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Abstract. In process engineering, processes can be refined from simple
ones to more and more complex ones with decomposition and restructur-
ing of activities. The validation of these refinements and the explanation
of invalid refinements are non-trivial tasks. This paper formally defines
process refinement validation based on the execution set semantics and
presents a suite of refinement reduction techniques and an ontological rep-
resentation of process refinement to enable reasoning for the validation
and explanation of process refinement. Results show that it significantly
improves efficiency, quality and productivity of process engineering.

1 Introduction

It is germane in process management to represent processes at different levels
of abstraction, ranging from abstract processes (coarse description) to specific
processes (fine-grained characterisation). Due to the different levels of abstrac-
tions, it is not obvious to determine whether or not a refined process reflects
the intended behaviour of the original process. This makes the validation of re-
finements and the explanation of sources for invalidity crucial issues. Manual
validation is usually error-prone, time-consuming and increases the cost of pro-
cess engineering. Existing (semi-) automatic methods still limit the flexibility in
process refinement. In this paper, we make the following contributions to the
automatic validation of process refinement [1

— Based on the classic execution set semantics, we propose a formal and intu-
itive semantics of process refinement (Sec. [2).

— Based upon the above semantics, we propose a novel approach to automati-
cally validate and explain process refinements (Sec.[3) by combining graph-
based transformation and ontology reasoning.

— We implemented our approach and conducted evaluations in terms of perfor-
mance and usefulness (Sec. @). Experiments show that realistic refinement
scenarios can be validated below one minute and average-sized problems in
a split second. This significantly improves the quality and productivity of
process engineering.

! Detailed proofs of all theorems can be found in our online technical report:
http://homepages.abdn.ac.uk/jeff.z.pan/pages/pub/ProcessRefinement.pdf
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2 Problem Description

A process (or process model) is a directed graph P = (V,E) without multiple
edges between two vertices. Vertices (V) include activities and gateways (A, G C
V). The start and end events (v°,v® € A) are two special activities, e.g., process
Py in Fig. [0 consists of two activities A and B between the start and end events.
No activity is allowed twice in a process model.

A gateway is either opening or closing (G°,G¢ C G), and either exclu-
sive or parallel (G*,G* C G). Process P3 contains parallel gateways and
exclusive gateways. Exclusive gateways can be used to construct loops, e.g.,
in P;, A and B can be repeatedly executed. The set of edges (E) is a bi-
nary relation on V. For each v1 € V, we know its direct predecessors (succes-
sors) pre(vy) = {ve € V | (v2,v1) € E} (suc(v1) := {vg € V| (v1,v3) €
E}). Given a valid process model P = (V,E) with |[pre(v®)| = [suc(v®)| =
0, |[suc(v®)| = |pre(v®)] = 1; Yo € G° (c € G°), |pre(o)|(= |suc(c)]) = 1;
Va € A\ {v5,vF}, |pre(a)| = |suc(a)| = 1, we define gateway-free predecessor as
PS(v1) := {v2 € A\{v®} | v € pre(vy) or Ju € G, u € pre(vy) and vy € PS(u)}
and successor as SS(vy) 1= {vs € A\ {vF} | v3 € suc(vy) or Ju € G, u €
suc(v1) and v € SS(u)}. These two definitions make gateways “transparent”,
e.g., in Py, SS(A1) = {Az, B1}. In the following, we refer to elements of PS
(SS) as predecessors (successors) for short.

Fig. 1. A chain of process refinements

A process refinement is a transformation from an abstract process into a more
specific one. An example of a chain of several process refinements is depicted in
Fig. [l in which P, refines P; by decomposing activity A into Ay, As and Az, B
into By and Bsy. P, is further refined by Pj3, in which As is further decomposed
into Agq, Ago and Ass, By into Bsy and Bsg and so on.

The semantics of a process is based on its executions. An execution is a proper
sequence of activities a; € A: [a1az...ay]. It starts from one of the successors
of vS and continues with subsequent activities. The ordering relations among
activities must be obeyed, i.e., an activity a must be appended to the sequence
before all SS(a) and after all PS(a). When it comes to an exclusive gateway (® ),
a proper sequence can go through exactly one exclusive branch. For example in
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Py, after appending A, a sequence can be either terminated by v, or continued
by B. When it comes to a parallel gateway (®), a proper sequence must go
through all parallel branches. For example in P3, after appending As;, a sequence
must append both Asy and Bs; before making a choice between Boy and Ass.
The ordering between As; and Bs; can be arbitrary. The result is a proper
sequence of activities—an execution:

Definition 1 (Execution Set). The execution set of a process P, denoted by
ESp, is the (possibly infinite) set of all executions of P.

For example, ESp, for process P; in Fig.[ll is {[A],[ABA],[ABABA],...}.
Process Ps contains parallel gateways to express that some activities can be exe-
cuted in any order: .ESP3 = {[A1A21A22321A23A3}, [AlAngglAggAggAg], e }

The MIT business process handbook [I] characterises the behaviour of a pro-
cess in terms of its execution set semantics, and the refinement is specified by the
comparison of the execution sets of an abstract and a specific process. A process
P subsumes another process ) under the maximal execution set semantics iff
ESg C ESp. However, architects might use different activity names in abstract
and specific processes. Thus, the process architect has to declare which activi-
ties of the specific process refine which activity of the abstract process. This is
denoted by the orig-function, e.g., orig(A1) = orig(As) = A., The orig-function
is extended to executions and execution sets, e.g., applying this to P, yields
OT’ig(ESPQ) = OTZ'g({[AlAQA;ﬂ, [AlAQBQAQAS}, [N }) = {[AAA}, [AABAA}, N }
Furthermore, an activity of the abstract process might be decomposed into mul-
tiple activities in the specific process. Even if we discard the different names,
the specific activities still outnumber their origins. For example, process P, con-
sisting of a single activity A, is refined into a process ) with consecutive sub-
activities Ay, ..., A,. Intuitively, @ is a valid refinement of P but the execution
of P has length 1 and the execution of @ has length n. To resolve this, we define
the decomposable process PP of P that is constructed from P by constructing a
loop around every activity of P, except the start and end event.

3 Validation and Explanation with Ontologies

The definition of valid refinement is intuitive without parallel gateways since
all orderings are explicitly stated. Accordingly, we first present the validation of
parallel-free process refinements. Afterwards, we extend our approach to incor-
porate parallel gateways.

3.1 Validating Parallel-Free Process Refinement

For parallel-free refinements, we use (Description Logics) ontologies and reason-
ing to validate and explain refinements. A Description Logics (DL) ontology
consists of a terminology box (TBox) and an assertion box (ABox). The TBox
describes the schematic knowledge with concepts and roles. In this paper, the
ontology will be built in the DL fragment ALC. Concepts are inductively defined
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by the following constructs: T | L | A|-C |CND|CUD | 3r.C|V¥rC,in
which T denotes the universal set of the domain, | denotes the empty set, A is
a named concept, C' and D are arbitrary concept expressions. R and S are roles.
—C' is the negation of C, M and U the conjunction and disjunction. Jr.C' and
Vr.C represent the set of individuals who have an r relation to some instance of
C, or r relations only to instances of C. The subsumption between two concepts
C and D is depicted as C' = D. Two concepts are disjoint if CMD C 1. We write
Disjoint(Cy,Cy, ..., C,) to denote that any two C;, C; (1 <1i,j <mn,i# j) are
mutually disjoint with each other. If an axiom « can be inferred from an ontol-
ogy O, we say O entails «, denoted by O | a. We mainly use the subsumption
checking reasoning service, i.e., checking if O = C C D.

The abstract process restricts the set of “allowed” predecessors and successors,
while the specific process states the “existing” predecessors and successors after
the refinement. We restrict predecessor and successor relations in the abstract
process by universal restrictions (V), and existential quantifications (3) describe
predecessors and successors of activities from the specific process. For both pro-
cess models, we use the same roles to and from for successor and predecessor
relationships. Formally, the ontology O is built as follows:

Definition 2 (Refinement Ontology). Let S be a set of predecessors or suc-
cessors, respectively, we define four operators for translations as follows:

— Pre-refinement-from operator Priqom(S) = Vfrom.| |, cqx

— Pre-refinement-to operator Pryo(S) = Vto.| | 5y

— Post-refinement-from operator Psgrom(S) = [1,cq3from.x

— Post-refinement-to operator Ps;o(S) =[], cgTto.y

For conciseness, we always have one abstract process P and one specific pro-
cess Q. In order to detect invalid refined activities, we introduce the concept
Invalid. Then, we construct an ontology Op_,g with the following patterns.
The refinement from P; to P, in Fig. [[lis used as an example.

1. For each activity X € Ag with orig(X) = Z, we use X C Z to represent the
composition of activities, which covers the activity origin.

2. For each activity X € Ap, we use X T Invalid UPT 161, (PSpo (X)), X C
Invalid U Pr,(SSpp (X)) to describe the activities in the pre-refinement
process. Due to possible decompositions of activities, we use the decompos-
able process to characterise the predecessor and successor sets, e.g., A C
Invalid UV from.(Start W AU B), A C Invalid UVto.(End UBU A), B C
InvalidUV from.(BUA), B C InvalidUVto.(AUB). The pre-refinement pro-
cess restricts allowed predecessor and successor activities. Thus, the Invalid
concept is added as an alternative, implying that if any component of X
does not satisfy the ordering constraints of X, it will become Invalid.

3. Foreachactivity X € Ag,weuse X T PsSfpom(PSg(X)), X T Ps(SSo(X))
to represent predecessor and successor sets of it in the specific process.

4. Disjoint(X|X € Aq), orig(X) = Z (for X € Ag). These axioms represent
the uniqueness of all activities with the same origin, e.g., Disjoint(A;, Aa, As).
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5. Disjoint(X|X € Ap). This axiom represents the uniqueness of all the activ-
ities in the abstract process, e.g., Disjoint(Start, End, A, B).

With the above axioms, ontology Op_,( is a representation of the refinement
from P to Q. All executions of () can be represented by some existential re-
strictions (3). Given the subsumption of activities, these 3 chains must satisfy
the universal restrictions (V) in Op_,q to fulfill the executions of PP. Due to
the uniqueness of concepts, an invalid refinement between PP and @ will make
invalid refined activities to be subsumed by Invalid. This helps to pinpoint the
source of an invalid refinement.

Theorem 1. For any parallel-free refinement from P to Q, the refinement is
invalid due to activity A € Ag, it Op_,g E A C Invalid.

3.2 Extending Processes with Parallel Gateways

The presence of parallel gateways requires some pre-processing steps on the
abstract and/or specific processes before building the refinement ontology.

If the specific process contains parallel gateways, e.g., the refinement from P,
to Ps in Fig. [Il we observe that parallel branches implicitly describe different
possible executions among activities in sibling branches. E.g., in Pj3, there are
two parallel branches, each of them contains one activity (Az2 or Baj). The
implicit executions of the parallel sibling activities Ass and Bay are [Ago Ba1] and
[B21Ags], i.e., either activity Ao is executed before Ba; or Bap before Ags. For
the validation, we have to take all these implicit executions of parallel branches
into account. To remedy this, we replace all parallel gateways with exclusive
gateways and connect the input and output of all previously parallel activities
(with the help of exclusive gateways). Fig. Pl illustrates a replacement of Ps.

Fig. 2. P£: Replaced process P3

If the abstract process contains parallel gateways, as in the refinement from
P; to Py, we observe: (i) Activities Aag and By of the abstract process Ps are
in parallel. According to the execution set semantics, activities Ao and Bo; can
be executed in any order. (ii) The decomposition principle allows for an infinite
repetition of activities. Thus, in the specific process P, this implies that the
ordering relations between decompositions of Asy and Bsy, e.g., Aso1, Baig, etc.
in Py, do not affect the validity of the refinement from P; to P;. To remedy
this, the sibling parallel activities Ao and Boy can be regarded as “transparent”
to each other in the refinement checking. Activities of parallel sibling branches
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(e.g., Ago or Bap) are removed in the abstract process, and their corresponding
decomposed activities are removed in the specific process, respectively. Thus,
execution relations of activities in parallel sibling branches are neglected in the
abstract process. We refer to this reduction as parallel branch break-down.

4 Evaluation

The technical performance of our approach is influenced by the run-time of
DL reasoning. We implemented a generator that simulates arbitrarily complex
refinement scenarios with different characteristics. We used a standard laptop
with a 2.67 GHz dual core, four-threads CPU with 8 GB RAM using Java 1.6
and TrOWL v0.5.1 (http://trowl.eu). Fig. Bl suggests that the reasoning time
of arbitrary parallel-free refinements (dotted graph in the left figure) grows less
than exponentially (less than a straight line on a logarithmic scale) compared
to the number of activities. The parallel branch break-down contributes most
to performance degradation. We generated sequences where each sequential step
consists of two parallel activities. As the combination of all branches has to be
considered separately, the left figure shows exponentially growing run-times.

To estimate the performance in practice, we generated processes with 25%
parallel flow, 50% exclusive flow, and 25% loops because that ratio appeared
most natural. The validation run-times are plotted on the right of Fig. Bl In [2],
IBM examined 735 industrial business processes from different domains. The
processes contained 17 activities on average. The maximum was 118. Thus, a
realistic refinement scenario would contain about 34 activities on average and
236 at maximum. As can be seen from the figure, the corresponding run-times
of our approach would be 0.062s for the average and about 40s for the largest
process.

In addition to the technical performance, we also assessed the business value
(productivity and quality) of refinement validation. To quantify the (1) produc-
tivity and (2) quality improvements through automatic refinement validation,
we conducted a multiple choice test with 13 experts from model-driven software
development. The test consists of two sets of 20 questions. Each question refers
to three different processes P, Py, and P from [3], where P; refines Py and P»
refines P3. Each question has between two and four answer options where none
or multiple answers can be correct. For the one set of 20 questions, denoted by
S for “support”, the result of the refinement validation is highlighted in the pro-
cess models. The other set, denoted by N for “no support”, has to be answered
without support. We measured the number of correct and wrong answers per set
(Cs,Ws, Cn,Wy) and the times for each set (tg, tx). The whole test took about
1.5 hours. We calculate each person’s quality of answers as Q, = Cy/(Cy + W)
and productivity as P, = C,/t;, where x € {S, N}. In order to abstract from
personal work styles and experiences, we calculate the per-person improvement
in quality as QI = Si — 1 and in productivity as PI = g}i — 1. Our test reveals

an average per-person improvement in quality of QI = 70% and in productivity
of PI = 378%, which shows the potential cost savings through our approach.
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Fig. 3. Reasoning times on logarithmic scale

5 Related Work

The business process management community investigates the analysis of in-
teraction properties [4], the difference analysis between process models [5], the
recognition of equivalent fragments [6] and the validation of consistency-aware
changes of a process model with respect to a process template [7]. However,
none of these approaches considers the problem of process refinement given an
abstract and a specific process.

Behavioural profiles [8] describe processes by characteristic relations. They
are used for measuring the compliance of process executions, which are given by
logs, with respect to their models [9]. Behavioural profiles offer an alternative
representation compared to our predecessor and successor relationships. However,
according to our notion of refinement, there are some particular cases like the
occurrence of two exclusive activities in the same branch of a loop, which is
differently handled in our loop break-down compared to the behavioural profiles.

A bunch of works [I0HIZ] considers process model abstraction. A process
model abstraction provides a more abstract and higher-level view by aggregat-
ing and eliminating activities of the original (more detailed) process model. In
contrast to our work, several rules are used to preserve the execution order, while
we allow for an arbitrary refinement and check the validity afterwards. Refine-
ment of actions is modelled by operators in [I3]. These operators preserve the
semantic correctness by taking the relations into account. Our refinement notion
differs in two aspects. First, we do not use refinement operators and therefore,
we cannot ensure correctness by construction. Thus, a key part of our contribu-
tion is the validation of refinements. Second, our semantics rather refers to the
interleaving semantics, where the behaviour is given by sequences of activities,
while in [I3] the causal semantics is used.

Work on process equivalence is faced with a related problem of formalising and
comparing the behaviour of processes. A formalisation of equivalence for BPMN
like process models is presented in [I4]. The equivalence of process models, e.g.,
of a reference and a specific process, is analysed in [I5], where equivalence is
expressed by a degree of similarity between two processes.
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Process algebra, rooted in transition and communication system modelling,
serves as a formal specification of process behaviour in several works [16,17].
Based on this formalisation, simulation and bisimulation allow the comparison
of process behaviour regarding abstraction, specialisation and equivalence. Pro-
cess decompositions, are limited to structured blocks. Thus, not all kinds of
refinements in our work can be expressed by these formalisms.

6 Conclusion

In this paper, we have defined a formal semantics of process refinement based on
the execution set semantics and presented an ontological solution to a process
refinement problem and several reduction techniques to enable the refinement
validation and explanation using standard reasoning services. The evaluation
shows that our approach significantly improves the efficiency and correctness of
process engineering.
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