background subtraction. Consequently, they are not
suitable for outdoor motion capture where lighting change and non static background
makes the assumptions invalid. This is observed to be a critical problem for HMC in
recent studies [20]. In order to overcome this limitation, some studies augment the vi-
sual data with other sensors such as IMU’s [16]. Recent studies [20] indicate that these
problems can be mitigated by designing a suitable cost function that does not make
strong assumptions about a static background and yet would enable tracking with an
acceptable computational overhead. We address this aspect of HMC systems in this
paper.

Our approach draws inspiration from oriented chamfer matching (OCM) in object
recognition [17] and exemplar based pose estimation [14]. Shotton et al. [17] note that
OCM has high discriminative properties for articulated objects and it is robust to noise.
Though these properties have been exploited in areas such as exemplar based pose esti-
mation [14] and articulated hand tracking [23], these techniques have not been applied
to model based HMC.

In this paper, we formulate a cost function for HMC using robust oriented chamfer
matching. The analysis by synthesis framework that is widely used for HMC minimizes
an energy functional that measures the disparity between the observed image and the
synthesized output. The energy functional is generally [8,20] composed of a model to
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Fig. 1. Edge fragments from the observed image (red) and synthesized output (green) superim-
posed on the observed image.

observation and an observation to model matching (bidirectional) terms. Our method
extracts a set of edge fragments from the observation and the synthesized output, and
minimizes a bidirectional oriented chamfer distance between the two. Since our obser-
vation is a general set of oriented edge fragments, our method does not make any as-
sumption about a static background. Furthermore, since the observation could include
significant noise, we extend the standard oriented chamfer distance with a robust func-
tion. This is combined with an MRF based shape prior which segments out the subject
from the background to ensure an acceptable computational overhead.

Our approach is compared with the alternative approaches used in recent publications
[20,8] using the data from the Human Eva I dataset. We demonstrate with quantitative
results, that our method on an average reduces the tracking error by up to 15%, despite
of not making limiting assumptions such as a static background.

2 Previous Work

Local optimization and optical flow is used for HMC by studies such as [6,3]. These
methods are known to get stuck in incorrect hypothesis [9]. Hence they are not suitable
for situations where the model is not exact, or the image observation is uncertain. Some
studies [1,4] directly infer the human pose from a set of image features. However, these
methods are known to be sensitive to the appearance of the subject and to require ex-
tensive training. Exemplar based methods [15,14] have been in use for pose estimation.
However, they are not accurate enough for motion capture. Model free approaches to
HMC [2,21], loosely assemble human parts to a plausible pose. However, anatomically
correct reconstruction of the human motion cannot be ensured by these methods.

Widely used methods such as [7] rely on a kinematic skeleton fleshed with paramet-
ric surfaces and achieve motion capture using stochastic search. Gall et al. [8] describe
a multi-pass solution that performs initial tracking with a stochastic search method,
which is refined with a smoothing filter and local optimization. They use a deformable
surface model of the human for tracking. Sidenbladh et al. [18] describe a complete
generative framework to model based human motion capture using sequential Monte
Carlo tracker. Our method can be incorporated within their framework.
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Kohli et al. [13] present an integrated framework for segmentation and pose estima-
tion. The MRF based shape prior we use in this work is similar to [13]. However, their
approach uses background and foreground statistics. Hence their approach is not suit-
able for outdoor situations where the statistics are expected to change due to lighting
changes. Since we don’t explicitly use background and foreground statistics for seg-
mentation, our approach is insensitive to lighting changes that are expected in outdoor
situations such as those considered in [16].

3 Oriented Chamfer Matching

3.1 Overview

Oriented chamfer matching is a technique used in object recognition for matching edge
fragments [17,14,11]. Let P be the space R? x [0, 7) that denote the coordinates of an
edge fragment along with the edge orientation. Let the respective sets of observation
and synthesized edge fragments be O = {0; € P} and S = {s; € P}. The oriented
chamfer distance between the two is defined as

1 ,
docn(0,5) = |, Eejo min dp (0;, 5;) (M

where |O| is the cardinality of the set O, and dp : P x P — R, is a distance metric on
‘P described below
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where || Ay — Ba ||la= min(|As — Ba|, ™ — |As — Ba|) is a distance metric for the
angular component. Let W be a warping function parametrized by x, then the optimal
parameter & that aligns the synthesized edge fragments S with the observation O can
be obtained by minimizing the distance dpc s as below

& = argmin docym (0, W(S; x)) 3)

When matching edge fragments, the warping function W is generally a planar affine
warp, for example, z € SE(2). In this paper, we consider the warp W to be a nonlinear
map that assembles the articulated model in its pose in R? and projects it to calibrated
cameras to obtain the synthesized output S. We treat x to be the parameters of the
articulated model.

Furthermore, as observed in earlier studies [10], human pose tracking requires a
bidirectional matching. Hence we extend the oriented chamfer matching scheme for
HMC by defining a bidirectional likelihood term for the camera C' as below

—InP(0; X,C) =docm(0,W(X,C))

4
+dOCM(W(X7 C),O) ( )

The overall likelihood is expressed as the mean from all the cameras used by the multi-
view HMC system. The above formulation of the likelihood performs well for HMC.
In this paper, we extend this with a robust formulation which is described next.
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(a) Cost (b) Mask (c) Canny Edges

Fig. 2. Segmentation using oriented chamfer distance. The sub-figure a) shows the likelihood term
used by the MRF based segmentation technique, b) shows the segmented foreground region, and
c¢) shows the Canny edges extracted from the foreground region that are used for tracking.

Fig. 3. Canny edge fragments obtained by the MRF based segmentation for the Subject 1 walking
sequence superimposed on the input image. It can be observed that the subject and a small region
around the subject is carved out of the input.

3.2 Robust OCM

The likelihood described in last section assumes that an error free observation O repre-
senting the subject is available. This could be achieved in practice by using a silhouette
obtained by background subtraction. However, this would result in a method that does not
work well in outdoor situations. Hence in this work we use an MRF based segmentation
technique that isolates the subject from the background, which we describe next.

Let Z; (i € {1,...,n}) represent the random variables corresponding to the individ-
ual pixels. The segmentation task is formulated as the problem of classifying the pixels
into two coherent regions represented by the labels £ € {f,b}. Spatial coherency be-
tween the segmented regions is ensured by a neighborhood influence function. Let N;
represent a set of neighbors of Z;, which we consider to be the four adjacent pixels. The
posterior probability of the set of pixels in the image Z taking a configuration z € L™,
is expressed as
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Priz=z)0c ] (o) I] vtz 2)) 5)
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where ¢(z;) is the data likelihood term that indicates how likely is a given pixel to
belong to a specific label, and 1(z;, z;) is the prior term that enforces spatial coherency.

It can be shown [5] that finding the MAP configuration is equivalent to finding the
minimum energy configuration

E(z)= > —log¢lz:)+ Y. —logi(ziz) 6)

ie{l,...,n} i€{L,....,n}

The minimum energy configuration of Z can be efficiently obtained using graph cuts
[5]. In this paper, we consider the prior term ¢(z2;, z;) to be the generalized Potts model
[13]. The likelihood using the oriented chamfer distance can be expressed as

log zi = f) = _min  dp(P(2),y) )
where IT(X;_1) is the synthesized model from the previous time frame, and the opera-
tor P(z;) returns the 3-tuple € P for the pixel z;. We fix ¢(z; = b) to be a constant in
this work. It should be noted that our framework does not make use of the appearance
for the segmentation and it only makes use of the oriented chamfer distance. As a result,
our segmentation is robust to lighting changes that are expected to happen in outdoor
scenario.

Figure 2 shows the segmentation using the MRF. The cost —log ¢(z; = f) is shown
in Figure 2a. The mask obtained using graph cut is shown in Figure 2b. Figure 2c
shows the Canny edge segments in the foreground region. Figure 3 shows the segmented
Canny edge fragments for the Subject 1 walking sequence.

3.3 Robust Likelihood

It can be observed from Figure 2c, that the edge fragments obtained from segmentation
include considerable noise. Consequently, the likelihood described in Section 3.1 can
be biased by the noise. We extend the likelihood model in order to overcome this. The
likelihood described in Section 3.1 is composed of two parts. The first part measures
the fit of the observation to the synthesized model, and the second term measures the fit
of the synthesized model to the observation. The observation edge fragments O include
substantial noise as a result of the segmentation. However, synthesized edge fragments
remain the same as before. Hence we modify the first term to use a robust function that
is less sensitive to noise than the squared error. Formally,

drocu (0, ) = | 0\ Z p(inf, dp(os,s:)) (8)

where p(z) is the Geman-McClure error function described below.
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The robust likelihood is formally expressed as

—lnP(O;X,C) ZdROCM(O,W(X,C)) (10)
+doc(W(X,C),0)
We refer to the oriented chamfer matching scheme that uses the above likelihood
and the MRF based segmentation described in Section 3.2 as robust oriented chamfer
matching (ROCM).

4 Experiments and Results

In this section, we compare the proposed method with the alternative methods used for
HMC in recent publications [16,8,20]. The Human Eva I dataset that provides video
and motion capture data was used for validating the proposed approach. We used input
from 3 RGB cameras and 2 grayscale cameras in all the sequences except the Subject
3 jogging and walking sequence. For the Subject 3 jogging and walking sequence, we
used an additional camera input, since we found the segmented video had a blind spot
near a corner, where nearly 60% of the foreground was invisible, resulting in a tracking
failure.

Initialization was performed with the ground truth provided with the Human Eva I
dataset as commonly done [20] in recent work. We registered a set of markers provided
by the ground truth to the model in the first frame in order to measure the tracking error.
Mean Euclidean distance (in mm) between the registered markers and the ground truth
in subsequent frames are reported as the tracking error. A constant position model [7]
was used as a motion prediction strategy for tracking. We used a kinematic model with
25 degrees of freedom and 10 links. The rigid links were fleshed with truncated cones
with elliptical cross section [20].

We obtained silhouettes by background subtraction using the background statistics
provided with the Human Eva I dataset. The likelihoods used in current methods [20,8]
require the silhouettes. However, our method ROCM does not need the silhouettes. Our
method was compared with two common likelihoods used with model based motion
capture systems. The study in [20] finds bidirectional silhouette (BiS) based likelihood
to produce the best results. We briefly describe the method here, BiS is composed of
two terms,

~InPas(Sil:X,C) = | ;H(p)‘ S Sil(p)(1 - ()
’ 1 ’ . (i
e 1) ,,e;@o(l ~ Sil(p))

where Sil is the smoothed silhouette and IT(X) is the synthesized projection. The first
terms in Eq. (11) penalizes the set of pixels in the silhouette that are not explained by the
synthesized projection and the second term penalizes the set of pixels in the synthetic
projection that are not explained by the silhouette. This is similar to the bidirectional
matching we perform.
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(a) Subjectl (b) Subject2 (c) Subject3

Fig. 4. Image features used for tracking. The silhouette of the subjects are shown as the fore-
ground region, appearance is shown by the intensity values and the oriented edge fragments are
shown as red dots.

Appearance (App) based likelihood [16,8] is used in recent studies, since it is more
informative than likelihoods such as BiS. It uses appearance cues in addition to the
silhouette (BiS). The likelihood requires the segmentation of the projection I7(X) into
those of the individual body parts IT;(X), which takes occlusion into consideration.
The subscript 4 in I7;(X) indicates that it is the projection for the part . In the initial
frame, the statistics for the part ¢, ¥; is extracted and is assumed to remain unchanged.
The appearance based likelihood is formally expressed as below using the statistics for
the parts ¥;

1

—InPppp(I; X,C) = iparts|

> Dp(W|W(ILi(X), 1)) (12)

i€Eparts

where Dp(X||Y) is the Bhattacharya distance between the two distributions, and
U(I1;(X), 1) is the statistics extracted from the image I in the region corresponding
to IT;(X). The appearance statistics were represented as histograms. In order to make
the likelihood invariant to lighting change, similar to [8], we use the statistics from the
a and b channels alone of the CIELab representation of the image.

Figure 4 shows the image features used for tracking for the three subjects in Human
Eva 1. The silhouette of the subjects are shown by the foreground region. It can be
observed that the shadow of the subject is part of the silhouette region. The appearance
is shown by the intensity values. The set O of observation edge fragments are shown as
red dots.

Figure 5 shows the time and ensemble averaged tracking error and deviation of 5
different runs for each sequence. It can be noticed that for Subject 1, in general BiS
has a very high error. We found the reason for this to be the poor model fit for the
subject, which results in a highly multimodal likelihood. Using appearance cues (App),
improves the tracking performance. Our method (ROCM) has the least tracking error.
The tracking performance of Subject 2 is equally good with BiS and App, since Subject
2 is well segmented from the background. Our method performs better than the other
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Fig. 5. Tracking error for the twelve sequences compared. Overall mean error for all the sequences
compared is shown in the last group. It can be observed that ROCM has the least overall error
and it perform better than the other configurations in 9 out of 12 sequences.

Fig. 6. Tracking results for the Subjects 1 (top row) and 2 (bottom row) using the configuration
ROCM (without using silhouettes). The best result out of five runs for each sequence is shown.

two methods for this subject too. Silhouettes obtained from Subject 3 are highly reliable,
but the subject is completely dressed in black. As a result there are hardly any edges
visible due to depth discontinuity (as observed in 4c). Hence, for this subject our method
performs worse for two sequences.
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Table 1. Runtime and overall error for the three configurations compared. It can be observed that
the proposed method has a lower error and runtime.

App BiS ROCM
Runtime per
frame (sec) 29.3 26 13 (+3.3)
Overall error (mm)
mean =+ std 9% + 14 103+ 18 85+ 16

The configuration ROCM has a lower error than BiS and App in 9 out of 12 se-
quences. Overall mean error for ROCM (shown in Table 1) is more than 15% and 10%
lower than that of BiS and App respectively. The best tracking results for the Sub-
ject 1 walking and the Subject 2 jogging sequences, obtained using the configuration
ROCM is shown in Figure 6. Figure 7 shows two situations where the proposed method
switches to an incorrect hypothesis. It can be observed that ROCM at times gets mis-
led by edges that appear to be from the subject. However, it did not result in a complete
tracking failure. We believe that such problems can be reduced by using a more accurate
model of the subject.

Our HMC framework is currently implemented in Matlab. However, critical compu-
tational blocks such as the evaluation of the cost function are implemented in C. We
further use data structures such as KD trees [23] to reduce the complexity of the robust
oriented chamfer matching scheme. We ran the code on a standard PC and the process-
ing time. It can be observed that our method is significantly faster than the other two
methods. The preprocessing time necessary for the MRF segmentation of the proposed
method is shown separately (3.3 seconds).

Fig. 7. Incorrect tracking results obtained by using ROCM. It can be observed that ROCM gets
misled by the presence of edges that are similar to those from the human subject.

5 Conclusion
In this paper, we describe a robust oriented chamfer matching scheme for human motion

capture. The method relies on an MRF based segmentation technique to segment out
the subject from the background. Furthermore, we extend the well-known OCM scheme
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with robust statistics. We compare our approach to the alternative methods used in HMC
in recent studies, and show that our method reduces the tracking error by up to 15%,
despite of not using background statistics. In the future, we hope to extend our method
to scenarios where multiple subjects interact.
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