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Abstract. RGB-Depth (or RGB-D) cameras are increasingly being
adopted for real-world applications, especially in areas of healthcare and
at-home monitoring. As for any other sensor, and since the manufac-
turer’s parameters (e.g., focal length) might change between models,
calibration is necessary to increase the camera’s sensing accuracy. In this
paper, we present a novel RGB-D camera-calibration algorithm that is
easy-to-use even for non-expert users at their home; our method can
be used for any arrangement of RGB and depth sensors, and only re-
quires that a spherical object (e.g., a basketball) is moved in front of
the camera for a few seconds. A robust image-processing pipeline au-
tomatically detects the moving sphere and rejects noise and outliers in
the image data. A novel closed-form solution is presented to accurately
compute an initial set of calibration parameters which are then utilized
in a nonlinear minimization stage over all the camera parameters includ-
ing lens distortion. Extensive simulation and experimental results show
the accuracy and robustness to outliers of our algorithm with respect to
existing checkerboard-based methods. Furthermore, an RGB-D Calibra-
tion Toolbox for MATLAB is made freely available for the entire research
community.

Keywords: RGB-Depth Cameras, Camera Calibration, Kinect, Com-
puter Vision.

1 Introduction

RGB-Depth (or RGB-D) cameras consist of an RGB and a depth sensor that
capture color images along with per-pixel depth information (depth map) [1,2].
These features have promoted the wide adoption of low-cost RGB-D cameras
(e.g., the Microsoft Kinect [1]) in numerous at-home applications, such as body
tracking [3, 4], gait monitoring for tele-rehabilitation [5, 6], tracking of facial
expressions [7], object and gesture recognition [8, 9, 10].

All the aforementioned applications require the precise knowledge of the RGB-
D camera-calibration parameters, i.e., the relative position and orientation of its
on-board RGB and depth sensors, as well as of their parameters (focal lengths,

R. Klette, M. Rivera, and S. Satoh (Eds.): PSIVT 2013, LNCS 8333, pp. 265–278, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



266 A. Staranowicz et al.

Fig. 1. (a) Scene perception with Kinect’s manufacturer calibration. The texture is
not correctly aligned with the 3-D point cloud; (b) Improved scene perception after
our RGB-D camera calibration.

principal points, and lens-distortion [11]). As shown in Fig 1, calibrating RGB-
D cameras is indeed essential to improve the sensing accuracy of these cameras
since the calibration parameters can differ in each model from the manufacturer’s
settings.

Calibrating RGB-D cameras still represents an open challenge, especially for
what concerns accuracy and ease of use for non-expert users at their home. Some
approaches [12, 13] require the impractical use of an external source of infrared
light (e.g., a halogen lamp). Jung et al. [14] use a custom-made large wood
panel with tens of circular holes, which requires the user to perform an initial
time-consuming manual correspondence association of the holes’ centers between
each RGB and depth image pair. Other methods [15, 16, 17, 18] have simply ex-
tended standard corner-based calibration methods to RGB-D cameras; however,
these methods are not robust to outliers, and are not accurate as they make use
of only a small number of corners detected in the depth image. Furthermore,
they require the user to provide an initial estimate of the calibration parame-
ters which might not be available for other RGB and depth-sensor arrangements
other than the Kinect. The existing ROS Kinect-calibration toolbox [13,19] can
only be used with the Microsoft sensor, and it cannot be used to calibrate sen-
sors (e.g., Time of Flight (ToF) cameras) that do not provide an infrared (IR)
image. Furthermore, the toolbox is not user-friendly and the calibration must be
performed offline since RGB and IR images cannot be simultaneously captured
by the Kinect.

In this paper, we present a novel method for the calibration of RGB-D came-
ras that is accurate and easy-to-use even for non-expert users. Our method is
practical since the user is only required to move a spherical object (e.g., a bas-
ketball) in front of the camera. No geometrical knowledge about the size of the
basketball is required and an image-processing pipeline has been designed that
automatically detects the spherical object in both the RGB image (as an ellipse)
and the depth map (as a sphere), while discarding spurious data (outliers).

Our calibration algorithm is accurate since it relies on a novel least-squares
(LS) method that is used to precisely initialize a nonlinear minimization stage
over all the camera parameters including lens distortion and to remove outliers
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Fig. 2. (a) Imaging model of an RGB-D camera: (left), depth sensor {D}; (right),
RGB sensor, {R}; (RDR,RDt) is the 3-D rigid-body motion between the two sensors. (b)
A sphere with radius r and center DOs (in {D}) is projected onto the RGB-camera
image plane at an image conic, RC, (in general, an ellipse). The centers of each ellipse,
i.e., Roe and Doe are the inputs of our calibration method.

by means of RANSAC [20]. This represents a significant improvement over ex-
isting algorithms (such as [15,18]) that require initial values for these calibration
parameters to be provided by the user. It is also worth emphasizing here that the
overall accuracy of our method is due to the adoption of spheres as calibration
objects. In fact, the sensor noise in the RGB and depth images is minimized
by the adoption of sphere- and ellipse-fitting algorithms in the image processing
pipeline.

Our approach is widely applicable, and it can be potentially used to calibrate
depth- and RGB-sensor pairs in any 3-D relative configuration (i.e., not necessar-
ily pointing in the same direction as in the Microsoft Kinect). A new calibration
toolbox for MATLAB, called RGB-D Calibration Toolbox, has been developed
and made available on the Internet1 for the entire research community.

The rest of this paper is organized as follows: Sect. 2 reviews some basic facts
on pinhole camera modeling and image projection of spheres. Sect. 3 describes
our calibration algorithm, and in Sect. 4 numerical and real-world experimental
results are presented and discussed. Finally, in Sect. 5, conclusions are drawn
and some promising subjects of future research are outlined.

2 Basics

2.1 RGB-D Camera Model

Figure 2(a) shows the general RGB-D imaging model considered in this paper.
Under the pinhole camera model [11], a generic 3-D point in the depth-sensor

1 http://ranger.uta.edu/%7Egianluca/dcct/

http://ranger.uta.edu/%7Egianluca/dcct/
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frame, {D}, DX � [XD, Y D, ZD]T , is projected at a pixel point Ru � [uR, vR]T

on the image plane of the RGB-sensor frame {R}, according to:

Rλ Rũ = RK [R
D
R | R

D
t] D

˜X , (1)

where the tilde indicates the extension to homogeneous coordinates of a vector,
and Rλ is a scale factor, chosen so that the last coordinate of the term on the
right-hand side of (1) is equal to 1. The intrinsic calibration matrices, RK and
DK, of the RGB and of the depth sensors are defined as:
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where fu and fv represent the focal lengths (in pixels) in both image-axes direc-
tions; [u0, v0]

T is the principal point in pixels, and s is the skew factor [11]. Note
that the superscripts D and R have been dropped since the previous expressions
equally apply to both reference frames.

The depth sensor typically outputs a so-called depth map, i.e., a set of image
points along with their corresponding depth value (in meters) on the z-axis. Each
depth-map feature is thus defined as Du � [uD, vD, ZD]T . Differently from an
RGB camera, Du can be used to uniquely compute the corresponding point in
3-D coordinates, DX, as:

D
˜X =

[

DK−1 03×1

01×3 1

]

Dū, (3)

where 03×1 denotes a 3× 1 matrix of zeros and the upper bar in Dū indicates a
vector obtained from Du as follows:

Dū �
[

uDZD, vDZD, ZD, 1
]T

. (4)

2.2 Image Projection of a Sphere

A sphere with 3-D center, DOs, and radius r, (see Fig. 2(b)) can be algebraically
represented by [11]:

DQ =

[

I3 −DOs

−DOT
s

DOT
s

DOs − r2

]

, (5)

where I3 denotes the 3 × 3 identity matrix. In general, a sphere DQ projects in
the image plane at an ellipse, and its projection in the RGB image at the ellipse
RC is given by [21]:

RC∗ = R

D
P DQ∗ R

D
PT where R

D
P � RK[R

D
R|R

D
t], (6)

being RC∗ = adj(RC) (the adjugate of RC) the dual conic of RC, and DQ∗ =
adj(DQ), (note that the adjugate is equal to the inverse if the matrix is in-
vertible). The conics RC and DC will play a key role in the RGB-D camera-
calibration algorithm described in the next section.
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3 Joint RGB-Depth Camera Calibration

3.1 Overview

During calibration we assume that the user moves the spherical calibration object
in front of the RGB-D camera. Feature-Extraction pipeline detects and tracks
in real time the two ellipses RC and DC corresponding to the projection of the
sphere in both the RGB and depth sensor, respectively.

Given a set of ellipses acquired over a certain time frame, our goal is to
compute an estimate of the intrinsic parameters DK and RK (plus the radial
lens-distortion parameters, kD

c and kR
c ), as well as of the extrinsic parameters

R
DR and R

Dt. We do this in two steps: first, an initial and accurate least-squares
solution is obtained with a novel formulation that leverages all the detected
(image) centers Roe and Doe of the two ellipses. Second, the parameters and
inliers estimated in the previous phase are used to provide a refined (and final)
estimate of all the camera-calibration parameters.

It is worth pointing out here the novelty and importance of the least-square
approach to get an initial and accurate estimate of the camera parameters, while
almost all of the state-of-the-art calibration methods require a separate (thus
sub-optimal) estimate. Sometimes, the manufacturer’s calibration parameters
are used as initial values (e.g., the Kinect). However, these are not available for
general RGB- and depth-sensor arrangements (e.g., Time-of-flight camera and
webcam). In addition, the calibration parameters can vary significantly among
different models (cf. Fig. 1(a)).

Fig. 3. RGB Feature-Detection Pipeline: (a) A background subtraction is used to limit
the search image space. (b) Canny-edge detector is used to find image edges; upper and
lower bounds are used in Hough voting to find the edges of the ellipse. (c) RANSAC-
based ellipse fitting finally detects the ellipse.

Fig. 4. Depth Feature Detection Pipeline: (a) The depth image presents irregular sphere
edges: the white box shows the search area obtained with background subtraction. (b)
RANSAC on point cloud to detect inliers (green) and outliers (red) and to fit the sphere
(blue). (c) The fitted-sphere center is reprojected on the image (red dot).
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3.2 Feature Detection Pipeline

In this phase, the RGB and the depth images are processed to automatically
detect and track the two ellipses, RC and DC, which correspond to the projection
of the sphere on the image planes of the two sensors. In our implementation,
the user is simply required to move the sphere in front of the RGB-D camera.
We have observed that tracking one ellipse in each image is more robust than
tracking single corner features (e.g., in the case of a checkerboard calibration
rig), since our method leverages ellipse and sphere-fitting algorithms that make
use of all the observed points on an ellipse to minimize the image noise while
removing potential outliers.

For the detection of the ellipse RC in the RGB image, a background subtrac-
tion algorithm is first used to determine a search area for the moving sphere
(see Fig. 3(a)). Then a Canny-edge detector [22] is applied to that image por-
tion, and a circular Hough transform [23] is used to automatically obtain the
pixel coordinates of those points lying on the ellipse (as in Fig. 3(b)). Finally, a
RANSAC-based ellipse-fitting algorithm [24, 25] is used to estimate the param-
eters of the ellipse RC, such as its center Roe (see Fig. 3(c)).

For the detection of the ellipse DC in the depth image, adopting the same
strategy for the RGB image would not work, as the edges of the sphere in the
depth image are highly irregular (see Fig. 4(a)). Our approach consists of first
using a random DK to reproject in 3-D with (3) those depth-image points Du
within a search area around the sphere detected with background subtraction.
Note that the random DK does not distort, but only scales the resulting 3-D
point cloud. We then use a Hough voting scheme to detect which 3-D points
belong to the sphere, and RANSAC to fit a sphere. The corresponding image
points in the depth map are finally deemed as inliers (cf., Fig. 4(b)). Finally, the
center of the sphere is reprojected on the depth image thus obtaining the center
of the ellipse (red dot in Fig. 4(c)).

As mentioned above, our feature-detection pipeline has two major advantages
when compared to the detection and tracking of corner features in checkerboard-
basedmethods [16,17,14,13]. First, because of the Hough voting and the RANSAC
fitting, our feature-extraction phase reduces noise in the images and is robust to
outliers (such as user’s hand or fingers while holding the spherical object). Sec-
ond, the feature-detection procedure is completely automatic and robust to severe
occlusions that can often occur in a non-lab setting.

3.3 Initial Least-Squares Solution

Differently from the existing methods, our calibration strategy does not require
the intervention of an expert user to initialize the RGB-D calibration parame-
ters. We obtain an initial estimate of RK by using the state-of-the-art method
described in [26] which uses the same RGB images obtained from Sect. 3.2. Our
novel least-squares method accurately estimates the camera parameters DK, R

DR,
and R

Dt, by using the extracted ellipse centers.
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By substituting (3) in (1), and by using the ellipse center positions Doe and
Roe (pixels), it is straightforward to obtain the following expression2:

[

RK−1 Rõe

]

×
[

R

D
RDK−1 | R

D
t
]

︸ ︷︷ ︸

R
DM

Dōe = 03×1, (7)

where Dōe ∈ IR4 is obtained from Doe ∈ IR3 as the Dū in (4). We have empirically
observed that the sample mean of the z-coordinates of the visible points on a
sphere, can be successfully used as ZD in Dōe.

The interesting fact about (7) is that this expression can be solved as a stan-
dard direct-linear-transformation (DLT) method [11]. A closed-form estimate of
R
D
M is then obtained from (7) from at least six RGB-depth image pairs of a

single sphere. Once the R
DM matrix has been estimated and normalized (so that

R
D
M3,3 = 1), its fourth column coincides with R

D
t, while DK and R

D
R are easily

obtained from a QR factorization of its left-upper 3× 3 submatrix.
Our DLT solution uses RANSAC to remove outliers (e.g., blurred images).

Degenerate cases in solving the DLT problem [11] occur when all the spheres’
centers lie on a common plane or line. While this case is quite rare in practice, we
address this possible problem by checking the rank of the homogeneous system
used by DLT to discard those ellipses sampled at each RANSAC iteration.

3.4 Nonlinear Minimization Step

In this phase, we use the initial estimates as inputs to a nonlinear-minimization
procedure to obtain refined Maximum-Likelihood (ML) estimates of all the cal-
ibration parameters (intrinsic, extrinsic, and lens distortion).

Consider the pinhole camera model in (1); by assuming that each point in
{R} follows a Gaussian distribution with the ground-truth position as its mean
and measurement-noise covariance Φ, the log-likelihood function can be written
as:

L1 = − 1

2N

N
∑

i=1

εTi Φ
−1εi, (8)

where
εi =

Rõi
e − 1

Rλi
L(kR

c )
RK [R

D
R | R

D
t]D ˜Oi

s , (9)

where Rλi is an unknown scale factor. Note that D
˜Oi

s is the center of the i−th
sphere obtained from both the depth-map points and the current estimate of
DK, by using our sphere-fitting RANSAC algorithm described in Sect. 3.2, and
that the radial-distortion function L(kR

c ) is as described in [11].
Another source of useful information comes from the conic reprojection con-

straint in (6). As such, and similarly to the previous derivations, its log-likelihood
can be written as:

L2 = − 1

2N

N
∑

i=1

1
(

σi
q

)2 ‖RC∗
i − R

DP
DQ∗

i
R

DP‖2F , (10)

2 [x]× denotes the skew-symmetric matrix associated to a vector x ∈ IR3.
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where ‖ · ‖F denotes the Frobenius norm and the dual quadric DQ∗
i is calculated

with (5) by using the estimated 3-D center, D
˜Oi

s, and radius, ri, of the i-th

sphere determined as described in Sect. 3.2. As found in [18], the variance
(

σi
q

)2

has been chosen to be a quadratic function of the distance to each sphere ZD,
which in our experiments revealed effective. The radial distortion function L(kD

c )
is used here for the reprojection error of the ellipse center.

Combining (8) and (10) together, we maximize the overall log-likelihood as:

argmin
DK,kD

c ,RK,kR
c ,RDR,RDt

ρ1L1 + ρ2L2, (11)

where ρ1 and ρ2 are positive weighting parameters.

4 Simulation and Experimental Results

4.1 Simulation Results

We realized an simulation scenario to assess the accuracy of our method against
the ground-truth over a large set of realizations. In this scenario, a set of spheres
are positioned in front of the camera, and are evenly spaced of 25 cm within
a cubical volume. This arrangement was only selected to make our validation
procedure repeatable and systematic: comparable results could be obtained with
spheres randomly placed within the same cubical volume.

In the first test, we examined the performance of our method in the case of
increasing image noise (over 100 iterations for each noise level), while observing
90 spheres. A zero-mean white Gaussian noise with increasing power was added
to the RGB and to the depth images. In particular, the pixel standard deviations
in both images, σR

p and σD
p , were chosen in the range from 0 to 1 pixels. A noise

on the depth measurements was also simulated; in order to match our empiri-
cal observations of Kinect’s accuracy, this standard deviation σD

m [m] has been
chosen as a quadratic function of the distance of each sphere from the camera.
In this first test, we also compared the performance of our calibration method
against Zhang’s method [16]. For testing Zhang’s algorithm, we created twelve
9 × 9 calibration checkerboard patterns observed from 21 different viewpoints.
Note that an initial comparison for different Kinect calibration methods was
performed in an earlier work [27].

Figs. 5(a)-5(f) report the comparison between our method and Zhang’s method
for an increasing noise power. In particular, Figs. 5(a)-5(b) show the standard de-
viation for each of the translation error-vector components, e = [ex, ey, ez]

T =
R
D̂
t− R

D
t, for both our and Zhang’s algorithms, respectively. We omitted the plots

of the mean errors which were all around zero, thus indicating unbiased estimates.
As the figures show, our method results in an error lower than 1 mm on each axis,
whereas the error for Zhang’s method is about 7 cm for the image noise equal
to 1.5 pixels. Similarly, Figs. 5(c)-5(d) report the standard deviation of the esti-
mated rotation between the RGB and depth cameras (roll-pitch-yaw angle errors
in degrees) for our method and Zhang’s, respectively. In this case our estimates
are almost three orders of magnitude lower than Zhang’s. These results clearly
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Fig. 5. Simulation results: (a)-(d) Translation and rotation estimation errors (stan-
dard deviation) with increasing noise power for our method ((a) and (c)) and Zhang’s
((b) and (d)). (e)-(f) Distribution of the reprojection errors obtained using our method
and Zhang’s method (note the different scale on the vertical axis). (g)-(h) Translation
and rotation errors for an increasing number of spheres.

indicate the power of our method: as expected, the conic fitting and the robust
estimators of our method have the capacity to decrease the overall sensitivity to
noise in the data, and allow a final accurate estimate. Figs. 5(e)-5(f) report the
distribution of the pixel reprojection error when σR

p = σD
p = 1 pixel for 100 re-

alizations. Our calibration method has a reprojection error always lower than 6
pixels while Zhang’s method achieves a higher reprojection error (27 pixels).

In the second test, we studied the influence of an increasing number of spheres
(from 40 to 120) on the estimated RGB-D calibration parameters. The standard
deviation of the Gaussian image noises was fixed to σR

p = σD
p = 1 pixel. For

each given number of spheres, we considered 100 realizations. Figs. 5(g)-5(h)
illustrate the results as standard deviation of the translation and angular error,
and show that 40 image-pairs of a sphere are generally sufficient to get a very
accurate estimate (e.g., std. deviation lower than 1 mm for translation) of the
calibration parameters.

4.2 Experimental Results

We used the Microsoft Kinect to compare the accuracy of our calibration method
against Zhang’s method [16], Herrera’s method [17], and the Robot Operating
System (ROS) Kinect calibration toolbox [19]. As detailed below, a ground truth
set of calibration parameters was obtained by means of the Stereo Camera MAT-
LAB Calibration Toolbox (CalTechTbx) [28]. We will first give a brief overview
of the aforementioned calibration methods and describe their pros and cons.
Then, we will present the calibration results.
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Fig. 6. Feature extraction for: (a) Zhang’s Method (RGB + Depth); (b) ROS Calib
Tbx. (RGB + IR); (c) Herrera’s Method (RGB + Disparity).

Our Calibration: For our method, we subsampled 130 RGB-D image pairs of
a basketball (from 1 to 4 meters) from a video of approximately 30 seconds by
running the feature-extraction procedure described in Sect. 3.2. We randomly
subsampled every 7th video frame. Any spurious frames would be discarded in
Sect. 3.3.

Overview of the Other Calibration Methods:The aforementioned methods
differ from our calibration method since they rely on checkerboard calibration
panels that must be simultaneously observed by both the RGB and depth sensor.

Each method uses a set of RGB images of the checkerboard to estimate RK.
The estimation process is very similar among all these methods and rely on an
accurate and automatic corner-extraction algorithm. However, note that Zhang’s
method cannot take advantage of this automatic algorithm and it required man-
ual user intervention since 3 checkerboards must be simultaneously observed as a
calibration scene. Also, these methods require the user to accurately specify the
geometric properties of the checkerboard (e.g., size of the squares, the number
of squares, etc.).

The major difference among these methods is in the acquisition and treatment
of data from the depth sensor. Zhang’s method requires the user to select a
certain number of points on each checkerboard plane in the depth-map. These
points are then converted to 3-D and used to extract the normal to each plane.
Herrera’s method is similar to Zhang’s method, however, Herrera’s method relies
on the disparity image which is used to estimate a depth-map. Both the ROS
toolbox and CalTechTbx require the infrared (IR) image from the Kinect, and
then detect corner features in them as done for the RGB. Note that, in order to
ensure the checkerboard is clearly visible in the IR image, an external (halogen)
light must be used to enhance the contrast of the image and the Kinect’s IR
projector must be covered. Also note that these methods are mostly designed
around the Kinect, since the IR image might not be available from other depth
sensors (e.g., ToF cameras). Furthermore, Kinect does not allow simultaneous
acquisition of IR and RGB; as a result, their calibration phase is not real time,
and it requires slow asynchronous data collection. All these drawbacks make
these methods clearly not usable by non-expert users.

Discussion: For Zhang’s method in [16], we considered a set of 14 RGB-D
image pairs of 3 rigidly-attached checkerboard panels (see Fig. 6(a)). The method
requires an initial guess for DK; for that, we used the preset values in [16]. For
Herrera’s method in [17], we captured a set of 60 RGB-Disparity image pairs
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Fig. 7. Experiment Results: Each image is a colorized 3-D point cloud based on each
algorithm’s estimated calibration parameters. (a) Our Calibration. (b) Herrera’s Cali-
bration. (c) ROS Calibration.

of a single checkerboard (see Fig. 6(b)). For both the CalTechTbx in [28] and
ROS’s method [19], we captured a set of 60 RGB-IR image pairs (see Fig. 6(c)).
Note that while the number of images used by each method are different (e.g.,
our method uses 130 image pairs while Zhang’s method uses 14 image pairs), the
actual number of measurements is lower in our case. In fact, our method considers
each image of a sphere as 1 measurement for a total of 130 measurements.
Meanwhile Zhang’s method considers 3 checkerboard panels per view with a
total number of measurements to be ∼ 2000 over the whole set of images.

In the first experiment, we qualitatively compared the calibration parameters
obtained by our method with those estimated by other approaches. We do this
by visualizing a textured point cloud corresponding to the observation of a box
on top of a desk. This visualization nicely encompasses the accuracy over all the
parameters since, the depth image is first mapped to 3-D using DK̂, and then
each 3-D point is expressed in the RGB frame by means of R

D
R̂ and R

D
t̂. Finally,

a color is assigned by projecting this map onto the RGB image with RK̂. Fig. 7
illustrates the results of this process: the accuracy of our calibration method (cf.
Fig. 7(a)) is indeed much higher than Herrera’s and ROS (cf. Figs. 7(b)-7(c).
Zhang’s results have not been reported because its large errors in the estimates
(e.g., over 1 m. along the y direction) result in a meaningless reprojected map.
Note that, this qualitative experiment focuses on the effect of the calibration
algorithms; this is why we exclude the manufacturer’s calibration (cf. Fig. 1(a)).

A quantitative assessment of the performance of our method is reported in
Table 1, which shows the R

DR̂, R
D t̂, and

DK̂ produced by each method. The first

three columns represent the R
D
R̂ expressed as roll (θ̂r), pitch (θ̂p), and yaw (θ̂y)

angles in degrees. The angles calculated from our method and Zhang’s method
are comparable with those of the CalTechTbx. Herrera’s method and the ROS
method seem to have a 2 degree bias along the yaw angle with respect to Cal-
TechTbx. The fourth through the sixth columns report the three coordinates of
R
D
t̂ expressed in meters. Our method and Herrera’s method are similar to the

CalTechTbx. Zhang’s method, as aforementioned, produces a wrong estimate of
R
D t̂ with 1 meter along the y axis. The ROS method is biased along the y direc-
tion with 2.8 cm since only 1 RGB-IR image pair can be used by this toolbox to
estimate the extrinsic parameters. The last four columns of Table 1 report DK̂
expressed as f̂u and f̂v for the focal length and û0 and v̂0 for the principal point.
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Table 1. Experimental Results: R
DR̂, R

Dt̂, and
DK̂ for each method

θ̂r θ̂p θ̂y t̂x t̂y t̂z f̂D
u f̂D

u ûD
0 v̂D

0

[deg.] [deg.] [deg.] [m.] [m.] [m.] [pix.] [pix.] [pix.] [pix.]

CalTechTbx -0.68 -0.69 0.25 -0.023 -0.000 0.001 585.9 587.0 314.0 253.0

Our -0.04 -0.12 0.11 -0.025 -0.000 -0.000 555.4 559.0 312.0 250.0

Zhang -0.11 0.11 0.01 -0.549 1.013 0.010 575.0 575.0 320.0 240.0

Herrera 0.56 0.82 2.13 -0.019 -0.006 0.004 577.4 523.0 317.0 222.8

ROS 0.09 0.00 2.72 -0.029 0.028 0.001 574.6 574.7 329.5 240.2

Zhang’s method used a fixed preset DK̂, which is not optimized during the iter-
ations. Also observe that f̂D

u and f̂D
u are within 10 pixels for Herrera’s method

and 30 pixels for our method with respect to the CalTechTbx. The estimate for
the distance between the RGB and depth sensors obtained by our method is the
closest one to the ground truth, as well as to the ∼ 2.5 cm that can be measured
on the Kinect.

5 Conclusions

In this work, we have presented a novel and easy-to-use calibration method for
RGB-D cameras, which utilizes the image projection of a sphere (observed from
multiple viewpoints) as the only calibration object. Our method relies on a novel
closed-form solution for the calibration of the depth sensor, which is used to ac-
curately initialize a nonlinear minimization strategy providing a refined estimate
of all the calibration parameters of the RGB-D camera (including lens distor-
tion). The proposed algorithm is practical, since it needs no user intervention in
extracting the image features when compared to existing calibration methods,
and is robust to outliers. Extensive simulation and real-world experiments val-
idate our algorithm. A MATLAB toolbox implementing our method has been
developed, and it has been made freely available for the research community.
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