Anytime Pack Heuristic Search

Satya Gautam Vadlamudi', Sandip Aine?, and Partha Pratim Chakrabarti!

! Indian Institute of Technology Kharagpur, Kharagpur, WB 721302, India
{satya,ppchak}@cse.iitkgp.ernet.in
2 Indraprastha Institute of Information Technology, New Delhi, DL 110020, India
sandip@iiitd.ac.in

Abstract. Heuristic search is a fundamental problem solving technique
in artificial intelligence. In this paper, we propose an anytime heuristic
search algorithm called Anytime Pack Search (APS) which helps in solv-
ing hard combinatorial search problems efficiently. It expands nodes of a
search graph in a localized best-first manner so as to converge towards
good quality solutions at regular intervals. APS is complete on bounded
graphs and guarantees termination with an optimal solution. Experi-
mental results on the sliding-tile puzzle problem, the traveling salesman
problem, and the single-machine scheduling problem show that APS sig-
nificantly outperforms some of the state-of-the-art anytime algorithms.

Keywords: problem solving, heuristic search, anytime algorithms.

1 Introduction

Design of efficient anytime algorithms is one of the key aspects of time lim-
ited search based reasoning [2]. Heuristic search based methods are widely used
in artificial intelligence for dealing with various hard combinatorial state-space
search problems. Since pure best-first search techniques such as A* [3] consume
a lot of time and resources for producing solutions, anytime algorithms are de-
veloped. Anytime heuristic search algorithms aim at producing good quality so-
lutions quickly and improve upon them as time passes, with the help of heuristic
guidance.

Depth-first branch and bound [5] with heuristic guidance can be viewed as
a simple anytime heuristic search algorithm. More involved anytime algorithms
include: Beam-stack search [10] which makes beam search complete via chrono-
logical backtracking and is sometimes referred to as depth-first beam search;
Anytime Window A* (AWA*) [I] which uses a window-based depth-guiding
mechanism over best-first search to produce solutions in an anytime manner; and
Anytime Non-parametric A* (ANA*) [9] which improves upon the parametric
weighted-A* based anytime techniques to give rise to a greedy non-parametric
version.

We develop a new anytime algorithm inspired by the working of beam search
[7] and structural anytime algorithms such as AWA*. The idea is to proceed
in a best-first manner over a limited set of nodes— similar to beam search to

P. Maji et al. (Eds.): PReMI 2013, LNCS 8251, pp. 628634 2013.
© Springer-Verlag Berlin Heidelberg 2013

Anytime Pack Heuristic Search 629

produce solutions quickly, while ensuring completeness by avoiding inadmissible
pruning— similar to structural anytime algorithms. This is achieved by focusing
on a selected set of seed nodes in each iteration of the algorithm which we call as
Pack. The size of the pack can be either given as input or varied using standard
mechanisms both of which are demonstrated. Also, the first iteration of the pro-
posed algorithm matches with that of beam search but without the inadmissible
pruning. Experimental results indicate that the proposed algorithm gives very
good anytime performance compared to the above discussed algorithms.

The rest of the paper is organized as follows: In Section 2] we present the pro-
posed algorithms and their properties. In Section [3 we present the experimental
results comparing the proposed algorithms with some of the state-of-the-art any-
time heuristic search algorithms, and conclude with the key observations.

2 Proposed Methods

In this section, we present the proposed anytime pack search algorithm and its
variations, along with their properties.

Anytime Pack Search (APS) takes as input the search graph and an initial
state or start node, similar to other anytime algorithms. Additionally, it takes the
pack size K as input which is a parameter specific to APS. This parameter can
be controlled by the user and it determines the frequency at which solutions are
produced by the algorithm. Using a small value of K, one can expect solutions
to be reported at a high frequency, and vice-versa.

Algorithm 1. Anytime Pack Search (APS)

INPUT :: A search graph G, a start node s, and pack size K.
BestSol <+ oo; g(s) < 0; Calculate f(s); Level(s) + 0;
SuspendList < {s}; ClosedList < ¢; OpenList < ¢; ChildrenList < ¢;
while SuspendList # ¢ do
{BestSol, Path} < ExpandKNodes(SuspendList, K, BestSol, other lists);
while ChildrenList # ¢ do
Move all nodes from ChildrenList to OpenList; (or, equivalently, swap the lists)
{BestSol, Path} < ExpandKNodes(OpenList, K, BestSol, other lists);
return BestSol, Path;

Algorithm [I] presents the pseudo-code of APS. It uses four lists for its oper-
ation: SuspendList, ClosedList, OpenList, and ChildrenList. Initially all lists
are empty except for SuspendList which contains the start node. In each itera-
tion (Lines 4 to 6 of Algorithm [I]), initially, K nodes are expanded (the process
of generating children) from SuspendList which act as a set of seeds for finding
a solution in that iteration. The generated children go to ChildrenlList whose
size is capped at K, the remaining of which go to SuspendList. Consequently,
OpenList takes the K nodes from ChildrenList for expansion, whose children
will go to ChildrenList similar to what has been mentioned above. This process
will continue until ChildrenList is empty which will happen since the search
is depth-bounded like that of most anytime algorithms. APS terminates when
there are no more nodes remaining for expansion. Each iteration can be seen as

630 S.G. Vadlamudi, S. Aine, and P.P. Chakrabarti

an attempt towards producing a better solution by exploring a beam originating
from a most promising subset of the unexpanded nodes.

Algorithm 2. ExpandKNodes

1: INPUT :: CurList from which K nodes are to be expanded, K, BestSol, and the other lists.
2: for K number of times do
if CurList = ¢ then
return {BestSol, Path};
n < least f-valued node from CurList; (for minimization problem)
if IsGoal(n) then
if f(n) < BestSol then
BestSol <+ f(n); Path < Path from s to n obtained by tracing the parent of n;
Move n from CurList to ClosedList; continue;
10: GenerateChildren(n); Move n from CurList to ClosedList;
11: return {BestSol, Path};

Algorithm [presents the pseudo-code of the ExpandKNodes routine. Most
promising node is chosen for expansion each time from the given list which
demonstrates the localized best-first nature of APS. If the chosen node is a goal
node, the current best solution is updated, otherwise, its children are generated
and the node is added to the ClosedList.

Algorithm 3. GenerateChildren

1: INPUT :: Node n whose children are to be generated, K, and the lists.
if Level(n) = MAX DEPTH — 1 then
return;
for each successor n’ of n do
if n’ is not in any of the lists then
Level(n’) + Level(n) + 1; Insert n’ to ChildrenList;
else if g(n’) < its previous g-value then
Update Level(n'), Parent(n'), g(n’), f(n’); Move n’ to ChildrenList;
if |ChildrenList| > K then
Move a node with largest f-value from ChildrenList to SuspendList;

[

Finally, Algorithm [3] presents the pseudo-code of the GenerateChildren rou-
tine. It generates the children within the given depth bound MAX DFEPTH.
Each child is checked as to whether it is already present in the memory, up-
dated with the shortest path from start node, and it is inserted/moved to
ChildrenList, similar to what is done by all the search algorithms. Whenever the
size of ChildrenList exceeds K, a least promising node is moved to SuspendList,
which is a feature specific to APS.

Additionally, when using admissible heuristics, one can prune the nodes whose
f-value exceeds that of the best known solution. Next, we present the properties
satisfied by the proposed method.

Property 1: APS is complete and guarantees termination with an optimal solu-
tion, provided M AX DFEPTH is at-least as large as the number of nodes on a
minimum-length optimal solution path.
Property 2: APS expands at-most K x MAX DFEPTH number of nodes in
each iteration, where K is the pack size.

Anytime Pack Heuristic Search 631

The above property holds since the depth of shallowest nodes in OpenList
increases by 1 in each step of the iteration (to a maximum of MAX DEPTH —
1), and each step involves expansion of at-most K nodes.

An interesting variation of the proposed algorithm is Anytime Pack Pro-
gressive Search (APPS). In this variation, we initialize the value of pack size
K with INIT and increase it in each iteration by ST FEP while it is less than
BOUND. Typical values of INIT, STEP, and BOUND are 1, 1, and 100 (or
some constant) respectively. BOUN D helps in converging to the solutions in a
time-bounded manner.

Another useful variation is named Anytime Pack Scaling Search (APSS).
This variation proceeds in a similar manner to APPS, except that whenever a
better solution is found by the algorithm, the pack size K is reset to INIT, with
the hope that the next better solution may be found with only a minimal effort
(number of node expansions).

3 Experimental Results

Now, we present the results comparing APS and its variations against Depth-first
Branch and Bound (DFBB) [5], Beam-Stack search (BS) [10], Anytime Window
A* (AWA*) [I], and Anytime Non-parametric A* (ANA*) [9]. Since the per-
formance of Beam-Stack algorithm varies with the beam-width, we have tested
it with multiple values and presented the best results obtained amongst all of
them. All the experiments have been performed on a Dell Precision T7600 Tower
Workstation with Intel Xeon CPU E5-2687W at 3.1-GHz x 16 and 256-GB
RAM. We display the results in terms of a metric called % Optimal Closeness
(measures closeness to the optimal solution for minimization problems; when-
ever optimal solution is known), which is defined as: % Optimal Closeness =
(Optimal solution/Obtained solution) x 100.

Sliding-tile Puzzle Problem (SPP): For our experiments, we have consid-
ered all 50 24-puzzle instances from [4] Table II]. Manhattan distance heuristic

a) Performances of various APS versions b) Performances of various anytime algorithms

% Optimal Closeness
% Optimal Closeness

1 1 1 1 T
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Time (Sec) Time (Sec)

50 L

Fig. 1. Comparison of the average of anytime performances on the 50 Puzzle instances.
DFBB could not come up with any solution in most cases in the given time.

632 S.G. Vadlamudi, S. Aine, and P.P. Chakrabarti

is used as the heuristic estimation function (which underestimates the actual
distance to goal). All algorithms are allowed to explore up-to a maximum depth
of 1000 (around 10 times the depth of optimal solutions).

Figure [[h shows the comparison of anytime performances of different APS
versions on the Puzzle instances. Here APPS and APSS are run with INIT,
STEP, and BOUND being 1000, 1000, and 5000 respectively. APS-x denotes
that APS is run with pack size z. Figure [Ib shows the comparison of anytime
performance of best performing APS version— APPS, with that of the other
anytime algorithms where it can be seen that APPS clearly stands out better.
Here, BS-x denotes that beam-stack search is run with beam-width z.

Traveling Salesman Problem (TSP): We chose the first 50 symmetric
TSPs (when sorted in increasing order of their sizes) from the traveling salesman
problem library (TSPLIB) [8] for our experiments. These range from burmal4
to gr202 where the numerical postfixes denote the size of the TSPs. Minimum
spanning tree (MST) heuristic is used as the heuristic estimation function (which
is an under-estimating heuristic).

a) Performances of various APS versions b) Performances of various anytime algorithms
99
98.6 T T T T T T T
98 |-
98.4 o
2 2 97 1 H AgSS — 1
© 982 i) BS-50
8 5 9 : BS-100 ------- E
2 98 2 : BS-200
5} G 9% AWA* b
T 978 S gall |] ANA i
£ £ i DFBB -- -- -
a 976 2 Lo .
S § 93 :
® 974 BV]
97.2 91 |- ¢ e e T
97 90 Lepe o T 1 I I L
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Time (Sec) Time (Sec)

Fig. 2. Comparison of the average of anytime performances on the 50 TSP benchmarks

Figure[Zh shows the comparison of anytime performances of different APS ver-
sions on the TSP instances. Here APPS and APSS are run with INIT, STEP,
and BOUND being 1, 1, and oo (no bound) respectively. Figure 2b shows the
comparison of anytime performance of best performing APS version— APSS,
with that of the other anytime algorithms where once again it can be seen that
the APS version outperforms the others.

Single-Machine Scheduling Problem (SMS): We have generated 48 SMS
problem instanced!] with different tardy factors and range factors using simi-
lar settings as given in [6]. Each instance contains 100 jobs. For each job j,
an integer processing time p;, earliness penalty hj;, and tardiness penalty w;
are generated from the uniform distribution [1,10]. Let P be the sum of pro-
cessing times of all the jobs. For each job j, an integer due date is generated
from the uniform distribution [P(1 — T — R/2), P(1 — T + R/2)], where T is

! The SMS benchmarks used in this paper are available at
https://sites.google.com/site/satyagautamv/resources/sms-benchmarks

https://sites.google.com/site/satyagautamv/resources/sms-benchmarks

Anytime Pack Heuristic Search 633

the tardy factor, set at 0.0,0.2,0.4,0.6,0.8 and 1.0, and R is the range fac-
tor, set at 0.2,0.4,0.6 and 0.8. For each combination of parameters, two prob-
lems are generated. The lower bound computation method proposed in [6] is
used for computing the under-estimating heuristic over the unscheduled jobs.
Here, since the optimal solutions are not available, we display the results in
terms of a metric called % Comparative Closeness (measures closeness to
the best known solution), which is defined as: % Comparative Closeness =
(Best Known solution/Obtained solution) x 100. We obtained the best known
solution for each instance by finding the best result produced amongst all the
algorithms tested by us for that instance.

a) Performances of various APS versions b) Performances of various anytime algorithms
o | T T T T 9 | T T T T T T T T T]
8 N et g 97 i
o 97.5 | - o @
H L APPS —— 5 9 e
<] : AP <] L]
S 97—(7' R { & B[ememsessonsmemmmemsns:
2 - 2 94 f . - o]
2 P APS-50 = i
g 96.5 e APS-100 T 5 9B[F | APPS —
g [APS-200 - -+ - S gl i 25'50
5 ieeeeeeeaeend] H BS-100 T
S 96 i N 1 38 ol ! BS-200 -——- |
e { O : R i AWA*
955 f e 4 9 i E;L\IBAB i
i 1 1 1 1 1 1 1 1 89] 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Time (Sec) Time (Sec)

Fig. 3. Comparison of the average of anytime performances on the 48 SMS problem
instances. ANA* could not come up with any solution in most cases in the given time.

Figure Bh shows the comparison of anytime performances of different APS
versions on the SMS problem instances. APPS and APSS are run with INIT,
STEP, and BOUND being 1, 1, and oo (no bound) respectively. Figure Bb
shows the comparison of anytime performance of best performing APS version—
APPS, with that of the other anytime algorithms where the APS version domi-
nates the others.

In conclusion, the proposed anytime heuristic search technique shows a lot
of promise in solving hard combinatorial problems of both Al and Optimization
domains. The choice of K (pack size) often provides a trade-off between the time
taken for producing initial solution and the quality of anytime performance later
on. APPS and APSS take advantage of faster initial solutions (obtained using
lower K values) and better later solutions (obtained using higher K values) while
avoiding the individual defects of smaller or larger K values and also making the
algorithm independent of the choice of K. Experimental results over the three
domains considered show that the progressive/scaling algorithms perform better
than the other versions (using a specific K) and the existing algorithms.

634 S.G. Vadlamudi, S. Aine, and P.P. Chakrabarti
References
1. Aine, S., Chakrabarti, P.P., Kumar, R.: AWA* - A window constrained anytime

10.

heuristic search algorithm. In: Veloso, M.M. (ed.) IJCAI, pp. 2250-2255 (2007)
Chakrabarti, P.P., Aine, S.: New approaches to design and control of time limited
search algorithms. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal,
S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 1-6. Springer, Heidelberg (2009)
Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2), 100-107 (1968)

Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Artif. Intell. 134(1-2),
9-22 (2002)

Lawler, E.L., Wood, D.E.: Branch-and-bound methods: A survey. Operational Re-
search 14(4), 699-719 (1966)

Li, G.: Single machine earliness and tardiness scheduling. European Journal of
Operational Research 96(3), 546-558 (1997)

Lowerre, B.: The Harpy Speech Recognition System. PhD thesis, Carnegie Mellon
University (1976)

Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on
Computing 3, 376-384 (1991)

van den Berg, J., Shah, R., Huang, A., Goldberg, K.Y.: Anytime nonparametric
A*. In: AAAIL pp. 105-111 (2011)

Zhou, R., Hansen, E.A.: Beam-stack search: Integrating backtracking with beam
search. In: Proceedings of the 15th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2005), Monterey, CA, pp. 90-98 (2005)

	Anytime Pack Heuristic Search
	1 Introduction

	2 Proposed Methods

	3 Experimental Results
	References

