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Abstract. Recent studies show that service systems hosted in clouds
can elastically scale the provisioning of pre-configured virtual machines
(VMs) with workload demands, but suffer from performance variability,
particularly from varying response times. Service management in clouds
is further complicated especially when aiming at striking an optimal
trade-off between cost (i.e., proportional to the number and types of VM
instances) and the fulfillment of quality-of-service (QoS) properties (e.g.,
a system should serve at least 30 requests per second for more than 90%
of the time). In this paper, we develop a QoS-aware VM provisioning
policy for service systems in clouds with high capacity variability, using
experimental as well as modeling approaches. Using a wiki service hosted
in a private cloud, we empirically quantify the QoS variability of a sin-
gle VM with different configurations in terms of capacity. We develop
a Markovian framework which explicitly models the capacity variability
of a service cluster and derives a probability distribution of QoS ful-
fillment. To achieve the guaranteed QoS at minimal cost, we construct
theoretical and numerical cost analyses, which facilitate the search for
an optimal size of a given VM configuration, and additionally support
the comparison between VM configurations.

Keywords: QoS, cloud services, VM provisioning, Markovian models.

1 Introduction

Service systems are increasingly deployed in clouds due to the advantages of
scalability and ease of management. In the cloud, a set of preconfigured VM in-
stances is available at different costs (e.g., small, medium, large, and very large
instances in Amazon EC2 [1]), and their corresponding hardware-related per-
formance metrics are provided at best effort [15]. Meanwhile, service providers
face ever more stringent QoS demands from users, in particular regarding the
tail performance, e.g., 95th percentile or higher response times. The difficulties
of service management in clouds (i.e., selecting a VM configuration and dimen-
sioning the system correctly) are further exacerbated when aiming at providing
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QoS guarantees for both average and tail performance [8], while retaining the
cloud advantages at the same time.

Several empirical studies [6, 16, 20] point out a common pitfall in clouds that
the performance variability — in this case the response time of services — fluc-
tuates significantly and tail latency degrades due to the heterogeneity of the
underlying hardware and the workloads collocated on the same physical hosts.
Although virtualization enables the efficient multiplexing of workloads across the
ample hardware resource, performance isolation is limited [7], especially for ap-
plications that are not CPU intensive. While the performance variability persists
in cloud platforms, little is known about the sensitivity of services on different
VM configurations in terms of capacity1 i.e., the maximum number of service
requests that can be processed sustainably, and the aggregate impact of the
capacity variability of a single VM on the QoS of the entire service cluster.

VM provisioning of service systems is typically based on the average capacity,
which in turn is a good indicator for systems experiencing low variability and
providing simple QoS guarantees [22], such as average throughput over a cer-
tain threshold. To avoid performance penalties due to variability in the cloud,
selecting VMs with desirable performance becomes of paramount importance
not only to reduce performance variability [9], but also to optimize cost [3, 5].
Consequently, empirical approaches are proposed to acquire VMs with higher
capacities. However, due to the empirical nature of the proposed VM selection
strategies, a QoS promise of satisfying a given target throughput is only attained
at best effort. Moreover, the resulting cost minimization may be arbitrary, de-
pending on the workload dynamics of the underlying cloud platform.

Our study aims to find the optimal VM provisioning for a service system,
i.e., composed of an ideal VM configuration using a minimum number of VM
instances, such that the required QoS properties are guaranteed for a certain
fraction of time at minimal cost (e.g., 90% of the time the sustainable through-
put should be at least 30 requests per second). To such an end, we study a
wikipedia service [19] and first empirically quantify its capacity variability on
different VM configurations, in the presence a daemon VM executing various
benchmark workloads in a private cloud. Leveraging our empirical experience,
we build a Markovian model which explicitly models the capacity variability
of an entire cluster, and we derive the probability distribution of the delivered
QoS for a given number of VMs of a certain configuration. Based on analytical
solutions regarding the QoS fulfillment, we construct theoretical and numeri-
cal analyses to evaluate the tradeoff between cost and the fulfillment of QoS
promises, (1) by comparing optimal provisioning to simple pessimistic and op-
timistic provisioning; (2) when provisioning based on the average capacity fails;
and (3) when choosing a VM configuration that returns the best cost/service-
availability ratio.

This paper is organized as follows: The capacity variability of a VM hosting a
wiki service on different VM configurations is discussed in Section 2. The proposed

1 In this paper, we use the terms capacity and sustainable maximum throughput
interchangeably.
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Markovianmodel andVMprovisioning optimization is described in Section 3. Sec-
tion 4 presents our cost analysis. Related studies are summarized in Section 5. Sec-
tion 6 concludes this paper.

2 Capacity Variability of Service VM Configuration

In this section, we use a controlled cloud environment to study the capacity
variability of service hosting on different VM configurations, i.e., the fluctuation
of capacity, against single neighboring VMs executing various workloads. To such
an end, our target service is a wikipedia deployed on a set of VM configurations
and collocated with a daemon VM executing Dacapo benchmarks [2] in a private
cloud. Essentially, we use the daemon VM to synthesize interference that can be
encountered by a wiki VM in the cloud and parametrize the capacity variability,
which is then used to build the QoS model for a service cluster in Section 3.

2.1 Experiment Setup

From our private cloud environment, we chose two IBM System x3650 M4 ma-
chines, gschwend and nussli, each with 12 Intel Xeon E5-2620 cores running at
2.00GHz, and 64 and 36 GB of RAM, respectively, for running our experiments.
We use KVM on gschwend for hosting our target and daemon VMs, and nussli
for generating the Apache JMeter workload requests for our target wiki VM.

The target wikipedia system is based on a subset of 500000 entries from a
pages-articles.xml dump downloaded on October 12, 2012. The wiki VM is a
Debian 7.0 system running an Apache 2.4.4 web server, the PHP 5.4.15 server-
side script engine, MediaWiki 1.21 as the web application, and the MySQL 5.5.31
database. The number of threads employed by Jmeter is configured such that
the maximum throughput of the wiki VM is reached. As for the workload on the
daemon VM, we selected the following benchmarks from the Dacapo benchmark
suite: (1) fop, a lowly threaded CPU-intensive benchmark; (2) luindex, a lowly
threaded IO-intensive benchmark; (3) sunflow, a highly threaded CPU-intensive
benchmark; (4) lusearch, a highly threaded CPU- and IO-intensive benchmark;
and (5) tomcat, a network-intensive benchmark. We refer readers to [7] for the
detailed threading behaviors and characterization of the Dacapo benchmarks.

We consider four types of VM configurations, with CPUs and memory sizes
as listed in Table 1, which are comparable to VM offerings in Amazon EC2 [1].
We use three configurations for the wiki VM (bronze, silver, and gold), and two
configurations for the daemon VM (gold and platinum). Based on experimental
evaluation, we use two, four, and eight threads when running Jmeter against a
wiki running on a bronze, silver, and gold VM instance, respectively. In total,
we evaluate the amount of performance interference experienced by the wiki
under 36 scenarios, i.e., three configurations of wiki VMs × six types of dae-
mon workloads (5 DaCapo benchmarks and no workload) × two daemon VM
configurations.
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Table 1. VM configurations and naming conventions

Bronze Silver Gold Platinum

No. processing units 1 2 4 8

RAM (GB) 4 8 16 32

The target wiki performance statistics are collected from the Apache log files
which record the current time, the requested URL, and response time for each
request. After a warmup period for the wiki VM, Jmeter, the daemon VM and
the DaCapo benchmark, we start collecting statistics for five minutes for each
of the 36 scenarios, each of which is repeated ten times. We summarize the
results of 36∗10 = 360 runs using box plots in Fig. 1. One can straightforwardly
find that the capacity variability of the wiki, i.e., the difference between no
workload and different DaCapo benchmarks running on the daemon VM, can
vary significantly depending on VM configurations and the characteristics of the
DaCapo benchmark.

For further analysis, we take the median of the repeated runs of all scenarios
and compute the average of the normalized throughput, compared to the scenario
with no daemon VM neighbor. We thereafter categorize the results by target VM
type, daemon VM type, and benchmark.
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(a) Wiki on gold (b) Wiki on silver (c) Wiki on bronze

Fig. 1. Capacity variability of a wiki running on different VM configurations against
fop, luindex, lusearch, sunflow, and tomcat, hosted on gold and platinum VMs: box
plots based on 10 repetitions

2.2 (In)Sensitivity of Capacity Variability

To compare the robustness of different target VM configurations, we normal-
ize the throughput of the wiki VM by the throughput of the wiki without any
neighbor for gold, silver, and bronze VMs. In Fig. 2(a), we present the average
normalized throughput, a higher value of which means less interference is ob-
served and the wiki VM is more robust. When collocated with a gold daemon
VM, the difference between wikis running on different VM configurations is al-
most negligible. However, in our setup, when the daemon VM is more dominant,
i.e., a platinum VM, a wiki on a silver VM seems to be slightly more robust
than when on a gold or bronze VM. Such an observation can also be made for
individual daemon workloads, see Fig. 1. Overall, our experiments show that a
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wiki running on a silver VM is slightly more robust to noisy neighbors, and the
capacity of the wiki can be throttled by 10-20% on average due to interference
from neighboring VMs.
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Fig. 2. Average analysis of normalized throughput of target wiki

2.3 A Really Noisy Daemon

We try to identify which type of workload represents the noisiest neighbor and
causes high capacity variability for a wiki service collocated on the same physical
machine. We compute the average normalized throughput across all target VM
configurations for each benchmark, as presented in Fig. 2(b). One can clearly see
three levels of performance variability: (1) mild interference from fop, luindex,
and tomcat, where the capacity degradation is within 10%; (2) medium interfer-
ence from sunflow, where the capacity is degraded by roughly 20%; and (3) high
interference from lusearch, where the capacity degradation can be up to 35%.
Clearly, lusearch is the noisiest neighboring VM for our wiki service, as they
both compete for a similar set of resources, i.e., both CPU and IO. As both
fop and luindex have limited concurrent threading, only limited performance
interference is observed.

Up to this point, our experiments have addressed the variability of a wiki ser-
vice hosted on a single VM. In the next section, we leverage Markovian modeling
to capture the capacity variability of a wiki cluster consisting of multiple VMs.

3 Markov Chain Model for Service Cluster

In this section, our objective is to derive a rigorous mathematical analysis for
answering the question, ”what is the minimum size of a cluster whose VMs
experience capacity variability such that the probability of achieving a target
QoS is guaranteed?”. We define the service capacity C(n) as the total number of
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requests processed by a cluster of n ∈ Z VMs, its QoS target as C∗, the ful-
fillment of which should be above a certain threshold ξ. Using Markov chain
modeling, we obtain the steady-state distribution of QoS of a cluster with n
VMs, and further search for the minimum n that satisfies the desired availabil-
ity, Pr[C(n) > C∗] > ξ.

We start out the analysis by modeling the transition between high and low
capacity of a single wiki VM, using values obtained in the previous section.
Based on that, we develop a continuous-time Markov chain to model the service
availability of the entire cluster. Finally, we show, by theoretical analysis and
numerical examples, that the proposed minimum cluster size, n∗, indeed attains
a good trade-off between cost and guarantee of service availability.

3.1 Single VM Node

We assume that a VM of a certain configuration (e.g., gold, silver, or bronze)
alternates between states of high and low capacity, denoted by μh and μl, for
exponentially distributed times with rate α and β, respectively. Examples of
such values can be found in Fig. 1 for different VM configurations. We term
the difference between μh and μl the capacity variability, and (α, β) the inten-
sity of the variability. Fig. 3 illustrates the state transitions and time series of
such a model. To capture the maximum variability possibly experienced by a
VM, we only adopt two states of capacity, namely high and low, for different
VM configurations. Their parameterizations can be carried out by our empir-
ical analysis in Section 2. On the contrary, the values of α and β depend on
the workload dynamics of the underlying cloud, and thus are assumed invariant
to VM configurations. Note that one may find intermediate states in reality,
i.e., the capacity is between [μl, μh]. Our proposed model can be further refined
to accommodate multiple levels of capacities, albeit with a higher computation
overhead for obtaining steady-state probability of service availability (see the
next subsection).

Capacity
Per VM

Time

~Exp( )

~Exp( )
μl

μh

h l

Fig. 3. Capacity variability of a VM: state diagram of high and low capacity (left) and
illustration of time series (right)
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3.2 Continuous Markov Chain Modeling of the Cluster

The single VM model naturally leads us to use a continuous-time Markov chain
(CTMC) to describe the dynamics of available capacity in a cluster consisting
of n VMs, experiencing high and low capacity. In the proposed CTMC, a state
i ∈ I = {1, 2, . . . n} is defined as the number of VMs having low capacity,
while the rest of n− i VMs in the cluster have high capacity. Consequently, the
corresponding capacity of state i in the systems is

Ci(n) = iμl + (n− i)μh.

Note that Ci(n) ≥ Cj(n), for i ≤ j — essentially, Ci(n) monotonically de-
creases in i. When there are i VMs with low capacity, the system transpositions
to state i + 1 with the rate (n− i)α, and to state i − 1 with the rate iβ. Fig. 4
illustrates such a Markov chain for a cluster of n VMs.
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n (n 1)

•••1 2 i nn-1•••

(n i)
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2 n

1 2

i

Fig. 4. Markov chain of aggregate VM capacities, where the state denotes the number
of VMs experiencing low capacity

We let π = [π0, π1 . . . πn] denote the steady-state probability that the system
has a service capacity of Ci(n). One can solve the Markov chain in Fig. 4 by a
set of balance equations [13], i.e.,

(n− i)απi = (i)βπi+1 ∀i,
∑

i

πi = 1.

Substituting all πi as a function of πn, we can then obtain the closed formed
solution of π

πn =
1

(1 + α
β )

n
(1)

πi =

(
n

i

)
(
α

β
)n−iπn, 0 ≤ i < n.

Consequently, we can derive the probability that the service capacity is greater
than the target

Pr[C(n) > C∗] =
∑

i∈{I:Ci(n)>C∗,i≤n}
πi. (2)
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To compute Pr[C(n) > C∗] for all n ∈ Z, one shall first compute the values
πi, ∀i using 1 for a given n, and the sum of πi for the states i where the resulting
capacity is greater than C∗, and then iterate the computation procedure for all
values of n.

3.3 Trade-Off between Cost and Service Availability

To find a minimum cluster size that ensures that a service capacity greater than
the target capacity, C > C∗, is guaranteed for ξ% of time, we can formulate
the following optimization after substituting Eq. 1 into the constraints and re-
arrangements:

minimize n

subject to (n− i)μh + iμl ≥ C∗

∑

i

(
n

i

)
(
α

β
)n−i 1

(1 + α
β )

n
≥ ξ

i ≤ n

For given values of α, β, μh, and μl, Pr[C(n) > C∗] is a function increasing
in n, i.e., when n1 ≥ n2, Pr[C(n1) > C∗] ≥ Pr[C(n2) > C∗], as self-explained in
the second constraint in the above optimization. Consequently, one can straight-
forwardly find the optimal n∗ by linearly searching through the possible values
of n ∈ Z in an increasing order.

Note that the optimization is constructed implicitly depending on the work-
load intensity via the value of C∗. For a given period of time when the workload
intensity is predicted as λ requests per second, one may want to keep the system
80% utilized, and set the target capacity to C∗ = λ/0.8. The choice of the target
capacity is out of scope of this work, and we direct interested readers to our
prior work [4, 5].

n∗ vs. Simple Solutions. Herein, we illustrate how n∗ obtained through our
proposed methodology attains a good trade-off between the cost and the guaran-
teed service availability, compared to simple optimistic and pessimistic solutions.
One may optimistically think that all VMs have high capacity and only purchase
nopm = �C∗/μh� VMs by simply dividing the target capacity with the value of
high capacity of a single VM. In contrast, a pessimistic solution would be to as-
sume that all VMs have low capacity and purchase npsm = �C∗/μl�. As μh > μl,
npsm is greater than nopm.

We compute the service availability curves by Eq. 2 for all values of n that
fulfill the target capacity of C∗ = 60 requests per second, using α = 60, β = 50
and two sets of μh and μl, respectively. Fig. 5 summarizes the numerical results.
Additionally, we also graphically illustrate the optimal provisioning of VMs (n∗)
that fulfill the desired service availability, i.e., the cluster capacity is greater than
60 for ξ = 90% of the time, compared with pessimistic (npsm) and optimistic
(nopm) solutions. We consider service availability curves in two cases of capacity
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variability, namely with smaller and bigger difference between the high and low
capacity of a VM. One can easily see that the optimal cluster size grows with
the variability, indicated by a higher value of n∗ in Fig. 5(b) than (a). When the
variability of capacity is higher, the service availability curve increases slower
in n than in the low variability case. Moreover, the pessimistic and optimistic
allocations are even further away from the optimal one.
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Fig. 5. Service availability curve, Pr[C(n) > 60]: the optimal number of VMs to achieve
ξ = 90%, the pessimistic, and the optimistic solution

To proceed to cost comparison, we assume the cost of a cluster, cost(n), is
a strictly increasing function in n, i.e., cost(n1) ≥ cost(n2) when n1 ≥ n2.
Furthermore, due to the monotonicity of Pr[C(n) > C∗] and nopm ≤ n∗ ≤ npsm,
we reach the following corollary:

Corollary 3.1.

cost(nopm) ≤ cost(n∗) ≤ cost(npsm),

Pr[C(nopm) > C∗] ≤ Pr[C(n∗) > C∗] 	 ξ ≤ Pr[C(npsm) > C∗].
(3)

Though the optimistic solution incurs lower cost, the QoS fulfillment threshold
is not met. On the contrary, the pessimistic solution can achieve the service
availability with 100% guarantee, but at a higher cost. The optimal provisioning
of VMs, n∗, indeed achieves a good trade-off between cost and QoS fulfillment,
compared to simple optimistic and pessimistic solutions. Note that n∗ can result
in a slightly higher value of Pr[C(n∗) > C∗] than ξ, due to the discrete choice
of the number of VMs.

We further numerically illustrate how such a trade-off is affected by different
levels of variability in capacity of a single VM. Using a simple linear cost function,
i.e., cost(n) = 1.2 · n, we construct two numerical examples in Fig. 6, following
the parameters discussed in Fig. 5. Note that the cost here is defined as the cost
per time unit, which can be aligned with the billing periods used in commercial
clouds, e.g., one hour. One can see that n∗ can improve the QoS fulfillment
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drastically by increasing cost, compared to nopm, and reduce cost significantly
by allowing a fractional capacity degradation, compared to npsm. The advantage
of n∗ in attaining a good trade-off is even more prominent in the case of bigger
variability.
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Fig. 6. QoS fulfillment vs. cost: Pr[C(n) > C∗ = 60] > ξ = 0.9

Why Not Consider Average Capacity of a VM?. In this subsection, we
show that choosing n based on the average capacity of a VM cannot reach the
optimal values nor guarantee QoS fulfillment at the target capacity level, using
numerical examples. Recalling the state transition of a VM depicted in Fig. 3(a),
the average capacity of a single VM, μ, and the VM provisioning based on the
average capacity, navg are

μ =
μhα+ μlβ

α+ β
, and navg =

C∗

μ
,

respectively. Fig. 7 demonstrates that a cluster size based on the average ca-
pacity is not a reliable solution under three scenarios of (α, β), namely (a) often
experiencing low capacity (b) alternating between high and low capacity equally,
and (c) often experiencing high capacity. We let μh = 2.4 and μl = 1.6, as used
in the case of small variability. Shown in Fig. 7(a), when α < β, navg tends
to overestimate and Pr[C(n) > C∗] is over the required values, ξ = 0.9. When
α > β, navg tends to underestimate and Pr[C(n) > C∗] is below the required
values, indicated by the horizontal line overlapped on the x-axis in Fig. 7(c).

As for α = β, we want to highlight that navg can achieve the target capacity
roughly 50% of the time, for any capacity variability and target values. This
observation can be explained by Eq. 1. When α = β, the steady state of QoS
fulfillment is greatly simplified to πn = 1/2n and πi =

(
n
i

)
(1/2n). Thus, substi-

tuting navg = �1/2μh + μl� can result in Pr[C(n) > C∗] = (50 + ε)%], where ε
is a small positive fluctuation due to the ceiling operator on navg.

Observation 3.2. When α = β, navg can achieve C(n) > C∗ roughly 50% of
the time, i.e., Pr[C(n) > C∗] = 50 + ε%, where ε is a small positive value.
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Fig. 7. QoS fulfillment curves based on navg and n∗, under μh = 2.4 and μl = 1.6

4 Choosing a VM Configuration

In this section, we compare different VM configurations in terms of their optimal
cluster sizes and total cost, based on our proposed Markov chain model. Using
theoretical and numerical analysis, we study if a cluster composed of more power-
ful VMs is always smaller than a cluster of weaker VMs. Due to the large number
of parameters considered, we focus on providing a condition where weaker VMs
imply a bigger cluster, and numerical counter examples where a cluster of weaker
VMs can provide better service availability than a cluster of more powerful VMs.

4.1 Typical Case: Weaker VM Means a Bigger Cluster

Following the convention in Section 2, we consider three types of VM instances,
namely gold, silver, and bronze. A gold instance is more powerful and implies
a higher average computational capacity than a silver instance, whose average
capacity is more than that of a bronze instance. All VM configurations experience
high (μh,type) and low capacity (μl,type) for exponentially distributed durations
with means equal to α and β, respectively. We can show the necessary condition
for the typical case, meaning clusters of weaker VMs are bigger than clusters of
more powerful VMs when achieving the same target of service availability.

Theorem 4.1. When experiencing the same α and β and aiming at the same
service availability threshold, the cluster sizes of gold, silver, and bronze instances
are

n∗
gold ≤ n∗

silver ≤ n∗
bronze, when

μh,gold ≤ μh,silver ≤ μh,bronze, andμl,gold ≤ μl,silver ≤ μh,bronze.

The theorem follows straightforwardly from the monotonicity of Pr[C(n) >
C∗] in n. Due to the lack of space, we skip the proof. The theorem tells us that
to guarantee the same level of service availability, one should definitely acquire
a higher number of weaker VMs than powerful VMs, when the low and high
capacity of weaker VMs are inferior to the low and high capacity of powerful
VMs, respectively.
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We note that the typical case simply implies the order of n∗ for different con-
figurations, not the differences in their costs. Using three types of cost functions,
namely linear, concave, and convex, we show that the costs of different types
of VM clusters can vary a lot. In particular, the high and low capacities expe-
rienced by each VM configuration are listed under the typical case in Table 2,
where (α, β) are (40,20). The linear/concave/convex cost function means the
cost per VM instance is linearly/concavely/convexly proportional to the average
capacity of single VM of a particular type. We set the cost per VM per time
unit of (gold, silver, bronze) for linear, concave, and convex as (1.5, 2.25, 3.375),
(1.5, 1.95, 2.7), and (1.5, 2.7, 4.2), respectively. Fig. 8(a) and (b) summarize the
resulting service availability curves of different VM types and the resulting costs
under different cost functions. One can see that although the bronze cluster is
much bigger than the gold, the cost can still be lower when the cost per VM is
linearly and convexly proportional to their average capacity. On the contrary,
when there is a discount on computational capacity, i.e., when the cost per unit
of computation decreases for gold, a gold cluster can be a cheaper option as
shown by the case of a concave cost function.
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Fig. 8. QoS fulfillment and cost comparison for a typical case: comparison of gold,
silver and bronze VMs

4.2 Counter Example: A Cluster of Weaker VMs Can Be Smaller

Here, we show by some counter examples that the optimal size of a cluster with
weaker VMs is not necessarily larger. The capacity parameters of gold, silver,
and bronze instances used are listed under the counter example in Table 2. The
average capacity, μ, is the average of high and low capacity, and grows with the
VM configuration. However, the capacity variability, i.e., the difference between
high and low capacity, is higher for more powerful VMs.

Fig. 9 summarizes the curve of QoS fulfillment of the three VM configurations.
One can see that the QoS curve of the three types of VMs cross each other at
n = 15. For a given size, the QoS of a gold VM is not necessarily higher than
that of a silver or bronze VM. In particular, for n ≥ 15, the QoS of a silver
VM is higher or equal to a gold VM. As a result, depending on the threshold of
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Table 2. Capacity parameters of single VM for all VM types

Typical Case Counter Example

μl μ μh μl μ μh

Gold 3.75 4.5 5.62 0.26 2.65 5.03
Silver 2.25 3.00 3.75 0.95 2.30 3.64
Bronze 1.50 2.00 2.50 1.80 2.00 2.20

QoS, ξ, the optimal cluster size of bronze VMs can be bigger, or smaller than
that of gold VMs. To guarantee Pr[C(n) > 30] ≥ 0.85, the optimal cluster size
of all three types of VMs is 16. When such a threshold is higher than 0.85, the
number of VMs in a gold cluster should be higher than in a bronze cluster. This
leads us to conclude that not only the average, but also the variability in VM
throughput is crucial in choosing and sizing VM clusters in the cloud.
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Fig. 9. QoS curve of different types of VMs, under α = β = 20, Pr[C > 30] > 0.85

Our proposed Markov model and solution provide an efficient means to ex-
plore a large number of parameters encountered, such as different cost functions,
and exogenous variabilities and their intensity, when choosing the right VM con-
figuration and deciding the cluster size. Numerical examples serve the purpose of
illustrating how our solution robustly attains an optimal trade-off between cost
and QoS fulfillment across different system parameters and VM configurations.

5 Related Work

Recent studies on QoS analysis for cloud services [18, 21, 22] are mainly driven
by service compositions and service selection, using a Markovian decision pro-
cess [14] or a Baysian network model [21]. In contrast, studies focusing on con-
stant QoS value, e.g., Zheng [22] proposed a calculation method to estimate the
probabilistic distribution of QoS. However, the impact on the QoS due to the
underlying performance variability of the cloud is to a large extent overlooked.

Most existing studies on the performance variability of applications hosted
in the cloud are based on empirical experiments, especially in terms of average
and 95th response time [16, 20], and aim to discover the root cause of such a
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phenomenon [10–12]. The observations made from cloud experiments are mainly
based on a single type of configuration and simple benchmarks. A few studies [16,
17, 20] focus on multiple types of VM configurations and try to quantify the
variability in their response times. Moreover, the variability in throughput is
largely evaluated under a particular workload intensity, instead of using the
maximum sustainable throughput, i.e., the capacity.

Meanwhile, another set of studies focus on developing solutions to reduce the
performance variability in a best effort manner, from the perspective of service
providers. Particularly, both [5,9] propose opportunistically selecting VMs which
have high capacity, while discarding VMs with low capacity. Another type of so-
lution is to try to figure out the underlying hardware and neighboring workloads,
so as to select similar physical hosts [16] and influence the neighboring VMs [15].
As the methodology is trial and error, the QoS of the target application, e.g.,
the service availability, is not always guaranteed. Moreover, the cost analysis is
over-simplified, without considering the performance variability.

Our study provides a complementary perspective to the related work by char-
acterizing capacity variability experienced by a single VM, with respect to dif-
ferent types of workloads, and rigorously models its aggregate effect on multiple
VMs in fulfilling sophisticated QoS while aiming at minimizing cost.

6 Conclusion

Using empirical experiments with a wikipedia system, as well as a Markovian
model and numerical analysis, we demonstrate how QoS fulfillment can be best
guaranteed with a minimum number of correctly configured VMs deployed in a
cloud where VMs suffer from high capacity variability. Our experimental results
show that different VM instance sizes can have varying degrees of capacity vari-
ability from collocated VMs and that workloads on collocated VMs can impact
the capacity of the service VM by up to 35%. Our analytical and numerical
results provide not only insight on how an optimal number of VMs should be
chosen for a service cluster, but also give counter examples on why simple pes-
simistic, optimistic, and average-based provisioning of VMs cannot strike an
optimal balance of cost and QoS fulfillment in the cloud where performance
variability persists. Overall, we provide a systematic and rigorous approach to
explore several crucial aspects of VM provisioning for service clusters, i.e., ca-
pacity variability, cost structure, and guarantees regarding QoS fulfillment.
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