
Multi-level Elasticity Control of Cloud Services�

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology
{e.copil,d.moldovan,truong,dustdar}@dsg.tuwien.ac.at

Abstract. Fine-grained elasticity control of cloud services has to deal
with multiple elasticity perspectives (quality, cost, and resources). We
propose a cloud services elasticity control mechanism that considers the
service structure for controlling the cloud service elasticity at multiple
levels, by firstly defining an abstract composition model for cloud services
and enabling multi-level elasticity control. Secondly, we define mecha-
nisms for solving conflicting elasticity requirements and generating action
plans for elasticity control. Using the defined concepts and mechanisms
we develop a runtime system supporting multiple levels of elasticity con-
trol and validate the resulted prototype through experiments.

1 Introduction

Cloud services1 are designed in a fashion that they typically use as many as pos-
sible resource capabilities from cloud providers and are distributed on different
virtual machines consuming various types of services offered by cloud providers,
possibly from different cloud infrastructures. Therefore, requirements for them
would differ from the traditional applications, and potentially, they can achieve
elasticity not only in terms of resources but also of cost and quality.

1.1 Motivation

In our previous work we have developed SYBL [1], a language for elasticity
requirements specification which enables the user to define: (i) monitoring spec-
ifications for specifying which metrics need to be monitored, (ii) constraints for
specifying acceptable limits for the monitored metrics, (iii) strategies for spec-
ifying actions to be taken under certain conditions, and (iv) priorities for the
previous specifications. Listing 1.1 shows a cost-related elasticity requirement
specified by, e.g., the service designer, using SYBL, stating that when the total
cloud service price is higher than 800 Euro, a scale-in action is needed.

� This work was supported by the European Commission in terms of the CELAR FP7
project (FP7-ICT-2011-8 #317790).

1 In this paper, cloud service refers to the whole cloud application, including all of its
own software artifacts, middleware and data, that can be deployed and executed on
cloud computing infrastructures.

S. Basu et al. (Eds.): ICSOC 2013, LNCS 8274, pp. 429–436, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



430 G. Copil et al.

Listing 1.1. SYBL elasticity directives

@SYBL_ServiceUnitLevel(Id="CloudService",strategies=
"St1: STRATEGY CASE total_cost>800 Euro : ScaleIn")

@SYBL_CodeRegionLevel(Id="AnalyticsAlgorithm",constraints=
"C1: CONSTRAINT dataAccuracy>90%;
C2: CONSTRAINT dataAccuracy>95% WHEN total_cost>400;
C3: CONSTRAINT total_cost<800;"

priorities="Priority(C2)>Priority(C1);Priority(C3)>Priority(C1);")

While elasticity requirements can be specified at different levels, current elasticity
control techniques do not support controlling different parts of the cloud service
(i.e., elasticity requirement on service unit, on groups of service units) and from
a multi-dimensional perspective. Controlling the cloud service at multiple levels
enables a finer-grained control according to described elasticity requirements.
On the other hand, multiple levels of elasticity requirements could give rise to
conflicts on cross-level or even on the same levels. Therefore, we need solutions for
overcoming cross-level conflicting elasticity requirements and generating plans
for multi-level elasticity control.

1.2 Related Work

Controlling cloud services elasticity in the contemporary view has been tar-
geted by both research and industry. Several authors propose controllers for the
automatic scalability/elasticity of entire cloud services [2] or just parts of the
cloud service (i.e., cloud service data-end) [3]. Guinea et al. [4] develop a system
for multi-level monitoring and adaptation of service-based systems by employ-
ing layer-specific techniques for adapting the system in a cross-layer manner.
Kranas et al. [2] propose a framework for automatic scalability using a deploy-
ment graph as a base model for the application structure and introduce elasticity
as a service cross-cutting different cloud stack layers. Cloud providers offer tools
for automatic scalability like AutoScale2 or SmartCloud initiative3, automati-
cally scaling resources depending on user’s detailed resource-level policies. How-
ever, these approaches do not control the cloud service on multiple levels taking
into consideration the complex service structure, or the multiple dimensions of
elasticity (quality, resources, and cost) [5].

1.3 Contributions

In this paper, we propose a system for multi-level cloud services elasticity control
by considering the service complex structure and supporting multi-dimensional
elasticity. We present the following contributions: (i) a generic composition model
of cloud services for enabling the fine-grained control aware of the structure of the
cloud service and (ii) a fine-grained, multiple levels automatic elasticity control
of cloud services.
2 http://aws.amazon.com/autoscaling/
3 http://www.ibm.com/cloud-computing/us/en/index.html

http://aws.amazon.com/autoscaling/
http://www.ibm.com/cloud-computing/us/en/index.html


Multi-level Elasticity Control of Cloud Services 431

The rest of this paper is organized as follows: Section 2 defines our generic
composition model. Section 3 presents our techniques supporting multi-level elas-
ticity control while Section 4 presents experiments. Section 5 concludes the paper
and outlines our future work.

2 Mapping Service Structures to Elasticity Metrics

2.1 Elasticity Metrics

Cloud service metrics differ on the service type, the service unit targeted by the
metric, or the environment in which the service resides. Resource-level metrics
are the most encountered in cloud IaaS APIs (e.g., IO cost, CPU utilization, disk
access, memory usage). Service unit-level metrics refer to service units (e.g. web
server, or database server) and are used for having a higher level view and being
able to determine the unit’s health or performance (e.g., request queue length,
response time, price). Going higher into the abstraction level, when evaluating
the performance of the cloud service one usually considers cloud service-level
metrics like the whole cloud service response time or number of users per day.
In elasticity control, these metrics can be associated to different cloud service
parts (e.g., the whole cloud service, service unit or a group of service units),
usually, metrics from higher levels (e.g., cloud service level) aggregating metrics
from lower levels.

2.2 Abstracting Cloud Services

For obtaining highly granular control of cloud services and being aware of what
service unit is being controlled, a model for structuring service-related informa-
tion is needed. Our proposed model shown in Figure 1 has the form of a graph,
with various types of relationships and nodes, representing both static and run-
time description of the cloud service and aims at supporting different types of
cloud services (e.g. queue-based applications, or web applications):

– Cloud Service, e.g., is a web application, or a scientific application. The cloud
service represents the entire application/system, and can be further decom-
posed into service topologies and service units. The term is in accordance
with existent architectures and standards (e.g., IBM [6] and TOSCA [7]).

– Service Unit [8], e.g., is a database, or a load balancer. The service units are
modules or individual services offering computation or data capabilities.

– Code Region, e.g., is a data or a computation intensive code sequence. A code
region is a code sequence for which the user has elasticity requirements.

– Service Topology, e.g., is a business tier, data tier, or a part of a workflow.
A cloud service topology represents a group of service units that are seman-
tically connected and that have elasticity capabilities as a group.

– OS Process, e.g., is a web server process or any process of the cloud service.
– Elasticity Metric, e.g., is cost vs. throughput, or cost vs. availability. Elastic-

ity metrics can be associated with any cloud service part (e.g., service unit,
service topology, or code region).



432 G. Copil et al.

Fig. 1. Cloud service abstraction model

– Elasticity Requirement, e.g., is a SYBL directive. They can be specified
through any language (e.g. SYBL) and are linked to any cloud service part.

– Elasticity Capability, e.g., is the elastic reconfiguration for higher availability,
or the creation of new processing jobs for a map-reduce application.

– Elasticity Relationship, e.g., is a connection between any two cloud service
parts, which can be annotated with elasticity requirements.

In order to describe the cloud service during runtime, a dependency graph
(Figure 2) is used. The dependency graph is an instantiation of the described
model, capturing all the information concerning structure and runtime informa-
tion like metrics and associated virtual machines.

If we take the example of a Web service (the left side of Figure 2),the cloud
user views his/her Web service as a set of services, the metrics targeted in users
elasticity requirements being high level metrics. At runtime, the dependency
graph is constructed (right part of the figure), service instances being deployed
on virtual machines, in different virtual clusters, and the accessible metrics are
low level ones. These two views on metrics (cloud user and control system)
are mapped by our elasticity control runtime, aggregating low-level metrics for
computing higher level ones.

Fig. 2. Constructing runtime dependency graph



Multi-level Elasticity Control of Cloud Services 433

Fig. 3. Elasticity control: from directives to enforced plans

Algorithm 1. Solving single-level and cross-level elasticity requirements conflicts

1: function SolveSingleLevelConflicts(graphi)
2: for each l in cloudServiceAbstractionLevels do
3: confConstraints= getConflictingConstraints(graphi,l)
4: graphi.removeConstraints(confConstraints)
5: for each constraintSet in confConstraints do
6: newGeneratedConstraintsLevel.add(constraintSolving(confConstraints))
7: end for
8: graphi.addConstraints(newGeneratedConstraintsLevel)
9: end forreturn grapho = graphi

10: end function
11: function SolveCrossLevelConflicts(graphi)
12: for each level1 in cloudServiceAbstractionLevel do
13: for each level2 in cloudServiceAbstractionLevel do
14: if level1 �= level2 then
15: conflictingConstraints.add(getConflictingConstraints(level1,level2))
16: end if
17: end for
18: graphi.removeConstraints(conflictingConstraints)
19: graphi.addConstraints(translateToHigherLevel(conflictingConstraints))
20: end forreturn grapho=SolveSingleLevelConflicts(graphi)
21: end function

3 Multi-level Elasticity Control Runtime

Considering the model of the cloud service described through the abstract model
presented in the previous section, we enable multiple levels elasticity control of
cloud services, based on the flow shown in Figure 3. The elasticity requirements
are evaluated and conflicts which may appear among them are resolved. After
that, an action plan is generated, consisting of actions which would enable the
fulfillment of specified elasticity requirements.

3.1 Resolving Elasticity Requirements Conflicts

We identify two types of conflicts: (i) conflicts between elasticity requirements
targeting the same abstraction level, and (ii) conflicts which appear between
elasticity requirements targeting different abstraction levels. For the first type,
as shown in function SolveSingleLevelConflicts from Algorithm 1, sets of con-
flicting constraints are identified and a new constraint overriding previous set is
added to the dependency graph for each level (lines 3-10). In the second type of
conflicts (see Algorithm 1, function SolveCrossLevelConflicts) the constraints
from a lower level (i.e., service unit level) are translated into the higher con-
straint’s level (i.e., service topology level), by aggregating metrics considering



434 G. Copil et al.

Algorithm 2. Generating the action plan enforcing the constraints
Input: graph - Cloud Service Dependency Graph
Output: ActionPlan

1: while getNumberOfViolatedConstraints(graph) > 0 do
2: for each level in cloudServiceAbstractionLevel do
3: actionSet=evaluateEnabledActions(graph, getViolatedConstraints(graph,level)
4: Action=findAction(actionSet) with max(constraints fulfilled - violated)
5: addAction(ActionPlan,Action)
6: end for
7: end whilereturn ActionPlan

the dependency graph. Since the problem is reduced to same-level conflicting
directives, we use the approach for the same-level conflicting directives and com-
pute a new directive from overlapping conditions. In both (i) and (ii) it can be
the case of conflict for directives that are targeting different metrics which influ-
ence each other (i.e., cost and availability- when availability increases, the cost
increases as well). However, knowing how one metrics’ evolution affects the other
is a research problem itself which we envision as future work.

3.2 Generating Elasticity Control Plans

For generating the action plan, we formulate the planning problem as a maximum
coverage problem: we need the minimum set of actions which help fulfilling
the maximum set of constraints. Since maximum coverage problem is an NP-
hard problem, and our research does not target finding the optimal solution
for it, we choose the greedy approach which offers an 1− 1

e approximation. The
greedy approach shown in Algorithm 2 takes as input the dependency graph and
returns the action plan for enforcing the constraints. The main step of the plan
generation loop (lines 2-9) consists of finding each time the action for fulfilling
the most constraints. For evaluating this, each action has associated the metrics
affected and the way in which it affects them (i.e., scale out with VM of
type x increases the cost with 200 Euro). The number of fulfilled constraints
through action enforcement is defined as the difference between the number of
constraints enforced and the number of constraints violated.

4 Experiments

We have implemented elasticity control as a service based on SYBL engine [1]
for supporting multi-level, cloud service model aware elasticity control of cloud
services4. Figure 4 shows the elasticity requirements and the experimental cloud
service which is a data-oriented application with two main topologies: a data ser-
vicing oriented topology and a data analytics oriented topology. For the YCSB 5

client we generate the workload as a continuous alternation of combinations

4 Prototype, full paper and further details: http://www.infosys.tuwien.ac.at/
research/viecom/SYBL/index.html

5 https://github.com/brianfrankcooper/YCSB/wiki

http://www.infosys.tuwien.ac.at/research/viecom/SYBL/index.html
http://www.infosys.tuwien.ac.at/research/viecom/SYBL/index.html
https://github.com/brianfrankcooper/YCSB/wiki


Multi-level Elasticity Control of Cloud Services 435

Table 1. Cost and execution time for Data Service Topology units

Configuration Controllers DB Nodes Total execution time Cost
Config1 1 3 578.4 s 0.48
Config2 1 6 472.1 s 0.91
Config3 2 2 382.4 s 0.42
Config4 3 7 372.2 s 0.72

Fig. 4. Current cloud service structure and elasticity directives

Fig. 5. Metrics (CPU usage, cost and latency) and elasticity actions for service units
in Data Service Topology

of the enumerated types of workloads run in parallel. The Hadoop cluster to
processes large data-sets using Mahout machine learning library6.

For reflecting the importance of higher level elasticity control in addition
to the obvious low level one, Table 1 presents performance and cost data on
different Data Service Topology configurations. We assume each virtual machine
costs 1 EUR/hour. Although scale out actions at service unit level do manage
to increase performance (i.e., Config2 vs. Config1 increase in performance of
18.37%), they also enable a considerable cost increase (90 % increase in costs
for Config2 vs Config1). In contrast with this action level, a scale out action
on Cassandra topology (Config3) offers a performance improvement in time
of 33.88% over Config1, and a cost improvement of 12.03%. This is due to

6 http://mahout.apache.org/

http://mahout.apache.org/


436 G. Copil et al.

the fact that more controllers also increase the parallelism of requests, eliminate
bottlenecks and facilitate the workload to finish in less time. However, when
considering the difference of performance and cost between configurations 3 and
4, it is obvious that the dimension of the cluster and the number of clusters
necessary are strongly dependent on the workload characteristics.

Figure 5 shows how the elasticity control engine can scale the Data Service
Topology both at service unit and at service topology level, when directives
shown in Figure 4 require such actions (e.g. scale out for Cassandra DB fixing
”Co4” and scale out for Cassandra topology fixing ”Co4” and ”Co7”).

5 Conclusions and Future Work

We have presented an elasticity control system which enables multi-level
specification of elasticity requirements and execution of automatic elasticity of
cloud services.

With cross multi-level elasticity control capabilities, cloud providers could sell
elasticity as a service to cloud consumers, allowing application code designers
to specify elasticity in a high level manner and enforcing elasticity requirements
for them while cloud consumers can deploy elastic services pre-packed with our
techniques, which will automatically scale application components when needed.

References

1. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: an Extensible Language
for Controlling Elasticity in Cloud Applications. In: 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 112–119. IEEE
Computer Society (2013)

2. Kranas, P., Anagnostopoulos, V., Menychtas, A., Varvarigou, T.: ElaaS: An Innova-
tive Elasticity as a Service Framework for Dynamic Management across the Cloud
Stack Layers. In: 2012 Sixth International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), pp. 1042–1049 (July 2012)

3. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Auto-
mated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. In:
2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), pp. 34–41. IEEE Computer Society (2013)

4. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

5. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of Elastic Processes.
IEEE Internet Computing 15(5), 66–71 (2011)

6. IBM: IBM Cloud Computing Reference Architecture v3.0
7. OASIS Group: TOSCA Specification, v1.0 (2013)
8. Tai, S., Leitner, P., Dustdar, S.: Design by Units: Abstractions for Human and

Compute Resources for Elastic Systems. IEEE Internet Computing 16(4), 84–88
(2012)


	Multi-level Elasticity Control of Cloud Services
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Contributions

	2 Mapping Service Structures to Elasticity Metrics
	2.1 Elasticity Metrics
	2.2 Abstracting Cloud Services

	3 Multi-level Elasticity Control Runtime
	3.1 Resolving Elasticity Requirements Conflicts
	3.2 Generating Elasticity Control Plans

	4 Experiments
	5 Conclusions and Future Work
	References




