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Abstract. Virtual machines (VMs) in a cloud use standardized ‘golden master’
images, standard software catalog and management tools. This facilitates quick
provisioning of VMs and helps reduce the cost of managing the cloud by reducing
the need for specialized software skills. However, knowledge of this similarity is
lost post-provisioning, as VMs could experience different changes and may drift
away from one another. In this work, we propose the I2Map system, which main-
tains a mapping between each instance and the golden master image from which it
was created, consisting of a record of all changes to the instance since provision-
ing. We motivate that this mapping can aid several cloud management activities
such as disaster recovery, system administration, and troubleshooting. We build
a host-based disaster recovery solution based on I2Map, which is ideally suited
for low cost cloud VMs that do not have access to dedicated block-based storage
recovery solutions. Our solution deduplicates changes across VMs and needs to
replicate only the unique changes, significantly reducing replication traffic on end
hosts. We demonstrate that I2Map is able to deliver on tight recovery time and
recovery point objectives of the order of minutes with low overhead. Compared
to state-of-the-art host-based recovery solutions, I2Map is able to save 50-87%
network bandwidth on the primary data center.

1 Introduction

Enterprises are moving their IT infrastructure to cloud in order to gain greater flexi-
bility in acquiring and relinquishing resources on demand, focus on core capabilities,
reduce costs and avoid capital lock-in. Despite the obvious advantages of the cloud
delivery model, CIOs remain skeptical about its potential with concerns primarily re-
garding availability. A survey [7] attributes increasing customer reluctance to move to
the cloud to the problem of poor performance. For instance, outages in Amazon’s EC2
and AWS [2] have costed companies millions of dollars. While most cloud providers
offer high availability services [3,11,22,8], these come at a premium that is unafford-
able for many enterprises. Block-based storage replication solutions such as [15,13]
require expensive specialized storage controllers, storage area networks, or other hard-
ware. Network-based replication is performed by a separate component from SAN/NAS
or the hosts and can work between multi-vendor products. However, these solutions re-
quire intelligent switches which are expensive. Highly available cloud services at an
affordable cost remains a distant dream. There is a need for solutions that can work
with commodity hardware, is cheap, and yet provides good recovery performance.
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Host-based solutions [4,16] are cheaper and less complex than storage-based or
network-based solutions as they can be implemented completely in software. They do
not require any specialized hardware. They are usually file-based and asynchronous,
and work by trapping and forwarding write changes to the replication target. Their
overheads and performance are also typically worse than the other two approaches.

The core idea of this work is to leverage the similarity of virtual machines (VMs) in
a data center to provide a low-cost host-based disaster recovery solution. A few stan-
dardized ‘golden master’ images are used to provision VMs in a cloud, to ensure quick
provisioning and to reduce management costs. Hence, VMs which are provisioned from
the same golden master tend to be similar to one another. However, knowledge of this
similarity is lost post-provisioning as instances could be used for different purposes
and may drift away from one another. We build I2Map, which maintains a record of all
changes to an instance, as a mapping between the instance and the golden master image
from which it was provisioned. A light-weight agent running on each VM records all
changes and transmits them to a set of aggregators. The aggregators deduplicate these
changes across VMs, store only the unique changes, and maintain the mapping for each
VM. A snapshot-mirroring technique can then be applied to backup the aggregators
on to a remote site. This recovery process allows us to trade-off recovery performance
for cost. We evaluate I2Map on representative activities such as installing new software,
patching the operating system, and running hadoop-based applications. We demonstrate
that individual VMs can receive good recovery performance of a few minutes without
having to invest in dedicated and specialized hardware. We conduct a 24-hour high-
load case study experiment where we recover a failed VM within a recovery time of 20
minutes and having a recovery point of less than 4 minutes. We show that I2Map uses
50-87% lesser network bandwidth on the primary data center compared to the state-of-
the-art host-based recovery solutions.

The image-instance mapping can potentially be used for other applications such as
system administration or troubleshooting failures. We discuss these as part of future
work in Section 7. For the rest of this paper, we focus on the disaster recovery solution.

The rest of this paper is organized as follows. We provide some background and
motivate our problem and solution in Section 2. We present the design of I2Map in Sec-
tion 3. Section 4 describes our implementation of I2Map and certain optimizations we
performed. We evaluate I2Map and report the results in Section 5. Section 6 discusses
related work, and Section 7 highlights the limitations and other potential applications
of I2Map. We finally conclude this paper in Section 8.

2 Background and Motivation

The motivation for our work stems from two important trends in cloud computing.
The first trend is increased standardization and automation of IT services delivery

in clouds. Virtual servers are created automatically from virtual image templates and
managed via standard tools and processes [21]. Applications are deployed from stan-
dard software catalog, which contain standardized version of popular middleware and
application software. Cloud computing providers use standardization to drive automa-
tion of IT delivery as well as to keep the costs down. It has been widely reported that
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standardization allows system management costs to be significantly reduced [1]. Stan-
dardization of virtual image templates, software catalog and management tools lead to
high similarity in cloud managed servers. Servers in a data center are already known to
exhibit high similarity [5,14] and standardization increases content similarity in virtual
machines even further.

The second trend that drives our work is the increasing use of commodity servers
and storage in infrastructure clouds. This helps cloud present a low-cost IT model by
achieving significant cost-savings. While there are several block-based disaster recov-
ery solutions [3,13,11,8,15] that provide replication across different availability zones,
they all require high-end servers and storage technologies like SAN. By contrast, clouds
often use commodity servers with attached storage. Commodity hardware does not con-
tain enterprise features like high-availability, block-level replication, fault tolerance and
these features need to be implemented at cluster management layer. Disaster recovery
is a popular system management functionality, which is impacted by use of commod-
ity hardware. Disaster recovery is often characterized by the Recovery Time Objective
(RTO) or the time taken to recover a protected server, the Recovery Point Objective
(RPO) or the maximum period of data loss, and the impact of replication on application
performance. In a low-cost cloud, disaster recovery depends on host-based replication,
which leads to high network traffic and impacts application performance.

In this work, we conjecture that standardization-induced similarity in cloud managed
servers can significantly improve system management. Virtual servers instantiated from
common image templates and with software deployed from a common catalog, share
common content. However, current system management technologies work within vir-
tual server boundaries and are unable to leverage this similarity. If we can create a
succinct representation of instances as they evolve from a common image template and
software catalog, this representation captures the similarity between instances in an in-
stantly usable format. We call this representation an image-instance mapping called
I2Map and capture it as a tree, where the master image is the root and each leaf node is
a virtual server instance.

We use the I2Map tree to implement improved disaster recovery in low cost clouds.
Replicating the I2Map tree to a secondary site is enough to recreate all the virtual
servers on the secondary site. Hence, disaster recovery is trivially supported using the
I2Map tree. The I2Map tree keeps only one copy of an update even if the update is made
across a large number of cloud instances. Hence, the tree automatically eliminates re-
dundancy and reduces network traffic, while replicating the tree on a secondary site.
We also design techniques to ensure that the tree can be created without propagating
updates from end hosts, leading to low traffic overhead even within the primary site.

3 Design

In this work, we design and build I2Map, a host-based disaster recovery solution that
leverages redundancy in operations across VMs in a data center. We first outline the
challenges we faced, describe the I2Map architecture, and then highlight the key design
ideas that helped overcome the challenges.
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3.1 Design Challenges

Identify Duplicates Across VMs without Transferring Data: Every write operation
incurs an overhead with storage-based deduplication. Network-based techniques dedu-
plicate only across data centers after bytes have been transmitted over the internal net-
work. Host-based replication techniques deduplicate changes only on the backup server.
Can we exclude duplicates across VMs without transferring the actual data?

Control Overhead: Although, host-based techniques have a low cost and complexity
of implementation, they have the disadvantage of having an agent running on each of
the VMs. The agent uses network, CPU and memory resources leading to application
impact. It is critical to control the overhead incurred by this agent and ensure that run-
ning applications are not affected.

Handle Large Files with Small Changes: Large files (e.g., log files) could undergo
few minor changes or additions. How do we avoid transmitting the entire file each time
they are modified?

Handle High Load: When the load is high, the agent should not consume more re-
sources. The overhead needs to be bounded.

Handle Rapid Updates to the Same File: Rapid updates are typically correlated with
high load. How can we handle rapid updates within the bounded resources?

Scaling Deduplication: Deduplication often requires centralization. How do we scale
deduplication in a cloud with thousands of servers?

3.2 I2Map Architecture

In this section, we present the architecture and main components of our I2Map disaster
recovery solution. A light-weight agent runs on each VM that continuously monitors
and reports meta-information regarding any changes on the VM. Dedicated aggregator
machines collect reports from all the VMs, identify duplicates, request for and retrieve
unique data from the agents running on the VMs. The aggregators also maintain infor-
mation regarding which files are contained in each VM. Snapshots of the aggregators
are backed up on to a remote site periodically. As copies of the aggregators are available
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Fig. 1. Architecture of I2Map
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on the remote site, any VM can be easily retrieved using its golden master image and
the catalog of changes to the file system for the VM.

The I2Map agent comprises of three components. A file system monitor such as
iWatch in Linux, monitors all changes to the file system. A Parser identifies files with
changes to their meta-information (such as permissions and ownership) or to their con-
tent. A report of these changes (without file content) is sent to the aggregators. Files
with changes in content are added to a job queue. The Master module picks up files
from the job queue and computes Rabin fingerprints [18]. Rabin fingerprinting creates
cryptographic hashes for variable size shift-resistant blocks. The hashes for each block
are then transmitted to the aggregators. The Dedup Engine on the aggregator identi-
fies blocks that are unique and requests one of the VMs holding each block to transmit
the contents. The Data Handler on the agent receives these requests and transmits all
blocks requested from it. The Backup engine on the aggregator maintains the I2Map
tree and records the changes to the file system for each VM. Periodically, snapshots of
the aggregator are transmitted to a remote recovery site. Recovery for any VM can then
be performed on-demand on the remote site. We describe the functioning of each of
these modules in detail in Section 4.

3.3 Key Design Ideas

We next highlight and discuss certain key design ideas that enabled us overcome the
challenges identified in Section 3.1.

Two-Round Data Transfer: In order to ensure that duplicate data is not transferred
from a protected host, we transfer data from agent to aggregator in a two round scheme.
In the first round, fingerprints of file segments are sent to the aggregator. The aggregator
maintains a hash index of fingerprints for all data that it has aggregated and requests data
only for segments that are not already present in its hash index.

Separating Deduplication and Replication: We separate duplicate identification from
data replication. Duplicate identification and aggregation of unique data is handled us-
ing a two round protocol between agent and aggregator. Data replication to secondary
site is performed independently by the aggregators. This allows duplicate elimination
to work at LAN speed, while replication can be performed at WAN speed.

Variable Size Duplicate Identification: For each file that is written, the agent com-
putes a Rabin fingerprint. Rabin fingerprints are shift-resistant, as the division into
variable-size blocks and hash computation is based on the content of each block rather
than any fixed offset. The hashes for the various blocks are sent to the aggregator. There-
fore, even if a small change is made to a large file, only a small block of data around the
change will need to be transmitted to the aggregator. The remaining blocks will be iden-
tified by the aggregator as duplicates of blocks already present and will not have to be
transmitted. This helps us to reduce the overhead of file-based replication significantly.

Pipelining Fingerprint Computation with Data Transfer: A two-round protocol can
lead to high Recovery Point Objective (RPO), if the rounds were serialized. Further,
both rounds may need to perform disk I/O for a file segment. In order to speed up
the process of identifying duplicates and aggregating unique data, we pipeline the



I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 209

different operations performed on the agent. The Parser, Master, and Data Handler
are implemented as separate threads in order to allow them to progress parallelly acting
on different data elements. Further, Master and Data Handler use a producer-consumer
cache to minimize disk I/O. Master populates the cache with file segments, when it
computes the fingerprints in the first round. In the second round, when Data Handler
needs to send data, it reads the file segment from the cache, instead of reading it again
from the disk.

Change Coalescing: The agent’s parser module looks ahead and identifies multiple
successive writes to a file within a short duration and transmits information only once
to the aggregator. This change coalescing helps I2Map deal with rapid updates to a file
even during periods of high load.

Agent Throttling: We allow the agent to be configured with a throttling parameter, in
order to ensure that it does not consume too much of the CPU and memory resources of
the VM. This further reduces the overhead and ensures that applications that generate
high I/O load operate smoothly.

Stable Aggregator Mapping: In order to scale to large data centers, we allow multiple
aggregators to be created in I2Map. If multiple agents find common content, duplicate
elimination requires all (or at least most) agents to send this content to the same aggre-
gator. Clearly, this requires aggregator mapping to be defined based on content. Further,
if a part of the file changes, we would like to send only the changed content to the ag-
gregator. This places a restriction that the aggregator mapping should not change due to
a small change in content. In order to deal with these conflicting requirements, we use
hash of the first 4KB of a file to map its aggregator. Changes in other parts of the file do
not lead to change in aggregator. Also, files across VMs with the same content, map to
the same aggregator most of the time, meeting both our requirements.

4 Implementation

In this section, we describe the implementation of I2Map and highlight important opti-
mizations that helped us keep overhead in check.

4.1 I2Map Agent

The agent comprises of three modules as depicted in Figure 1, implemented in Python.

iWatch and Parser. The agent, at its core uses iWatch, a real-time file monitoring
utility written in perl, based on iNotify, a file change notification system in the linux
kernel. We monitor the entire file system excluding device files and temporary files in
folders such as /dev. Whenever a file’s contents or metadata (including permissions and
ownership) is modified, iWatch generates a log. The Parser module thread checkpoints
the log, processes all entries up to the checkpoint, and then zeroes all lines up to the
checkpoint. This ensures that the iWatch log file is never too large, and I2Map does not
incur the overhead of opening a large file to read.

The Parser computes a hash of the first 4KB of each file that is written. This hash
is used to decide which aggregator is in charge of holding the file (we choose the first
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4KB only, to ensure content-based stable mapping). The vector space of all the hash
values is evenly split among all the aggregators and each aggregator is responsible for
managing files with hash values in its vector space. The Parser creates reports, one
for each aggregator, with meta-information regarding all changes to files managed by
that aggregator. Information regarding files that are deleted are sent to all aggregators,
and the aggregator to which the file is relevant can then delete the file. Files that are
modified are treated as a delete followed by a create.

The Parser also adds any files that are newly created or have changed in content
on to a job queue. The job queue contains the ID of the aggregator responsible for the
file along with certain file meta-data. However, before adding the file entry, the Parser
takes a peek at the job queue. If an entry already exists for the file, then the Parser
skips entering the file again into the job queue. This allows the agent to optimize during
periods of rapid writes, when a file is written multiple times in quick succession.

Fig. 2. Detailed Design of I2Map Agent

Master. The Parser and the Master share a producer-consumer relationship with re-
spect to the elements in the job queue (Figure 2). The job queue is controlled by a
lock and both the Parser and the Master need to acquire the lock before writing to
it. The Master picks up each file entry written by the Parser, and computes a Rabin
fingerprint for the file, implemented in C. The Rabin fingerprint divides each file into
variable-sized blocks based on the content rather than any fixed offset. This makes these
blocks shift-resistant, that is, for example changes to the start of a file will not affect all
the blocks. The fingerprint consists of cryptographic hash values for each of the blocks.
The Master sends the hash values for blocks of each file to the corresponding aggre-
gator, as identified in the job queue. In our implementation, we did not limit the size of
the job queue, as we observed that the size never grew beyond 700 entries, with each
entry being less than 30 bytes.

In order to ensure that even under high I/O load the agent does not consume too
much of the VM’s resources, I2Map can be configured with a throttling parameter.
For instance, a throttling parameter of 67% would run the agent for 5s and then sleep
for the next 10s. In our implementation, we kept the awake time to be constant at 5s,
and alter the sleep time based on the throttling parameter. We observed that the Ra-
bin fingerprinting and the actual data transfer were the costliest operations, while the
parser was extremely light-weight. A crucial design choice was to selectively throttle
the Master and the Data Handler, but not the Parser. Apart from throttling the most
time-consuming tasks of the agent, this had the added advantage that any duplicate file
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writes within the VM would be safely omitted by the parser, as the file has not yet been
read by the Master. Separating these modules into parallel threads and having the job
queue as a shared resource between them was important to achieve this.

Data Handler. The Data Handler responds to requests from each aggregator, with
the content of the specific blocks of files requested by that aggregator. We noticed that
we were reading the file twice, once for computing the Rabin fingerprint and a second
time for the block transfer. This was adversely affecting performance. To alleviate this
problem, we introduced a key-value store cache (Figure 2). When computing the Rabin
fingerprint, the Master would write the blocks onto this cache. The Data Handler will
look into the cache first for each block, and will read the file system only if it is unable
to find the block in the cache. If found, the Data Handler would remove the entry from
cache, after use. The Data Handler also removes those entries from the cache, which
the aggregator already has and does not require. This ensures that only file segments
not yet processed by the Data Handler stay in cache.

This considerably helped improve performance. From our experiments, we observed
that typically the cache had about 400-500 entries (even for data-intensive hadoop ex-
periments), with each entry holding a Rabin fingerprint for a block. The lag between
computing the Rabin fingerprint and the data transfer was always small enough to keep
the cache small. We limited the cache to 1000 entries and Rabin fingerprint blocks were
restricted to a maximum size of 64KB, ensuring that the cache had a maximum size of
64MB. Since the workload is scan-based, we never replace unprocessed entries from
the cache. Instead, the Master waits till a cache block is made available by the Data
Handler. We also conducted a few overload experiments where the cache was fully uti-
lized and tested a few replacement algorithms. We observed that not replacing entries
in the cache, if the cache was full performed the best.

When transmitting blocks of requested files to an aggregator, the Data Handler
sends at most 500 blocks at a time, to ensure that packet sizes aren’t too big. We used a
base64 encoding for file transfer as some files, especially those written by hadoop, had
certain special characters.

4.2 Aggregator

The aggregator consists of two main modules. The Dedup Engine communicates with
the agents and identifies blocks that are unique. For each unique block, it requests the
contents of the block from one of the VMs holding it. The Backup Engine maintains a
record of all the files and blocks (among those managed by this aggregator) contained
in each VM. An I2Map tree is constructed for each golden-master image, where the
master image is the root, and each leaf node is a virtual machine instance. Edges in the
tree represent changes to files. If a set of VMs experience the same changes to files (e.g.,
a patch is applied), the Dedup Engine would ensure that only one copy of the change
is stored. Replicating this tree on a remote site is sufficient for disaster recovery, as any
VM can now be recreated by starting with its golden master image.

Interestingly, for the disaster recovery use case, I2Map does not even need to create
the entire tree. Instead, what we maintain is a list of instances that are relevant for each
update to the tree. For example, if a file got overwritten in 5 instances, we store the
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change along with the 5 instances, whose I2Map tree contain the change. The I2Map
tree is thus stored as a set of nodes (one node for the golden master and one node
for each instance). The intermediate nodes, which capture the transition from a golden
master to an instance are not stored. Instead, a list of all changes are stored along with
the impacted instances. Multiple updates to the same file segment are merged leading
to a compact I2Map tree, whose size is proportional to the minimum set of changes
needed to convert a golden master to any required instance.

4.3 Remote Recovery

The remote recovery site maintains periodic incremental snapshots of all aggregators.
Snapshots are taken at 5 minute intervals (a configurable parameter) for each aggregator.
We use Linux rsync [20] to transmit the snapshots to the recovery site. Prior to taking
a snapshot, the aggregator waits for any packets sent on the wire, freezes all operations
for an instant, and takes a filesystem dump of the database and tree. This operation,
including taking the snapshot, takes less than a second. In the event of a site failure,
the aggregators are recreated and the I2Map tree with record of changes to files is used
to recreate VMs. We perform incremental recovery by merging updates for each VM
periodically (default is 24 hours). This does not require a live VM at the recovery site
as only the updates are gathered and stored in an offline VM image. When recovery is
triggered, the latest updates are merged and an instance is provisioned from this image.

The Recovery Point Objective (RPO), or the worst-case duration for which recovery
cannot be guaranteed, that I2Map can support depends on two factors - the maximum
time lag of all agents to send data to the aggregators, and the snapshot interval. The
RPO for host failure is the lag between agents and aggregator, whereas the RPO for site
failure is the sum of the two lags. We show in our evaluation that I2Map can guarantee
an RPO of less than 4 minutes for host failures and an RPO of less than 9 minutes for
site failure, sufficient for most non-critical applications (assuming 70 MBps within the
primary site, 700-3300 KBps over WAN, and 1 GB data generated per minute).

Aggregators maintain a heartbeat among one another. In the event of an aggregator
failure, one of the live aggregators (e.g., a chosen leader) takes up the responsibility
of storing content on behalf of the failed aggregator. Agents are intimated accordingly.
Recovery is initiated for the aggregator using snapshots on the remote site. Until recov-
ery for the aggregator is complete, the acting aggregator may not be able to perform
efficient deduplication. This, however, does not compromise safety of the system.

5 Evaluation

We evaluate I2Map on a heterogeneous set of 6 VMs running Ubuntu 10.04.2 64-bit.
The VMs were hosted on 2 IBM BladeCenter servers, one with 4 cores 2.33GHz and
8GB memory, and the other with 8 cores 3GHz and 16GB memory. The memory and
CPU specifications of the VMs are shown in Table 1. We did not set an upper limit to the
CPU available for a VM, and it was bounded only by the availability of resources on the
server hosting it. The aggregator was run on a physical server with an 8-core 2.27GHz
Xeon processor and 16GB memory. Recovery is performed on a server with 24-core



I2Map: Cloud Disaster Recovery Based on Image-Instance Mapping 213

3.07GHz Xeon(R) processor and 64GB memory. The primary site was located in New
Delhi and the remote recovery site was located in Bangalore, over 2000kms away. We
observed speeds of about 70MBps within the primary site (between the agents and the
aggregators). The WAN bandwidth between New Delhi and Bangalore varied with time
of the day and was between 700KBps to 3.3MBps. With better network speeds, our
recovery performance will only improve.

Table 1. Virtual Machine Specifications

VM-ID Memory (MB) vCPUs CPU Reservation
vm-1 1024 4 0
vm-2 2048 2 684
vm-3 2048 2 684
vm-4 2048 2 1500
vm-5 3072 4 2300
vm-6 3072 2 0

We evaluate I2Map based on several metrics. We define dedup as the ratio of the
total bytes written on a VM to the bytes transferred from the VM to the aggregators.
1− 1/dedup captures the reduction in network traffic for each VM by I2Map over
state-of-the-art host-based replication solutions. We also define dedup aggr, which is
the aggregated measure of the total bytes written across all VMs to the total bytes trans-
ferred from all VMs to the aggregator. This is a measure of savings in storage and
network transfer within the data center due to I2Map over state-of-the-art techniques.
We measure the (time lag) between when a file is written and when it is transmitted to
the aggregator (if requested by the aggregator). This measure captures the RPO for host
failure and together with the time taken to transfer from the aggregators to the remote
recovery node, represents the RPO for site failure. We also measure the CPU and mem-
ory utilization (CPU Util and Mem Util) of our agent running on each VM to quantify
the overhead of our approach. Finally, in the event of an actual failure of a VM, we
measure the recovery time objective (RTO) achieved by I2Map.

5.1 Micro Experiments

In this section, we describe micro experiments that we conducted to analyze the per-
formance of I2Map. We chose three common activities in a cloud - namely, software
installation from a software catalog, patching VMs in a change window, and running
clustered applications, for these experiments.

Software Installation. For this experiment we downloaded and installed two software
along with all their dependencies, with a 150s sleep time between the two. This process
was repeated in sequence on 6 VMs. We chose freecad, an open source autocad soft-
ware, and avgscan, an anti-virus scanning software, for their relatively large size and
the number of dependencies with other software and libraries. It is possible that some
VMs already had the dependent software and didn’t need them to be installed. Freecad
had a download size of 60.6MB and an install size of 197MB. Avgscan had a download
size of about 100MB and a similar install size. The software installation scenario is one
where a large number of files are written within a very short duration of time.
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Fig. 3. (a)Time plot showing the split between iWatch, Rabin, and data transfer on vm-1 (b) CPU
Utilization (c) Memory Usage

For each file modified or added on a VM, we monitored the time at which the Parser
(iWatch), Master (Rabin), and Data Handler handled the file. We plot this in Fig-
ure 3(a) for one of the VMs (other VMs were similar). The difference between the suc-
cessive operations shows the time lag in executing these steps. Observe that the Freecad
installation wrote about 1250 files in about 20s (the iWatch curve), and the data handler
was able to catch up with this load at around 170s. The figure also shows that the Rabin
fingerprinting and the data transfer took nearly equal amount of time. Avgscan, on the
other hand, writes only about 150 files (has bigger files than Freecad). I2Map is able
to handle this load better and has a lag of only about 30s, with most of the delay being
due to the data transfer. Hence, I2Map is able to achieve an RPO for host failure of less
than 3 mins.

Figures 3(b) and (c) show the CPU and memory usage of I2Map during this exper-
iment for one VM. We notice that CPU utilization is below 10% except for a couple
of brief spikes and the memory usage is less than 250MB, which for servers today is
less than 10% of total available memory. Note that this experiment was run without
throttling and the resource consumption can be made even lower with throttling.
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Fig. 4. Time lag vs process time plot for three VMs

We next take a closer look at the time lag of I2Map over the course of the experiment.
At any given time instant, the time lag is measured as the amount of time required
by I2Map to process and transmit files written up to that time instant, and plotted in
Figure 4 for three VMs. The lag increases in spurts when files are written, but then tapers
down as I2Map catches up. Unlike vm-1 and vm-3, vm-6 does not have a large spike
at the start of the experiment as files were quickly identified as duplicates. However, it
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has a sharp increase in time lag for the avgscan installation (it was the first to perform
it), where it had several files to transmit to the aggregators. These files were identified
as duplicates for the other VMs and the experiment concluded earlier for them. Overall,
the time lag never increased beyond 160s, which is sufficiently low compared to the
aggregator snapshot period and the recovery point objective.

Table 2. Average time lag and overhead for each VM

VM-ID Avg Lag (sec) Avg %CPU Avg Mem (MB)
vm-1 78 4.97 170
vm-2 52 1.30 33
vm-3 100 2.81 148
vm-4 88 3.80 114
vm-5 82 1.65 67
vm-6 64 2.41 170

We summarize the average lag and the average CPU and memory usage for each of
the six VMs in Table 2. The average lag is less than 100s, and the average CPU and
memory utilization is less than 5% and 170MB respectively. Note that the installation
was performed on vm-1 first before the other VMs, and so vm-1 was responsible for
transferring most of the data to the aggregators. This was the reason why vm-1 con-
sumed more CPU and memory compared to the other VMs. This is also corroborated
in Table 3, which shows for each VM the number of file system change notifications,
the number of notifications processed after the Parser eliminated intra-VM duplicates,
the number of bytes written to disk and the number of bytes transferred to aggregators.

Table 3. Comparison of dedup values with and without removing duplicate writes for each VM

VM-ID Total FS Notifications Processed Notifications Total Data Change(MB) Transferred Data (MB) Dedup
vm-1 21893 2357 447 276 1.62
vm-2 14643 847 337 0.11 3063.6
vm-3 30811 2350 450 1.2 375
vm-4 20041 2802 438 0.54 811.1
vm-5 33320 2335 437 0.09 4855.6
vm-6 49668 1526 551 80.32 6.86

Total 2660 358.26 7.42

We make several interesting observations. First, while around 1400 unique files were
written during the experiment (from Figure 3), 20000-40000 file writes were generated
on each VM. However, I2Map only processed less than 3000 notifications for each
VM. This justifies our design choice of pipelining and change coalescing for multiple
changes to the same file. Any storage-based deduplication technique such as [15,8] in-
curs an overhead for each of the 20000-40000 file writes. In terms of the number of
bytes, observe that vm-1 transmitted only 276MB, compared to the 447MB written to
disk. This is primarily due to the division into blocks performed by Rabin fingerprinting
and any blocks that did not change would not be transmitted to the aggregators, justify-
ing the use of variable size blocks. The other VMs transfer negligible amounts of data
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to the aggregator as they were similar to vm-1 and our two-round data transfer proto-
col helped them eliminate transfer of duplicate data. vm-6 was an exception as it was
the first to have avgscan installed. It therefore transmitted an additional 80MB. If every
write were to be captured and replicated, like in other host-based solutions, without the
‘deduplication before data transfer’ feature of I2Map, a total of 2660MB of data would
need to be transferred. In comparison, I2Map transfers only 358.6MB of data between
the agents and the aggregators, a reduction by a factor of over 7 (dedup aggr).

Patching. In our next micro experiment, we apply a set of 55 security patches for
Ubuntu on 6 VMs. For one of the VMs, vm-6, 19 of these patches were relevant, while
for the other VMs, 49-52 patches were relevant (10 patches were not relevant for at least
one VM excluding vm-6). The total download size of the 55 patches was about 480MB,
with 4 patches each about 100MB, and 30 patches each less than 500KB. We used
Tivoli Endpoint Manager [12], an endpoint management tool, to apply the patches in an
automated fashion. The experiment took between 130 and 170 minutes to complete on
each of the VMs.
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Fig. 5. (a) Time plot showing the split between iWatch, Rabin, and data transfer on vm-2 (b) CPU
utilization (c) Memory usage

In Figure 5(a) we present the split between when Parser (iWatch), Master (Rabin),
and Data Handler process each file for one sample VM, vm-2. Over 3000 files are
modified in about 140 minutes. We observe that the time lag is less than 100s most of
the time. The CPU utilization is less than 10%, except for a couple of spikes, and the
memory usage is less than 120MB as shown in Figures 5(b) and (c).
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Table 4. Average time lag, and overhead for each VM

VM-ID Avg Lag (sec) Avg %CPU Avg Mem (MB)
vm-1 58 1.14 106
vm-2 69 1.24 148
vm-3 75 0.98 94
vm-4 65 1.19 143
vm-5 46 1.80 207
vm-6 72 1.05 112

Similar to the software install experiment, Figure 6 depicts the time lag of I2Map
over the course of the experiment. As most patches are small in size, we see many small
spikes in the time lag. The larger patches take longer to download and are processed in
the second half of the experiment with fewer spikes.

A summary of the average lag and the average CPU and memory usage for each
VM is presented in Table 4. The average time lag is less than 80s for all the VMs.
Unlike the software installation experiment, where the first VM transferred all the data
to the aggregators, the patches were applied in different orders on the VMs. Hence, the
overhead is more or less uniform across all the VMs.

Table 5. Comparison of dedup values with and without removing duplicate writes for each VM

VM-ID Total FS Notifications Processed Notifications Unique Data (MB) Dedup Data (MB) Transferred Data (MB) Dedup
vm-1 63017 16990 10 212 38 5.84
vm-2 32877 10038 10 124 62 2.16
vm-3 62533 16789 13 209 101 2.20
vm-4 63064 16916 10 199 36 5.81
vm-5 55000 15112 10 184 74 2.62
vm-6 58323 3890 106 353 397 1.16

Total 159 1281 708 2.03

Table 5 summarizes the deduplication information for the patch experiment similar
to Table 3. The intra-VM deduplication and change coalescing of I2Map reduces the
number of writes that need to be processed to about 16000 from about 60000 total
writes. This is not as significant a reduction as in the software install case, as the same
files are not rewritten multiple times and the time between file writes is longer reducing
the amount of intra-VM deduplication possible. The deduplication achieved is mainly
due to multiple patches writing the same files. The total data change is split into unique
data and dedup data in Table 5. Unique data represents the amount of data that is unique
to that VM, and dedup data represents the amount of data that is found in at least one
other VM. Observe that a large fraction of the data written on each VM has duplicates.
vm-6 is an exception with a larger fraction of unique data. Since, it had only 19 patches
relevant, TEM got to apply patches on vm-6 ahead of the other VMs (patches on all 6
VMs were started simultaneously). Hence, a bulk of the data got transferred from vm-6
on to the aggregators, serendipitously achieving load-balancing. The total amount of
data transferred to the aggregators was 708MB, only a half of the 1440MB (1281MB+
159MB) of total data written across all the VMs (dedup aggr = 2.03).
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Hadoop Sort. Our third and final micro experiment is with running the Hadoop Teragen-
Terasort application on a cluster of 5 VMs. Terasort is a distributed sort algorithm on
1GB data, that is created by Teragen. The sorted data is written separately from the input
data. Hadoop uses a distributed file system that is append-only. This creates a challenge
for I2Map as it creates and appends data on to large files. It waits until a block reaches
64MB and then writes the block to disk. Further, we employ triple replication of data
within Hadoop’s file system, so the experiment wrote 6GB of data in all by the end of
the experiment. Identifying and leveraging this replication is critically dependent on the
shift-resistant blocks created by the fingerprint. The triple replication also means that a
tremendous amount of data is written within a very short amount of time, stress testing
both the disk as well as I2Map. If ineffective, we may end up transferring a lot of dupli-
cate data. Unless specified otherwise, we use a default value of 67% throttling for this
experiment, where the agent is awake for 5s and then sleeps for 10s.
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Fig. 7. (a) Time plot showing the split between iWatch, Rabin, and data transfer on vm-2 (b) CPU
Utilization (c) Memory Utilization

We observe from Figure 7(a) that the time lag never exceeds 100s. This is better
compared to the install and patch experiments as data writes are more or less uniform
and don’t happen in a burst. However, CPU and memory usage are higher as observed
in Figures 7(b) and (c). This can be attributed to the larger file sizes, the append-only
behavior of hadoop, and the triple replication (the total amount of data written during
this experiment is 6GB in about 450s).
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Fig. 8. Time lag vs process time plot for different values of throttling agent process
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Figure 8 shows the time lag as a function of the process time for one VM for different
values of the throttling parameter. The lag uniformly increases till about 80s. Then, we
observe a pause in file writes till about 225s, as hadoop gathers data till it can write
64MB blocks. This is followed by another set of writes. More strikingly, increasing the
throttling does not discernably increase the time lag, suggesting that much of the lag is
due to the network transfer between the agent and the aggregators. This is encouraging
as a better network would help reduce the overhead of I2Map.

Table 6. Overhead for each VM and on aggregator

VM-ID Avg Lag (sec) Avg %CPU Avg Mem (MB)
vm-1 41 2.46 360
vm-2 33 1.33 257
vm-3 38 2.02 363
vm-4 59 8.91 361
vm-5 50 2.86 257

Avg %CPU Avg Mem (MB)
36.86 103

Table 6 shows the average lag and overhead for each of the VMs and the aggregator
for the above experiment. The average lag is more or less uniform and less than 60s
for all the VMs. vm-4 handled the maximum data transfer (as we show in Table 8),
which explains the higher lag and overhead seen. The aggregator doesn’t perform any
file based computations, and only needs to dedup file blocks and receive data from the
agents, leaving it with a relatively low memory footprint, but a higher CPU consump-
tion. Even at such a high load, one aggregator can handle 17 agents without throttling
and up to 25 agents with throttling, which is an acceptable management overhead (the
system can easily scale by adding more aggregators as needed).

Table 7. Average time lag for different values of throttling agent process

Throttle 50% Throttle 75%
VM-ID Avg Lag (sec) %CPU Avg Lag (sec) %CPU
vm-1 35 2.64 43 1.43
vm-2 37 1.91 39 1.80
vm-3 46 5.95 64 7.78
vm-4 51 3.36 62 1.67
vm-5 53 3.30 61 2.03

The above experiment was conducted with the default throttling value of 67%. We
ran the experiment with 50% (5s wake and 5s sleep) and 75% (5s wake and 15s sleep)
throttling, the results of which are presented in Table 7. The average overhead values
typically decrease as we increase throttling, but is not strictly the case. This aberration
is an artifact of how hadoop assigns jobs to nodes and is not something we can explicitly
control. While the overall CPU and memory utilization can be reduced using throttling,
we observe that the time lag increases only marginally for increasing throttling values.

We summarize the deduplication information for the 5 VMs in Table 8. As noted
earlier, this experiment has significantly fewer file writes, but each write is for a large
chunk of data. This would mean that we will need to process most of the file writes as



220 S. Nadgowda, P. Jayachandran, and A. Verma

Table 8. Comparison of dedup values with and without removing duplicate file writes on VM

VM-ID Total FS Notifications Processed Notifications Unique Data (MB) Dedup Data (MB) Transferred Data (MB) Dedup
vm-1 93 67 0.66 910 90 10.11
vm-2 135 79 0.02 1136 270 4.20
vm-3 132 85 0.02 1617 67 24.13
vm-4 90 69 0.03 1174 669 1.75
vm-5 188 139 0.02 3326 1007 3.30

Total 0.7 8163 2103 3.88

they are sufficiently separated in time from one another. The effectiveness of I2Map is
demonstrated by the high volume of data in each VM identified as duplicate with at least
one other VM. Further, compared to the total amount of data generated, 8163.7MB, the
amount of data actually transferred is only 2103MB across all VMs, which is a reduction
by a factor of 3.88 (dedup aggr).

Summary. Our micro-benchmark experiments establish the effectiveness of I2Map. We
are able to ensure an RPO of less than 3 minutes for VM and host failure, reduce the
replication traffic by a factor of 2 to 7.5 (dedup aggr), while using less than 5% CPU
and 400MB memory during periods of intense I/O loads. The reduction in replication
traffic translates into network bandwidth savings of 50− 87% (1− 1/dedup aggr) in
the primary data center, compared to state-of-the-art host-based recovery solutions. We
are able to reduce the number of file changes we process by a factor of 2 to 10 due
to change coalescing and need only 1 aggregator per 25 managed VMs. While our
experiments were conducted with 6 VMs, having a larger pool of VMs using I2Map
will only increase the deduplication possible. Under normal operation, we believe we
can achieve even better performance at lower resource overheads.

5.2 Case Study

We conducted a 24 hour case study where we mimicked a real-world scenario where
an application is running continuously at high load, is then brought down, the operating
system is patched, rebooted, and the application is restored once again. At the end of
the 24 hours we artificially failed one VM, which triggered recovery. In this section, we
report results from this experiment, including I2Map’s recovery performance.

Fig. 9. Gannt chart showing duration of each
hadoop run during the case study experiment

VM-ID Avg Lag Max Lag Avg %CPU Avg Mem
vm-1 49s 210s 0.50 115 MB
vm-2 62s 196s 0.65 138 MB
vm-3 52s 243s 0.65 57 MB
vm-4 76s 189s 0.71 113 MB
vm-5 58s 227s 0.69 113 MB
vm-6 75s 192s 1.01 112 MB

Fig. 10. Average time lag, and overhead for each
VM
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We successively ran Teragen-Terasort on hadoop on the 6 VMs. Between every two
runs of Teragen-Terasort we added a think time derived from a lognormal distribution
with a mean of 120s. About 19 hours into the experiment, we brought down the hadoop
application and started patching the VMs. This patch experiment was similar to the
micro-experiment that we conducted, and lasted about 3 hours. Once patching of all
VMs completed, we rebooted the VMs and restored the hadoop application. A Gannt
chart showing the duration of each hadoop run and the think time between them is
plotted in Figure 5.2. Overall, the hadoop-based application was running for 87.6% of
the time. This is a very high load (as most enterprise systems run at a load of about
25%), created to stress-test I2Map. Notice the long sleep time between about 1150 and
1330 minutes, which was when the patching experiment was conducted.

Figure 10 shows the average and maximum time lag for agents to transfer files to the
aggregator, as well as the average CPU and memory usage for each VM. We observe
that the average lag is less than 1.5 minutes and the maximum lag at any instant is about
4 minutes. Thus, I2Map is able to achieve an RPO for host failures of approximately
4 minutes, even during periods of high write load. Including the time to transmit snap-
shots to the recovery site, the RPO for site failures is less than 9 minutes. This is very
competitive compared to a best guarantee of 15 minutes provided by many commer-
cial disaster recovery solutions [22,8]. The average CPU usage was under 1% for all
the VMs, and the memory usage was less than 140MB. Despite heavy load from the
hadoop application, I2Map was able to operate with minimal overhead on the agents.
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Fig. 11. Snapshot Backup Lag and Data Transfer

Snapshots of the aggregator were taken every 5 minutes and transmitted to the re-
mote recovery site using Linux rsync [20]. Figure 11(a) shows the snapshot lag, the
duration of time between when a snapshot was taken and when it was fully saved on
the remote site, for each snapshot. This is primarily the delay over the network between
the primary site and the remote backup site. Observe that the maximum lag is about 7.5
minutes, which happens whenever a new run of hadoop is started and Teragen generates
new data. For most snapshots the lag is negligible. Figure 11(b) shows the amount of
data transferred for each incremental snapshot, which is about 1− 1.7 GB for the large
spikes. Most snapshots transmit only about 100MB of data. The total data transferred
across the Delhi-Bangalore WAN during the course of the experiment was about 26GB.
In comparison, the total data written on all the 5 VMs taken together was about 70GB.
The total aggregated deduplication dedup aggr can be calculated as 70/26 = 2.69.
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At the end of 24 hours, we artificially failed a VM, which triggered recovery on the
remote site. We mounted a copy of the golden master image corresponding to the VM,
identified files belonging to the VM, and wrote their current version on to the mounted
copy. This recovered the VM to its last known state. This process involved writing
14.88GB of data and took 719s, at 21.19MBps. If a snapshot was being transferred to
the remote site when the VM failed, then recovery may be delayed until completion of
the transfer, adding up to 8 minutes to the recovery time. Hence, the total recovery time
achieved by I2Map for this experiment can be estimated as 12− 20 minutes for a VM
with plenty of writes, which is highly competitive with commercial DR solutions.

6 Related Work

Disaster recovery, as a concept, has existed for over three decades. Today, it forms the
cornerstone of business continuity and every major IT service provider has a disaster
recovery solution. These solutions require NAS/SAN arrays, storage controllers, smart
network switches, or other specialized hardware. With the gaining popularity of the
cloud, enterprises are looking to reduce their IT-spend and disinvest in hardware. In a
bid to meet the expectations of their clients, cloud service providers are building low-
cost clouds using commodity off-the-shelf hardware. In this section, we discuss the pros
and cons of various replication and disaster recovery technologies. They can be broadly
classified into storage-based, network-based, and host-based solutions.

There are several storage-based recovery solutions for cloud. Block-based storage
replication requires expensive NAS/SAN arrays and storage controllers. But, they have
the advantage of being independent of the operating system running on the server.
Amazon’s AWS provides multiple disaster recovery solutions that use Amazon S3 for
backup [3]. These are either snapshot-based or storage replication solutions and do
not perform any deduplication across VMs. IBM’s GlobalMirror [13] provides an ex-
tremely high-end disaster recovery solution. It replicates all updates over a SAN and
provides an RPO of 3-5 seconds. Other examples are VMware’s Site Recovery Man-
ager [22] and IBM’s SmartCloud Virtualized Server Recovery [11]. Notably, the lowest
RPO guarantee provided by VMware’s Site Recovery Manager [22] is 15 minutes. We
have demonstrated that I2Map’s host-based solution can provide a comparable RPO,
perform deduplication, and work using commodity hardware.

There are several disaster recovery solutions that do perform different kinds of dedu-
plication. Dell’s AppAssure [8] deduplicates and compresses data on the WAN while
replicating storage disks. We argue that deduplicating data on the WAN is still too late
as costly storage and network resources are consumed within the primary data center
to support disaster recovery. NetApp’s storage solutions [15] are specialized storage
devices that perform deduplication using the Data ONTAP operating environment and
the WAFL file system. They report that each write operation incurs a 7% additional
overhead, in return for considerable savings in storage, which also translates into lower
network bandwidth consumed when replicating the data across a WAN, using their
SnapMirror solution [17]. However, deduplication can only be performed across VMs
stored on the same storage device and comes with the cost burden of additional special-
ized hardware.
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Network-based disaster recovery solutions perform deduplication on the bytes trans-
mitted over the network. While useful, they do not leverage deduplication within the
primary data center. Individuals VMs or servers are still required to transmit all their
data across the local network. Some examples include Riverbed [19] and EMC’s Re-
coverPoint [9]. Citrix cloud solution for disaster recovery [6] uses a combination of
storage-based and network-based optimizations.

Host-based solutions have the advantage of not requiring specialized hardware and
not locking the user into using a specific kind of storage device. Disadvantages include
solution being dependent on the operating system used and having an agent running
on the host and using its computing resources. Examples of existing solutions include
CA’s ARCserve [4] and Neverfail [16]. Neither of them perform deduplication on the
primary data center. While ARCserve performs deduplication of data on the backup
server (after the individual VMs have transmitted all their data), Neverfail uses what
they call WANsmart in-line data deduplication, a form of network-based deduplication.

The concept of transmitting only the incremental changes relative to a base VM and
dynamically synthesizing them at the time of provisioning has been used in the context
of Cloudlets [10]. VM-based cloudlets have been proposed as offload sites for resource
intensive or latency sensitive computations for mobile multimedia applications. The
technique in [10] works by creating a binary difference between VM images, which
is computed only on-demand when required. This is not a disaster recovery solution
where continuous monitoring and data replication is desired.

In summary, there are a wide range of disaster recovery solutions that use a variety
of technologies, have different requirements, and support different RTO and RPO guar-
antees. However, these solutions do not cater to the express need of low-cost clouds to
support an efficient disaster recovery solution that can perform effective and early dedu-
plication within and across VMs without transferring data, and work with commodity
hardware. The I2Map disaster recovery solution presented in this paper addresses this
concern, and its various optimizations ensure a competitive RPO and RTO guarantee
along with low overhead on the VMs.

7 Limitations and Future Work

The disaster recovery solution presented in this paper caters to a specific need for having
a low-cost, low-overhead solution that can work with commodity hardware. However,
it does have its limitations. As with other host-based solutions, it requires an agent to be
running on each VM, using up its computing resources. While we have demonstrated
that the overhead can be contained to less than 5%, for many security-critical applica-
tions it may be inadmissible to have an agent (trusted as it might be) running on the
VM. I2Map is not suitable for such applications. A majority of system management
tools require agents (e.g., for monitoring, patching, backup) and we believe that having
a well-tested agent with minimal performance impact may be acceptable to a large frac-
tion of customers. Also, if the data is encrypted in the file system, I2Map will be unable
to perform deduplication across VMs effectively. Security over the network is another
issue faced by all DR solutions. This can be overcome by adding a layer of encryption
before transmitting over network. Further, our current implementation of I2Map works
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only for linux-based VMs and new agents need to be developed for supporting any other
operating systems.

Another issue that we have not investigated in this paper is the requirement and load
on aggregators. If we were to scale up our disaster recovery solution to several hundred
VMs, we may need more aggregators. This is an additional cost burden and we need
ways to reduce the number of aggregators needed. The two round data transfer using
aggregators does have its advantages, as it ensures that duplicate data is not transferred
from protected hosts. Further, the aggregators separate the protected hosts from any
WAN overheads, in case the transfer over the WAN were to be slow. As part of future
work, we intend to study the costs and benefits of aggregators, especially at scale.

A limitation of all DR solutions (including I2Map) is that they only recover the state
of the disk and not the memory. The state of memory is far more dynamic and one would
have to quiesce any running applications in order to get a snapshot of memory. This is
done in certain scenarios (e.g., live migration of a VM), but would be prohibitively
expensive to perform on a regular basis and is not required by I2Map.

The notion of similarity captured by the I2Map tree can be used for performing other
data center management tasks as well. The first is in troubleshooting software failures.
For instance, system administrators routinely apply software upgrades and patches on
a large set of VMs in the data center. If some of these upgrades fail, they have no clue
to the cause of the failure. Analyzing the I2Map tree for similarities and differences
between VMs could provide crucial insight into why the upgrade might have failed,
and could even provide clues to how the situation can be remedied. Second, similarity
between VMs as captured by the I2Map tree can also be used in assigning admins to
VMs in a data center. Each admin could manage their VMs better, if they were all
similar and had the same software. We intend to explore these applications of I2Map in
our future work.

8 Conclusion

In this paper, we present I2Map, a host-based disaster recovery solution. I2Map lever-
ages similarity across VMs in a data center and performs intra- and inter-VM dedupli-
cation to reduce the overhead of the solution. It maintains a mapping between instances
and the golden master image from which it was created as an I2Map tree, which cap-
tures all the changes to the instance with respect to the master image. Unlike existing
disaster recovery solutions, I2Map does not require any expensive specialized storage
devices or hardware. It separates deduplication and replication, allowing deduplication
to be performed even before any data is transferred from a protected host. Extensive
evaluation demonstrates that I2Map provides competitive recovery point and recovery
time objective of the order of minutes, with low overhead.
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