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Abstract. Identifying likeness between events is one of the fundamental 
necessities in machine learning and data mining techniques. Though grouping 
of events usually happens on their proximity in Euclidean space or the degree of 
similarity or the extent of linear dependence, certain applications like keyword 
and document clustering, phylogenetic profiling and feature selection tend to 
yield better results if events are grouped based on their mutual association. This 
paper presents a metric, the Bidirectional Association Similarity (BiAS) to 
quantify the degree of mutual association between a pair of events. We put 
forward generalized formulation to compute BiAS and establish unidirectional 
correspondence with the Jaccard and the cosine similarities. The measure can 
be suitably incorporated with clustering algorithms in grouping mutually 
associative events with adding precision to the discovered knowledge. 

Keywords: Bi-directional association similarity, BiAS, clustering, cosine 
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1 Introduction 

Identifying similarity or dissimilarity between events is one of the fundamental 
necessities in machine learning, data mining techniques which is measurable through 
computation of certain statistical metrics e.g. the Euclidean distance (E), the Jaccard 
(J) [4] [5] and cosine similarity (C) or the Pearson correlation coefficient (P). Though 
grouping of events, in general, happens on their proximity in Euclidean space or 
degree of similarity or extent of linear dependence, certain applications like document 
clustering, phylogenetic profiling, feature selection etc. tend to yield better results if 
events are grouped on the basis of pair-wise mutual association. A pair of events gi 
and gj is mutually associative if the probability of occurrence of gj is high given the 
occurrence of gi and vice-versa. Unfortunately, neither similarity nor correlation 
guarantees mutual associativity as they do not have individual control over p(gj/gi) or 
p(gi/gj), p denotes probability. Two events gi and gj can be similar or correlated if, 

• there exist unidirectional association of the form gi → gj or 
• there really exist mutual association of the form gi → gj and gj → gi or 
• there exist a third event gk such that gk → gi and gk → gj hold simultaneously 

So existence and directionality of association remain vague unless explicitly verified. 
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The Bidirectional Association Similarity (BiAS) models mutual associativity with 
the help of two simultaneous associations gi → gj and gj → gi [1] and is quantified by 
β(gi,gj) = p(gj/gi)*p(gi/gj). Given two pre-specified thresholds μ and τ, gi and gj are 
mutually associative if both of p(gj/gi), p(gi/gj) ≥ μ and β(gi,gj) ≥ τ. We prove 
subsequently that mutually associative events are also similar, but similarity does not 
guarantee mutual associativity. Hence, BiAS adds both way associativity constraints 
on top of similarity. It helps in pruning out loosely coupled expression vectors with 
adding precision to discovered knowledge. The salient contributions in this paper are: 

• Concept and foundation of BiAS on the basis of mutual associativity 
• Formulation of J as a function of p(gj/gi), p(gi/gj) and deriving its lower bound 
• Generalized formulation of BiAS for real-valued attributes 
• Bridging connections between the lower bounds of BiAS, J and cos 
• Finally, proving capability of BiAS to be integrated with clustering algorithms 

2 Mutual Association and Generalized Jaccard Index 

Let us assume G = {g1, g2, …, gn} be a set of n events where each of gi is a d-
dimensional Boolean vector. For any gi, a ‘1’ (or ‘0’) at lth dimension indicates its 
presence (or absence) in lth experiment. Further, let T(gi) be a set of integers j ∈ {1, 2, 
…, d}, so that gij = 1. Hence, T(gi) ∩ T(gj) is a set of integers m, where both gim = 1 
and gjm = 1. Also, assume that c(gi) = |T(gi)|, the frequency of occurrence of the event 
gi in the dataset. For preciseness, we denote p(gj/gi) as μf and p(gi/gj) as μb. The 
generalized form of Jaccard index J for a set of events G′ can be formulated as: 

)()()( gTgTGJ GgGg ′∈′∈=′  . 

Eqn. (1) in the following states a key relationship between J, μf and μb. It can be 
easily proven by replacing μf with |T(gi) ∩ T(gj)| / |T(gi)| and μb with |T(gi) ∩ T(gj)| / |T(gj)|. 
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Given μf, μb and the constraints, eqn. (1) can be utilized as the criterion function to be 
minimized through non-linear programming optimization to yield a lower bound on J. 

Lemma 1. Let μf, μb ≥ μ and μf * μb ≥ τ. The Jaccard index of two events gi and gj, 
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Proof. The inequality is proven via the Karush-Kuhn-Tucker (KKT) theorem. 

The Karush-Kuhn-Tucker (KKT) theorem. If the function f(x) has a minimum at 
x* in the feasible set and if ∇f(x*) and ∇gi(x*), i = 1,2,…,m, exist (‘∇’ denotes partial 
derivative with respect to all xi), then there exist an m-dimensional vector λ such that 

• ∇f(x*) + Σi=1

m λi∇gi(x*) = 0, for i = 1, 2,…, m. 
• gi(x*) • 0,  0, for i = 1, 2,…, m. 
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• λi [gi(x*) - bi] = 0,   for i = 1, 2,…, m. 
• λi > 0, for i = 1, 2,…, m. 

(x*, λ) is called a KKT point, λ is the Dual Vector or the Lagrange Multiplier. 
Minimizing eqn. (1) is equivalent to maximizing (1/μf) + (1/μb) − 1 which is again 

equivalent to minimizing 1 − (1/μf) − (1/μb). Let us now formulate the problem: 
Minimize: f(μf, μb): 1 − (1/μf) − (1/μb)…(i), subjected to: g1: μf •  μ  −μf  •  −μ, g2: μb •  
μ  −μb  •  −μ and g3: μf * μb •  τ  −μf * μb •  −τ. Clearly, ∇f(μf, μb) and ∇gi(μf, μb), for 
i = 1, 2, 3 exist. Hence, by KKT theorem, (1/μf

2) − λ1 − λ3*μb = 0 … (ii) and (1/μb

2) − 
λ2 − λ3*μf = 0 … (iii). Also, −λ1(μf − μ) = 0… (iv), −λ2(μb − μ) = 0… (v), −λ3(μf * μb − 
τ) = 0… (vi) and λi • 0,  0, for i = 1, 2, 3… (vii). 

 

Fig. 1. Plot for eqns. μf=0.5, μb=0.5, μf*μb=0.4 and f, shaded area shows solution region 

Without any constraint on μf and μb, 0 •  μf, μb • 1. 1. Different eqns. viz. μf = p(gj/gi) = μ, 
μb = p(gi/gj) = μ and μf*μb = p(gj/gi)*p(gi/gj) = τ (for μ = 0.5 and τ = 0.4) are plotted in 
Fig. 1. The objective function (eqn. (i)) is also plotted for f = -4 and f = -5. As can be 
noticed, f is minimized in the direction toward the center (0,0). Also, the feasible 
region for μf and μb is shaded in Fig. 1. Clearly, this is a convex region as all the 
points on the line segment joining any two points from the region completely remain 
within it. The regions inside P1P2P7 and P4P5P8 get excluded from the solution due 
to the constraint on p(gj/gi) or p(gi/gj). The constraint on p(gj/gi)*p(gi/gj) excludes the 
region P1P5P6 from the solution. Together, they ensure high confidence in one 
direction with a minimal in the reverse. It is evident from eqn. (i) that both of μf and 
μb need to be minimized for minimization of f. Hence the solution must be somewhere 
on the line segment P1P5. 

Consider Point P1. P1 is the point of intersection of μb = μ and μf * μb = τ. At P1, μf 
≠ μ. Hence, from eqn. (iv), λ1 = 0. Given this, eqn. (ii) yields λ3 = 1/(μf

2.μb). Replacing 
λ3 with its value in eqn. (iii), λ2 = (μf − μb) / (μf .μb

2) = (τ − μ2) / (μf

2.μ2) (replacing μb by 
μ and μf in the numerator by τ/μb). Since, τ •  μ2, (τ − μ2) • 0. Thus, all  0. Thus, all λ1, λ2 and λ3 are 
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• 0, which satisfies  0, which satisfies eqn. (vii). Putting μb = μ and μf = τ / μ in the objective function (in 
(i)) f = 1 − (μ / τ) − (1 / μ) … (viii). 

Consider Point P5. Similarly, on point P5, it can be shown that all λ1, λ2 and λ3 are •  
0 and value of the objective function (in (i)) f = 1 − (μ / τ) − (1 / μ), same as (viii). 

Consider Any Point on the Line Segment P1P5. Here, μf, μb ≠ μ but μf * μb = τ. 
From eqn. (iv), (v) and (vi), λ1 = 0 and λ2 = 0. Putting this in eqn. (ii) and (iii), λ3 = 
1/μf

2.μb = 1/μf .μb

2  μf  = μb = τ0.5. Thus, all λ1, λ2 and λ3 are • 0, which satisfies eqn.  0, which satisfies eqn. 
(vii) and f = 1 − (1 / τ0.5) − (1 / τ0.5) = 1 − (2 / τ0.5)… (ix). 
(viii) − (ix) = (2/τ0.5) − (μ/τ) − (1/μ) = − (τ + μ2 − 2 . μτ0.5) / μτ = − (τ0.5 − μ)2 / μτ • 0.  0. 
Hence, (viii) • ( (ix) and optimum solution exist at P1 or P5. For P1, μf = τ/μ and μb = μ, 
for P5 μf = μ and μb = τ/μ. Putting, the values in eqn. (4), ξ(gi,gj) • 1 / (( 1 / ((μ/τ) + (1/μ) − 
1) =  μτ / (μ2 + τ − μτ). Thus eqn. (4) follows.                                        

3 Generalization of BiAS for Real-Valued Attributes 

We now waive the restriction to Boolean attributes and assume gi = [gi1, gi2,  …, gid], 
gik∈ℜ, the set of real. With that, c(gi) is redefined to square of the L2-norm of gi: 
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The frequency of joint occurrence c(gi ∩ gj) is formulated by their dot product: 
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With eqn. (3) and (4), computation of p(gj/gi), p(gi/gj) is immediate. Also, J(gi,gj) = 
c(gi∩gj) / c(gi∪gj) = c(gi∩gj) / c(gi) + c(gj) − c(gi∩gj). Thus, the Jaccard index (more 
specifically the Tanimoto coefficient [7]) and BiAS can be reformulated as: 
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The physical significance of probability of a real-valued attribute may not be as 
straight-forward as it is for Boolean attributes. So, eqns. (5) and (6) are represented 
with the frequency of occurrences of an event which holds perfect without any loss of 
generality. Under the new formulations, p(gj/gi), p(gi/gj) can be more than 1 or even 
negative (signifying opposite similarity). Nevertheless, the absolute value of their 
product remains within [0,1]. Lemma (2) proves it. 

Lemma 2. For any two d-dimensional real-valued vectors gi and gj, 

 .1),(0 ≤≤ ji ggβ                     (7) 
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Proof. Rewriting eqn. (6), 
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product of two unit vectors. Hence, β(gi,gj) ≥ 0 and β(gi,gj) ≤ 1.                                  

4 Connecting Lower Bounds of Different Metrics 

Sometimes, a particular metric can be suitable for certain applications but the choice 
of threshold may not be apparent due to the physical significance not being 
straightforward in context of those applications. Connecting the lower bounds of 
different similarity metrics, particularly with different physical interpretations like 
similarity or mutual dependence, may help in this regard. Note that we assume 
p(gj/gi), p(gi/gj) ≥ μ, unless otherwise specified. 

Relation between the lower bounds of J(gi,gj) and β(gi,gj) is derived in eqn. (2) 
which involves the threshold μ as well. For example, with μ = 0.5 and τ = 0.37 (the 
average of μ and μ2), lower bound of Jaccard similarity is (0.5*0.37) / (0.52 + 0.37 − 
0.5*0.37) = 0.185 / 0.435 = 0.425. In case τ is equal to its lower bound (0.5)2 = 0.25, 
lower bound of J(gi,gj) is (0.5*0.25) / (0.52 + 0.25 − 0.5*0.25) = 0.125 / 0.375 = 0.33. 
The choice of τ helps to raise the threshold of J from 0.33 to 0.425 and thus pruning 
additional pairs with similarities in between those two values. 

From eqn. (6), 
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=β So, cos(gi,gj) ≥ β(gi,gj) as 0 ≤ β(gi,gj) ≤ 1. 

This establishes that mutually associative events are also similar. 
Finally, we deduce the relation between lower bounds of the J(gi,gj) and cos(gi,gj). 

As β(gi,gj) ≥μ, |cos(gi,gj)| ≥ √τ as cosine similarity can be negative as well. Let us 
denote the lower bound of |cos(gi,gj)| as lb(|cos(gi,gj)|) and assume that τ = μ2, where 
p(gj/gi), p(gi/gj) ≥μ. Replacing this in eqn. (2), 

.
|)),cos((|2

|)),cos((|

)2()2(2
),(

2/3

2/3

2/3

2
ji

ji
ji gglb

gglb
ggJ

−
=

−
=

−
=

−
=

−+
≥

τ
τ

ττ
τ

ττ

τ
μττμ

μτ

So, given the cosine similarity of gi and gj we can get the lower bound of J(gi,gj). 

5 Clustering Using BiAS 

Clustering is one of the most popular and well-established unsupervised data mining 
techniques that deal with finding a structure in a collection of unlabeled data and 
determining the intrinsic grouping. The k-means clustering algorithm [6] is perhaps 
the most popular iterative solution to group events in a pre-specified k number of 
clusters. The idea is to gather all those events which lie within the preset similarity or 
distance from the cluster center. Thus, to ensure that BiAS can successfully identify a 
set of mutually associative events, we must prove the following two properties: 
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• If two events gi and gj happen to be mutually associative individually with a third 
event gc, gi and gj are also mutually associative with respect to certain threshold 

• If there exist pair-wise mutual association between any two events of gi, gj and 
gc, Jaccard index of gi, gj and gc together has a lower bound. 

Lemma 3 and 4 state the lower bounds, the proofs are beyond the scope of this paper. 

Lemma 3. Let gi, gj and gc are three events such that p(gi/gc) = μ1, p(gc/gi) = μ2, 
p(gj/gc) = μ3 and p(gc/gj) = μ4. Then, 

                                            1312 /)1.()/( μμμμ −+≥ij ggp          (8) 

                                            3314 /)1.()/( μμμμ −+≥ji ggp                                           (9) 

For example, if μ = 0.85 and μ1, μ2, μ3, μ4 ≥ μ, p(gj/gi) and p(gi/gj) will be greater 
than μ.(μ + μ −1) / μ = μ (2μ − 1) = 0.85*0.7 = 0.6. So, if the events are clustered 
based on their mutual associativity with the cluster center, any pair of events within 
the cluster has a lower bound on their BiAS metric and hence the J. If so, lemma 4 
states another lower bound for J(gi,gj,gc). 

Lemma 4. Let gi, gj and gc be three events and all of J(gi, gc), J(gj, gc) and J(gi, gj) 
are greater than some threshold q. Then, 

            .2/)2)(1(31),,( 2qqgggJ cji −−−≥                                   (10) 

E.g. with q = 0.8, J(gi,gj,gc) ≥ .59.041.012/)64.02(*)8.01(*31 =−=−−−  

Thus, if a clustering algorithm ensures that an incoming event is mutually associative 
with the center, it is guaranteed to have mutual associativity as well as similarity with 
all other existing events which, in turn, maintain the overall cluster quality. 

6 Conclusion 

The Bidirectional Association Similarity ensures that similarity between two events 
results from true inter-dependence which we model through mutual conditional 
probabilities. Conventional similarity metrics, in general, just quantize the likeness 
between two expression vectors. It is not designed to capture similar expressions 
owing to mutual association between a pair of events. Apparently, BiAS is a stricter 
criterion ensuring both mutual association as well as similarity. This paper builds 
strong foundation of the measure, bridges connection with other well-known 
similarity metrics and theoretically proves the effectiveness in knowledge discovery. 

We are currently working on a few promising application domains where mutual 
associativity is much apparent in natural phenomena and hence BiAS can be 
instrumental in knowledge discovery. Feature selection is definitely one of our 
interests where few other literatures [2] [3] have envisaged the effectiveness of 
mutual association. Also, identifying self-regulatory systems in genetics through 
feedback loop is another potential area to invest on. 
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