
OpenTOSCA – A Runtime
for TOSCA-Based Cloud Applications

Tobias Binz1, Uwe Breitenbücher1, Florian Haupt1, Oliver Kopp1,2,
Frank Leymann1, Alexander Nowak1, and Sebastian Wagner1

1 IAAS, University of Stuttgart, Germany
2 IPVS, University of Stuttgart, Germany

firstname.lastname@informatik.uni-stuttgart.de

Abstract TOSCA is a new standard facilitating platform independent descrip-
tion of Cloud applications. OpenTOSCA is a runtime for TOSCA-based Cloud
applications. The runtime enables fully automated plan-based deployment and
management of applications defined in the OASIS TOSCA packaging format
CSAR. This paper outlines the core concepts of TOSCA and provides a system
overview on OpenTOSCA by describing its modular and extensible architecture,
as well as presenting our prototypical implementation. We demonstrate the use of
OpenTOSCA by deploying and instantiating the school management and learning
application Moodle.

Keywords: TOSCA, Cloud Applications, Automation, Management, Portability.

1 Background: TOSCA and TOSCA-Based Moodle

The Topology and Orchestration Specification for Cloud Applications [4] (TOSCA) is a
new OASIS standard to describe Cloud-based applications in a portable and interopera-
ble way. TOSCA standardizes the description of the structure and management aspects
(i. e., deployment, operation, termination) of applications. The structure of TOSCA-
based applications is defined by a topology—a graph of typed nodes and directed typed
edges. Nodes represent components forming an application and edges define the rela-
tions and dependencies between them. For instance, the topology of the Moodle appli-
cation (www.moodle.org) consists of the actual PHP module, an Apache Web Server, a
MySQL database, two operating systems (one for the Web server and one for the MySQL
database), and two virtual machines (Fig. 1). The relationships in this topology define,
for instance, that the Moodle application is “hosted on” a Web server and that the appli-
cation “connects to” the MySQL database. The types of nodes and relationships specify
their properties and management operations. The type “Apache Web Server” defines
properties, such as “port” or “version”, and management operations, such as “start” or
“deploy”. The actual implementation of a node is provided by one or many Deployment
Artifacts, e. g., a Linux VM image, an operating system package for the Apache Web
Server, or an archive containing the PHP files of Moodle. In addition, types may define
Implementation Artifacts that implement the management operations for the respective
element. The TOSCA topology and related artifacts are bundled into a Cloud Service
ARchive (CSAR), the standardized packaging format for TOSCA applications.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 692–695, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.moodle.org


OpenTOSCA – A Runtime for TOSCA-Based Cloud Applications 693

OsApache 
(OperatingSystem) 

VmApache 
(Server) 

Apache 
(ApacheWebServer) 

Moodle 
(WebApplication) 

PhpModule 
(PhpModule) 

OsMySQL 
(OperatingSystem) 

VmMySql 
(Server) 

MySql 
(MySqlRDBMS) 

MoodleDB 
(MoodleDB) 

(hosted on) 

(connects to) 
(depends on) 

Fig. 1. Moodle Application Topology modeled using Vino4TOSCA [2]

TOSCA topologies can be processed by a TOSCA runtime in an imperative or declar-
ative way [5]: Imperative processing relies on the implementation of management plans
that can be executed fully automated to perform the desired management task, e. g., to
instantiate, backup, upgrade, or terminate an application. These high-level management
tasks are implemented by orchestrating low-level management operations provided by
Implementation Artifacts of nodes and relationships. Because management plans are typ-
ically implemented by the application developer, they enable operators to manage the
application by running pre-defined plans without the need to understand all the techni-
cal details of the management task [1]. Technically, management plans are implemented
as workflows. Thus, they inherit properties of workflow technology such as traceability,
recoverability, human interaction, and portability. Declarative processing, on the other
hand, shifts the deployment and management logic from plans to the runtime. To per-
form the aforementioned high-level management tasks, the runtime has to know the op-
erations that have to be called and their order. Declarative processing is well suited for
the deployment of simple applications but is not able to facilitate complex management
tasks for various kinds of application structures. For more details, including the TOSCA
role model, we recommend the TOSCA specification [4] and TOSCA primer [5].

In summary, TOSCA provides means to describe procedures for managing applica-
tions in a standardized way that enable automated and portable processing. With more
and more applications described in TOSCA it will enable more and more applications
to be hosted in the Cloud.

2 OpenTOSCA: Architecture and Demonstration

OpenTOSCA is a runtime supporting imperative processing of TOSCA applications. Im-
perative means that the deployment and management logic is provided by plans. The
key tasks of OpenTOSCA, addressed by the architecture depicted in Fig. 2, are to op-
erate management operations, run plans, and manage state. Requests to the Container
API are passed to the Control component, which orchestrates the different components,
tracks their progress, and interprets the TOSCA application. The Core component offers
common services to other components, e. g., managing data or validating XML.

Management operations of nodes and relationships are either provided by running
(Web) services, e. g., the Amazon EC2 API, or by Implementation Artifacts contained



694 T. Binz et al.

in the CSAR. In the latter case, the Implementation Artifact Engine is responsible to
run these artifacts in order to make them available for plans. Implementation Artifacts,
e. g., a SOAP Web service implemented as Java Web archive (WAR), are processed
by a corresponding plugin of the engine which knows where and how to run this kind
of artifact. The plugins deploy the respective artifacts and return the endpoints of the
deployed management operations to be stored in the Endpoints database.

The management plans contained in CSARs are processed by the Plan Engine, which
also employs plugins to support different workflow languages, e. g., BPMN or BPEL,
and their runtime environments. Plans only define abstractly which kind of service they
require but not their concrete endpoints. Therefore, the corresponding plan plugin binds
each service invoked by the plan to the endpoint of the management operation before it
deploys the plan to the respective workflow runtime. The service’s endpoint was added
to the endpoint database before by the Implementation Artifact Engine. This way of bind-
ing workflows ensures portability of management plans between different environments
and runtimes [1]. By using the Plan Portability API, management plans can access the
topology and instance information, e. g., the property values of nodes and relationships.

The plugin architecture of the Implementation Artifact Engine and Plan Engine en-
sure extensibility. Portability is ensured by the two engines working together when
binding management plans. Strict separation of architectural components through well-
defined OSGi interfaces enables the replacement of implementations of components.
This also allows each component to be scaled independently.

Demonstration. In the following, we demonstrate how the OpenTOSCA runtime de-
ploys CSARs and how instances of Cloud applications are created. After uploading
the CSAR to OpenTOSCA, the deployment of the TOSCA application follows three
steps: (i) First, the CSAR is unpacked and the files are put into the Files store, which
is backed either by the local file system or Amazon S3. (ii) Then, the TOSCA XML
files are loaded, resolved, validated, and processed by the Control component, which
calls the Implementation Artifact Engine and the Plan Engine. The Implementation Ar-
tifact Engine deploys the referenced Implementation Artifacts (cf. (a) in Fig. 2) and

a 

b 

Container API 
Implementation Artifact 

Runtime 

Operation 

Plan Portability API 
Plan Runtime 

Plug-Ins 

Component 

Ext. Systems 

External APIs 

Control 

Core 

Admin UI Self-Service 
Portal 

Modeling 
Tool 

Model Instance 
data Files End-

points Plans 

Management Plan 

c 

d Implementation 
Artifact Engine … 

Plugin 

Plan Engine 

Plugin 

… 

Fig. 2. OpenTOSCA Architecture Overview and Processing Sequence



OpenTOSCA – A Runtime for TOSCA-Based Cloud Applications 695

stores their endpoints in the Endpoints database. (iii) Finally, the Plan Engine binds and
deploys the application’s management plans (cf. (b) in Fig. 2). The endpoints of the
Moodle management plans are stored in the Plans database.

The deployed application can be instantiated by executing the build plan of the appli-
cation. This plan is either started through the Self-Service Portal, which provides an UI
for end user access to the deployed applications, or by sending a SOAP message to it.
Credentials (e. g., for Amazon EC2) or configurations (e. g., machine size) are passed
as input message to the workflow. The Plan Portability API acts as access point for the
plans to the container. By using this API, the topology model, endpoints, and instance
data, such as properties of nodes (e. g., the port of a Web server) and relationships, can
be read and written (cf. (c) in Fig. 2). Having these data available, the build plan orches-
trates the management operations of nodes and relationships to provision and configure
the Cloud application (cf. (d) in Fig. 2). To instantiate Moodle, the build plan first starts
two virtual machines with a Linux operating system and installs Apache Web Server
and MySQL on them. Then, it uses the respective management operations to install the
PHP application, import the database schema, and establish the database connection.
After completion, a build plan may return certain information, for example, the Web
address of the deployed application instance. The Moodle build plan returns the URL
of the running Moodle instance, which includes the public URL of the virtual machine
running the Apache Web Server. This demonstration is also featured in the OpenTOSCA
demo video (online at demo.opentosca.org).

Currently, OpenTOSCA is used together with the modeling tool “Winery” [3] in the
German government-funded projects CloudCycle and Migrate! as well as in industry
and research cooperations of our institute.

Next Steps. To deploy simple applications without the need to model build plans we
plan to add declarative processing of applications to OpenTOSCA. We are also working
on building a community around OpenTOSCA at www.opentosca.org.

Acknowledgments. This work was partially funded by the BMWi projects CloudCy-
cle (01MD11023) and Migrate! (01ME11055). We thank Christian Endres, Matthias
Fetzer, Markus Fischer, Nedim Karaoğuz, Kálmán Képes, Rene Trefft, and Michael
Zimmermann for their help with the implementation of OpenTOSCA.

References

1. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA. IEEE
Internet Computing 16(3), 80–85 (2012)

2. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA. In: Meersman, R., et al. (eds.) OTM
2012, Part I. LNCS, vol. 7565, pp. 416–424. Springer, Heidelberg (2012)

3. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – Modeling Tool for TOSCA-
based Cloud Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 702–706. Springer, Heidelberg (2013)

4. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
Version 1.0 Committee Specification 01 (2013)

5. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer
Version 1.0 (January 2013)

demo.opentosca.org
www.opentosca.org

	OpenTOSCA – A Runtime
for TOSCA-Based Cloud Applications
	1 Background: TOSCA and TOSCA-Based Moodle
	2 OpenTOSCA: Architecture and Demonstration
	References




