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Abstract. Conventional face detection techniques usually employ slid-
ing window based approaches involving series of classifiers to accurately
determine the position of the face in an input image resulting in high
computational redundancy. Pre-processing techniques are being investi-
gated to reduce the search space for face detection. In this paper, we
propose a systematic approach to reduce the search space for face de-
tection using head and shoulder curves. The proposed method includes
Gradient Angle Histograms (GAH) that are applied in a block-based
manner to detect these curves, which are further associated to deter-
mine the search space for face detection. A performance evaluation of
the proposed method on the datasets (CASIA and Buffy) shows that an
average search space reduction upto 80% is achieved with detection rates
of over 90% for specific parameters of the dataset.

Keywords: search space reduction, face detection, visual search, face
localization, computational efficiency, head and shoulder curve.

1 Introduction

In the recent past, appearance based methods have been most widely adopted
for face detection [1]. In such methods [2], a sliding window is used to scan the
entire image to find faces of all possible sizes. However, computing the classifiers
in every sub-window demands high computational power [3]. In [3], methods are
proposed to reduce the search space where the sliding window method is applied
for face detection.

Skin color is one of the commonly used attribute for reducing the possible
search space for face detection [4]. However, this requires sensitive skin color
models to accurately segment required regions of interest (ROIs). Upper body
detection is explored in [5], to reduce the ROIs for face detection. Oriented
Integration of Gradients (OIG) is proposed in [5] as a feature to describe the sub-
parts of human head-shoulder curves, which are then detected using a classifier
followed by Hough voting scheme to localize their position.

[2] propose a method based on an active testing framework, in which the
image space is decomposed in a quad-tree fashion, and in each iteration of the
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algorithm, regions of the image space with a higher probability of presence of
face are refined, while pruning the other regions.

Head and shoulder profile as a feature unique to humans has been used in
face localization [6] and human detection [5]. In this paper, we propose a com-
putationally efficient technique to reduce search space for detecting faces by
extracting head and shoulder curves. The proposed technique is aimed at short-
listing sub-windows that give a higher probability of presence of face. Gradient
angle histograms [7] are used in the proposed method to effectively determine
the ROIs for face detection. Our method processes the edge information of the
image and being a block based approach, the method is scalable to a range of
scales for a given image size. The scope of this paper is limited to front facing
humans.

2 Proposed Method

In this section, we describe the proposed method in detail. As shown in Fig. 1(a),
the proposed method detects the head and shoulder curves of the human being of
a given scale. The scale is defined by the ratio PX : PY , where PX is the distance
between the top of the head to the shoulders, and PY is the distance between the
two shoulders in pixels. Given this scale, the proposed method detects possible
right and left, head and shoulder curves as shown in Fig. 1, that satisfy the given
scale.

Fig. 1. (a) Head and shoulder curves of a human of scale defined by PX and PY pixels.
(b) Illustration showing the linear approximation of the curve [8].

2.1 Gradient Angle Histograms for Curve Detection

As shown in [9], a curve can be divided into smaller segments such that each
segment can be approximated by the tangent passing through the mid-point of
that segment. This is illustrated in Fig. 1(b). A curve C has a gradual change
in tangential orientation from θ1 to θn.

We propose to use gradient angle histograms (GAH) to identify curves of
specific curvatures that can be associated with head and shoulder curves of a
human, as shown in Fig. 1(a). GAH was shown to be an effective way in [7] to
detect linear edges in a block-based approach. Given the edge map EB of an
image block IB , GAH (represented by h) is the histogram of gradient angles,
where hi ∈ h represents the count of edge pixels having the gradient angles in
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Fig. 2. A convex curve is divided into blocks B(i1,j1), B(i2,j2), . . ., B(iN ,jN ). The curve
appears as linear segments and GAHs show peaks corresponding to the gradient angles
of these linear edges in each block.

the i-th bin. Given the edge block EB and the gradient angles θ(x, y) of every
edge pixel in EB, GAH can be used iteratively in the following way to extract
possible linear edges in EB . In each iteration j, we get bin k with the maximum
height in h, which represents a possible linear edge in EB [7]. Edge pixels with
gradient angles in the range of θk−ε ≤ θ ≤ θk+ε, centered around the k-th bin in
GAH will result in Ej ⊂ EB with possible linear edges. This can be summarized
as the following:

k = argmax
i

h (1)

Ej = {e(x, y) ∈ EB |θk − ε ≤ θ(x, y) ≤ θk + ε} (2)

The above equations are repeated after removing the k-th entry in the GAH h,
to get the next peak in h. This is repeated until a termination condition T is
reached. We denote this operation as

{ΘB,EB} = Φ(hB , EB, T ) (3)

where ΘB denotes the set of angles θks in the GAH hB for block B, and the
boldfaced EB denotes the set of edge maps that are obtained using θks using
equations (1). The termination condition depends on the application in which
GAH is applied and we will define it later in this section. It is to be noted that
GAH differs from HoG (Histogram of Oriented Gradients) in terms of how they
are computed and used [1]).

The above GAH formulation can be used to detect a curve as follows. We
divide a curved edge, with a known curvature, i.e. given it is a convex or concave
curve, using a set of blocks B(i1,j1), B(i2,j2), · · · , B(iN ,jN ), such that they are
along the curve as shown in Fig. 2. It can be seen that the segments of the curve
appear as linear edge segments in each block. GAHs are computed in each block
as shown in Fig. 2. These GAHs are represented by the set H, given by:

H = {h(i1,j1),h(i2,j2), · · · ,h(iN ,jN )} (4)
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Applying Φ(·) on each block of H, we get Θ(i,j). If we consider that highest

peaks in each GAH, Φ(·) on H will give peaks at Θ = {θ(i1,j1)k , · · · , θ(iN ,jN )
k }. As

indicated in Fig. 2, these gradient angles correspond to the edge pixels of the
line segments that form the curve. If these linear segments are approximated as
the tangents of the curved segments in the blocks, then they should satisfy (5),
i.e.,

θ
(i1,j1)
k > θ

(i2,j2)
k > · · · > θ

(iN ,jN )
k (5)

2.2 Detecting Shoulder and Head Curves Using Block-Based
Gradient Angle Histograms

Given an X × Y sized image I, it is envisaged to detect shoulder-head region
that can be captured within a window of size PX × PY pixels, where X and Y
denote the vertical and horizontal axes respectively. We first divide I into bs×bs
sized blocks, such that a curve is decomposed into smaller linear segments in
each block. In every block B(i,j), we apply Sobel filters [10] and compute the

edge map denoted by E(i,j). For every edge pixel E
(i,j)
(x,y) in the (i, j)-th block, its

gradient angle θ
(i,j)
(x,y) is computed using the same Sobel kernels. In every block

B(i,j), GAHs are computed for the constituent edge pixels. Therefore, for the
X×Y image we haveH which is set of X

bs
× Y

bs
GAHs corresponding to all blocks,

i.e.,

H =

⎡
⎢⎢⎣

h(0,0) h(0,1) · · · h(0, Y
bs

−1)

...
...

. . .
...

h
( X
bs

−1,0)
h
( X
bs

−1,1) · · · h
( X
bs

−1, Y
bs

−1)

⎤
⎥⎥⎦ (6)

Applying Φ(·) on H, we get the following:

Θ = Φ(H, E, T ) =

⎡
⎢⎣

Θ(0,0) Θ(0,1) · · · Θ
(0, Y

bs
−1)

...
...

. . .
...

Θ
( X
bs

−1,0)
Θ

( X
bs

−1,1) · · · Θ
( X
bs

−1, Y
bs

−1)

⎤
⎥⎦

The termination condition T is defined as a simple threshold bs/4. In other
words, Θ(i,j) will have θks corresponding to all bins in the GAH h(i,j) which
are higher than bs/4. The selected gradient angles in each Θ(i,j) are further
constrained in different ways to detect the shoulder and head curves. This will
be explained next.

Referring to Fig. 1(a), we identify four curves which are curves of interest,
i.e. right and left head curves, and right and left shoulder curves. In terms of
the direction of convexity, we consider the right head and shoulder curves as
right curves. Similarly, the left head and shoulder curves will hence forth be also
called as left curves, unless otherwise stated explicitly.

In order to detect the left and right curves, we divided the GAH h into two
ranges called the right and left angle ranges denoted by ΔR and ΔL respectively.
Referring to Fig. 3, a peak in ΔR represents a linear edge that slants diagonally
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Fig. 3. GAH is divided into right and left ranges ΔL and ΔR that will be used to find
the right and left shoulder and head curves

upwards, i.e.�, whereas a peak inΔL of the GAH indicates a linear edge slanting
diagonally downwards, i.e. �. It can be seen in Fig. 3 that the right and left
slant edges, shown in Fig. 3(b) & (c), result in distinct peaks in different regions
of their respective GAHs shown in Fig. 3(d) & (e).

Fig. 4. Ranking of blocks for right and left curve detection

We will now explain the right curve detection process. The same can be applied
for detecting the left curve by changing the different parameters like angle ranges
etc. Referring to Fig. 4 (a), let us consider a block B(i,j), which is part of the
right curve. The Θ(i,j) for this block is checked to find θk ∈ ΔR, i.e. if there are
any edge pixels that are forming a right slant linear edge. This step is the first
and critical step because we consider that the right curve must necessarily have
a segment that has a gradient angle in ΔR. If no such θ exists, the next block is
processed. If θks exist in ΔR, then we consider the block for further processing.

The θk ∈ ΔR with maximum hk is considered as a the anchor angle θ
(i,j)
a and

block B(i,j) is considered as the anchor block. This anchor block will be used to
check further if there are left and right shoulder curves.

With B(i,j) as the center, we first consider a 3× 3 neighborhood of blocks (as
shown in Fig. 4 (a)), which shows the possible linear edges that can form the
right curve with the center being B(i,j) block. We rank these blocks as pu or pd

where p = 2, 3, and u and d indicate up and down (with respect to B(i,j)). p
indicates the rank of the block, i.e. the order in which it will be processed when
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going up or down to form the right curve. These ranks were decided based on the
manual inspection of human images in datasets like Buffy dataset [11], CASIA
dataset [12]. It was seen that the right shoulder tends to be flat (or horizontal) in
block B(i,j+1) as compared to slanting further up in block B(i−1,j+1). Therefore,
B(i,j+1) is given as higher rank, i.e. 2u, as compared to B(i−1,j+1) (ranked 3u).
Similar observations can be made about the blocks below B(i,j) to rank them as
shown in Fig. 4 (a).

Therefore, given B(i,j) and the anchor angle θ
(i,j)
a , we first go to 2u ranked

block (B(i,j+1)) and check for θks in Θ(i,j+1) such that the following condition

is satisfied: θ
(i,j+1)
k ≤ θ

(i,j)
a − δ2 where δ2 is the expected change in the gradient

angle that should occur if the linear edge segment in the anchor block curves as

we go towards the outer blocks, i.e. B(i,j+1). If there are multiple θ
(i,j+1)
k that

satisfy the above condition, we consider the θk which has the highest count in
the GAH h(i,j+1). These conditions will ensure the curvature condition defined
in (5) is satisfied. If B(i,j+1) does not satisfy any of these conditions, then we
consider the next ranked block, i.e. B(i−1,j+1) which is ranked 3u. This must also
satisfy the same condition for θk but has a smaller δ3 such that δ3 < δ2. This
is because the linear edge in Bi−1,j+1 is slanting upwards more than B(i,j+1)

and hence, it is expected to have a lesser gradient angle variation than B(i,j+1)

(based on observation from datasets that was described above).
The same is repeated for blocks B(i+1,j) and B(i+1,j−1) that are below the

anchor block, which are ranked 2d and 3d respectively. The angles must meet
similar conditions as above but with a positive δ2 and δ3 because the gradient
angles in blocks lower than the anchor block are higher than the anchor block
(according to (5). If any of these conditions are not met in the 3×3 neighborhood
of B(i,j), no further processing for B(i,j) is done and the next block is processed
for identifying the anchor block.

After identifying the block in the 3× 3 neighborhood of the anchor block, we
perform another check with the blocks that surround this neighborhood. This
is the second stage of processing. This is an optional step depending on user
requirement in terms of the curvature constraint one wants to ensure. In our
experiments, we found that going for one more layer of blocks helped to reduce
the false positives. Therefore, we cover a 5× 5 neighborhood around the anchor
block to ensure that we have captured a curve in it.

The ranks of the blocks in the outer ring of blocks in the 5× 5 neighborhood
of the anchor blocks are marked as p − qu or p − qd, where p = 2, 3 indicates
the rank of the origin block in 3 × 3 neighborhood, q = 2, 3 indicates the rank
of the current block. This is shown in Fig. 4 (a). For example, B(i,j+2) has the
rank 2 − 2u, which implies that it could have a edge from block B(i,j+1) which
was previously ranked as 2. Block B(i−1,j+2) has two ranks: 2− 3u and 3− 2u.
If the right curve is detected in B(i,j+1) in the first stage of processing, then
we process B(i−1,j+2) after processing B(i,j+2). If the right curve is detected in
B(i−1,j+1) in the first stage of processing, then we process B(i−1,j+2) first and
then we look into B(i−2,j+2). A similar approach is taken to rank the blocks in
the lower half of the neighborhood as shown in Fig. 4.



Block-Based Search Space Reduction Technique 391

Now, given the blocks identified in the 3×3 neighborhood of the anchor block
B(i,j), which could potentially be having the right curve, we consider these blocks
in the 3× 3 neighborhood as the new anchor blocks. Therefore, we will have two
new anchor blocks Bu

a and Bd
a corresponding to the blocks above and below

the main anchor block B(i,j). We now repeat the above process of checking the
GAHs with Bu

a and Bd
a , using the ranks for the blocks in 5 × 5 neighborhood

(discussed above). The δa parameter is increased or decreased depending on the
block that is being processed in a similar approach as described earlier for the
first stage so as to satisfy (5).

If we are able to trace a curve within the k×k window (k = 5 in our case), then
a right curve is considered to be detected, which is anchored at block B(i,j). If
there was any discontinuity while traversing from B(i,j) to its k×k neighborhood,
further analysis of B(i,j) is terminated and the next edge block is considered for
the entire analysis described above. This is repeated for all blocks in Θ to detect
anchor blocks that have either the right or the left curve. We generate maps R

and L, such that: R ∈ R
X
bs

× Y
bs & L ∈ R

X
bs

× Y
bs where an element in R say R(i, j)

is set to 1 if we find an anchor block for a right curve at index (i, j). Similarly
L is defined.

2.3 Associating Left and Right Curves for Face Localization

Once all the valid left and right curves are recorded in L and R, the next level
of association is performed to identify regions in the image that could possibly
have a front facing human. Recalling that our aim is to detect shoulder-head
region which is defined within a PX × PY pixels sized window, we construct an
association window by grouping u× v blocks, where u = PX/bs and v = PY /bs.
This is illustrated in Fig. 5 (a).

Fig. 5. (a)Association of Right and Left Curves to detect possible shoulder-head re-
gions. (b)Kernels KR and KL applied on the Macroblocks MBR(i, j) and MBL(i, j)
resulting in Matrices RC and LC respectively, and eventually matrix F
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Having determined the number of blocks, i.e. u×v, that fit the PX×PY pixels
window, we generate what we call as macroblock left and right arrays, denoted
asMBL and MBR respectively. In order to compute every element in MBR and
MBL, denoted by MBR(i, j) and MBL(i, j), we consider a group of u/3× v/4
elements in R and L, in a rastor scan method, as shown in Fig. 5 (a). Therefore,

the dimensions of these macroblock arrays are given by: MBR ∈ R
X

u
3

×bs
× Y

v
4
×bs

and MBL ∈ R
X

u
3

×bs
× Y

v
4
×bs . Each element MBR(i, j) and MBL(i, j) is assigned

the value 0 or 1 using the following equations:

MB
(i,j)
R =

⎧⎪⎨
⎪⎩

0 if
(i+1) u

3∑
r=iu

3

(j+1) v
4∑

s=j v
4

R(r,s) = 0

1 otherwise

MB
(i,j)
L =

⎧⎪⎨
⎪⎩

0 if
(i+1)u

3∑
r=iu

3

(j+1) v
4∑

s=i v
4

L(r,s) = 0

1 otherwise
(7)

In other words, if any block in the group of u/3 × v/4 blocks (which is one
macroblock array element) has an anchor block (either left or right slant edge),
we assign 1 to that group (macroblock array element). Fig. 5 (a) & (b) shows
an example of macroblock array assignment. It can be seen from Fig. 5 (a)
& (b) that if a group of u/3 × v/4 blocks has an anchor block, we assign its
corresponding position in macroblock array to 1.

We now define 3× 4 kernels KL and KR in the following way:

KL =

⎡
⎣
0 1 0 0
0 0 0 0
1 0 0 0

⎤
⎦ ; KR =

⎡
⎣
0 0 1 0
0 0 0 0
0 0 0 1

⎤
⎦ (8)

which are convolved with MBR and MBL respectively as shown in Fig. 5 (d).
Considering the Ks are not square-odd matrix, which can be centered at the
center of the kernel, the top left element of Ks, i.e. K(0, 0)s are aligned with
every element of MBL and MBR. The convolution output is placed on the top
left corner element over which the convolution kernels are moved as shown in
Fig. 5(b). The convolution operation results in RC and LC matrices given by:

RC(i, j) =

k=3∑
k=1

l=4∑
l=1

MBR(i+ k − 1, j + l− 1)KR(k, l) (9)

LC(i, j) =

k=3∑
k=1

l=4∑
l=1

MBL(i + k − 1, j + l − 1)KL(k, l) (10)

where 1 ≤ i ≤ X
u
3 bs

and 1 ≤ j ≤ Y
v
4 bs

. The matrices RC and LC capture the

number of right and left curves in the left and right halves of the u× v window
respectively, as shown in Fig. 5 (b). We then get the position of face localization
window by generating F matrix given by: F = RC+LC. If F(i, j) ≥ 3, then we
consider a window with its top left corner positioned at (i, j)-th position to have
a face. This condition allows us to check for the presence of at least 3 of the 4
curves that form the head and shoulder curves. This is shown in Fig. 5 (b).
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3 Results and Discussion

In this section, we present the evaluation of the proposed algorithm for reducing
the search area of face detection. We will first evaluate the detection rate of the
proposed algorithm on two different datasets. The first dataset is the Biomet-
ric Database (CASIA Face Image Database - CASIA-FaceV5 300-399) with 500
images of 100 subjects [12]. This dataset contains five different images of each
subject; the subject being a front facing human in a constrained background set
up. The variations among the images include angular movements of the person
with respect to the camera, changes in illumination, and imaging distance. Con-
sidering that we are demonstrating the algorithm for one particular scale, we
have taken 480 images from this dataset, which are of similar scale by manual
inspection. The second dataset is a subset of the Buffy Dataset [11]. This con-
tains images with unconstrained backgrounds. 108 images of front facing humans
from this dataset were considered for the evaluation. The second performance
metric we will evaluate is the amount of search space reduced using the proposed
algorithm.

3.1 Accuracy Analysis

As discussed in Section 2, the proposed algorithm being a block based approach,
parameters that can influence the detection accuracy for a given scale are block
size (bs), number of bins in the GAH, block-wise GAH threshold setting (T ),
maximum gradient angle change allowed between blocks while detecting the
curves (δ2 and δ3 in Section 2). It was found that the block size (bs) is the most
critical parameter that impacts the detection rate, and other parameters were
tuned based on observations with respect to the scale. For example, T is set to a
value proportional to bs, |δ2| and |δ3| are set to 50◦ and 20◦ with respect to the
scale of the human we have considered for detection. However, these parameters
can also be varied and their impact on detection rate can be studied. In the
scope of this paper, we will evaluate and discuss the effect of change in block
size bs on the detection rate.

We first generated the ground truth which includes marking a bounding box
around the face in each image of the two datasets. During evaluation phase, if the
association window resulting from the proposed algorithm has detected a true
shoulder-head region and the window encloses the ground truth window, then it
is considered as a True Positive (TP) window. In addition to TP windows, there
can be false positive (FP) windows. If the proposed algorithm gives at least
one TP window for an input image, then we consider that the head-shoulder
curve is correctly detected. Therefore, if we have nTP images with at least one
TP window, then the detection rate is given by nTP /ntotal, where the dataset
contains ntotal number of images.

Table 1 gives the detection rates for each dataset and different block setting.
It can be seen that the detection rate is 99.5% for CASIA dataset at a block
size of 6 and it is 94% for Buffy dataset at a block size of 8. The detection rates
reduce for both datasets as the block sizes are increased. This shows that for a
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Table 1. Accuracy analysis results

CASIA Buffy
PX × PY = 150 × 200 PX × PY = 150 × 150
X × Y = 240 × 320 X × Y = 405 × 720

Block Size 6 8 12 16 8 12 16
Detection Rate 99.5 85.1 79.9 70.7 94.4 74.0 79.6
False Positives per frame 1.78 0.44 0.27 0.08 6.37 2.71 2.36
Number of windows per frame 3.32 1.44 1.30 0.71 8.15 3.74 3.66

given scale of the humans in a dataset, a particular block size gives the highest
detection rates.

Fig. 6. Detection windows resulting from the proposed algorithm as the block size
increases for a specific image in CASIA dataset (a) and Buffy dataset (b)

In Table 1, we list the average false positives per frame (FPPF) for each
dataset under varying block sizes. It can be seen from Table 1 that the FPPF is
less than 2 and 6.5 for CASIA and Buffy datasets respectively. In other words, an
average of 2 false positive windows are detected per frame in the case of CASIA
dataset. This number is about 6 in the case of Buffy dataset. The number of false
positive windows increases in Buffy because of the unconstrained backgrounds
which have more variations as compared to CASIA dataset. In both cases, the
FPPF is highest for the smallest block size. This is because, at smaller block
sizes, there is a higher probability for curves to be detected from the edge pixels,
which are further combined to form curves. In case of higher block size setting,
this probability is lesser.

Fig. 7. Detection results under varying background conditions and complexities

In Table 1, we include average total number of windows per frame for each
dataset. For each input image, we count the total number of windows, i.e. all
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TP windows and FP windows. Table 1 gives the average number of windows
over the entire dataset. This metric is particularly important to determine the
amount of image area that needs to be searched by the face detection algorithm.
Fig. 6 (a) & (b) show that there are more number of windows detected when
the block sizes are smaller as compared to higher block sizes and that the FP
windows reduce as the block sizes increase. Fig. 7 shows more examples of correct
detection windows by the proposed algorithm under varying backgrounds and
complexities of the input images.

3.2 Amount of Search Space Reduction

We determine the percentage savings in search area for face detection. If an image
has at least one TP window, we take the total search area for face detection as
the union of all the detection windows, which include both TP and FP windows.
The ratio between the total image size (X×Y ) and the total number of pixels in
the search area enclosed by this union of detection windows is used to determine
the percentage savings for each image. This percentage savings in search area
directly corresponds to a proportional decrease in sliding window based face
detection techniques such as [2].

Fig. 8. Distribution of search space savings: (a) CASIA (bs = 6, 8, 12 and 16 (from
L to R)) (b) Buffy (bs = 8, 12, 16 (From L to R)). x-axis: % savings in search area,
y-axis: Number of images.

We show the distribution of percentage savings for each dataset under different
block size settings in Fig. 8 (a) & (b). There is a cluster of distribution around
0%, corresponding to the missed detections, i.e. no TP windows. The second
cluster is seen at a higher percentage for images that have at least one TP
window.

Referring to Fig. 8 (a) which shows the distributions for CASIA dataset, we
observe that the percentage savings in search area is spread across bins ranging
from 40% to 80% for a block size setting bs = 6. This shows that with this
block setting, there are false positives along with the true positive windows,
but overall detection rate is high since there are very few missed-detections (the
cluster around zeroth bin the histogram is less than 10). Block sizes of 8, 12,
16 show a high concentration of the count in the histogram at 80% savings,
which means that they result in very low false positive rates and high precision.
But, the bin at 0% is also populated for the three block sizes, which accounts
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for the cases that are missed-detections under these block size settings. Similar
observations can be drawn from the histograms for the Buffy dataset also as
shown in Fig. 8 (b) for different block size settings.

4 Conclusions

We have proposed an effective strategy for search space reduction for face de-
tection. The block-based nature of the approach allows for performance gains
through parallelism. Evaluation of our algorithm on two standard datasets, CA-
SIA frontal face and Buffy Stickmen was shown to yield a reduction of search
space by upto 80% of the image area. It was established that optimal block set-
tings can be derived for a given scale of humans in the image, depending on the
required accuracy and savings in search areas. It was shown that the method can
cater to varying scales of human faces by deploying it iteratively or by combining
GAH information in a hierarchical manner. The method was shown to perform
well for profile view of persons on the datasets considered.
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