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Abstract. Related key attacks (RKAs) are powerful cryptanalytic at-
tacks where an adversary can change the secret key and observe the effect
of such changes at the output. The state of the art in RKA security pro-
tects against an a-priori unbounded number of certain algebraic induced
key relations, e.g., affine functions or polynomials of bounded degree. In
this work, we show that it is possible to go beyond the algebraic bar-
rier and achieve security against arbitrary key relations, by restricting
the number of tampering queries the adversary is allowed to ask for.
The latter restriction is necessary in case of arbitrary key relations, as
otherwise a generic attack of Gennaro et al. (TCC 2004) shows how to
recover the key of almost any cryptographic primitive. We describe our
contributions in more detail below.

1. We show that standard ID and signature schemes constructed from
a large class of X-protocols (including the Okamoto scheme, for
instance) are secure even if the adversary can arbitrarily tamper
with the prover’s state a bounded number of times and obtain some
bounded amount of leakage. Interestingly, for the Okamoto
scheme we can allow also independent tampering with the public
parameters.

2. We show a bounded tamper and leakage resilient CCA secure public
key cryptosystem based on the DDH assumption. We first define a
weaker CPA-like security notion that we can instantiate based on
DDH, and then we give a general compiler that yields CCA-security
with tamper and leakage resilience. This requires a public tamper-
proof common reference string.

3. Finally, we explain how to boost bounded tampering and leakage re-
silience (as in 1. and 2. above) to continuous tampering and leakage
resilience, in the so-called floppy model where each user has a per-
sonal hardware token (containing leak- and tamper-free information)
which can be used to refresh the secret key.

We believe that bounded tampering is a meaningful and interesting al-
ternative to avoid known impossibility results and can provide important
insights into the security of existing standard cryptographic schemes.
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1 Introduction

Related key attacks (RKAs) are powerful cryptanalytic attacks against a cryp-
tographic implementation that allow an adversary to change the key, and subse-
quently observe the effect of such modification on the output. In practice, such
attacks can be carried out, e.g., by heating up the device or altering the internal
power supply or clock [4I11], and may have severe consequences for the security
of a cryptographic implementation. To illustrate such key tampering, consider a
digital signature scheme Sign with public/secret key pair (pk, sk). The tampering
adversary obtains pk and can replace sk with T'(sk) where T is some arbitrary
tampering function. Then, the adversary gets access to an oracle Sign(T'(sk), -),
i.e., to a signing oracle running with the tampered key T'(sk). As usual the ad-
versary wins the game by outputting a valid forgery with respect to the original
public key pk. Notice that T" may be the identity function, in which case we get
the standard security notion of digital signature schemes.

Bellare and Kohno [8] pioneered the formal security analysis of cryptographic
schemes in the presence of related key attacks. In their setting an adversary
tampers continuously with the key by applying functions T chosen from a set
of admissible tampering functions 7. In the signature example from above, each
signing query for message m would be accompanied with a tampering function
T € T and the adversary obtains Sign(T'(sk), m). Clearly, a result in the RKA
setting is stronger if the class of admissible functions 7 is larger, and hence
several recent works have focussed on further broadening 7. The current state of
the art (see discussion in Section [[L2) considers certain algebraic relations of the
key, e.g., T is the set of all affine functions or all polynomials of bounded degree.
A natural question that arises from these works is if we can further broaden the
class of tampering functions — possibly showing security for arbitrary relations.
In this work, we study this question and show that under certain assumptions
security against arbitrary key relations can be achieved.

Is arbitrary key tampering possible? Unfortunately, the answer to the above
question in its most general form is negative. As shown by Gennaro et al. [25], it
is impossible to protect any cryptographic scheme against arbitrary key relations.
In particular, there is an attack that allows to recover the secret key of most
stateless cryptographic primitives after only a few number of tampering queries
To prevent this attack the authors propose to use a self-destruct mechanism.
That is, before each execution of the cryptographic scheme the key is checked
for its validity. In case the key was changed the device self-destructs. In practice,
such self-destruct can for instance be implemented by overwriting the secret
key with the all-zero string, or by switching to a special mode in which the
device outputs 1 B this work, we consider an alternative setting to avoid the

! The impossibility result of [25] leaves certain loopholes, which however seem very
hard to exploit.

2 We notice that the self-destruct has to be permanent as otherwise the attack of [25]
may still apply.
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impossibility results of [25], and assume that an adversary can only carry out a
bounded number of (say t) tampering queries. To explain our setting consider
again the example of a digital signature scheme. In our model, we give the
adversary access to ¢ tampered signing oracles Sign(T;(sk), ), where T; can be
an arbitrary adaptively chosen tampering function. Notice that of course each of
these oracles can be queried a polynomial number of times, while ¢ is typically
linear in the security parameter.

Is security against bounded tampering useful? Besides from being a natural and
non-trivial security notion, we believe that our adversarial model of arbitrary,
bounded tampering is useful for a number of reasons:

1. Tt is a natural alternative to continuous restricted tampering: our security
notion of bounded, arbitrary tampering is orthogonal to the traditional set-
ting of RKA security where the adversary can tamper continuously but is
restricted to certain classes of attacks. Most previous work in the RKA set-
ting considers algebraic key relations that are tied to the scheme’s algebra
and may not reflect attacks in practice. For instance, it is not clear that
heating up the device or shooting with a laser on the memory can be de-
scribed by, e.g., an affine function — a class that is usually considered in the
literature. We also notice that physical tampering may completely destroy
the device, or may be detected by hardware countermeasures, and hence our
model of bounded but arbitrary tampering may be sufficient in such settings.

2. It allows to analyze the security of standard cryptoschemes: as outlined above
a common countermeasure to protect against arbitrary tampering is to im-
plement a key validity check and self-destruct (or output a special failure
symbol) in case such check fails. Unfortunately, most standard cryptographic
implementations do not come with such a built-in procedure to check the
validity of the key. Our notion of bounded tamper resilience allows to make
formal security guarantees of standard cryptographic schemes where neither
the construction, nor the implementation needs to be specially engineered.

3. It can be a useful as a building-block: even if the restriction of bounded
tamper resilience may be too strong in some settings, it can be useful to
achieve results in the stronger continuous tampering setting (we provide
some first preliminary results on this in the full version [I7]). Notice that
this is similar to the setting of leakage resilient cryptography which also
started mainly with “bounded leakage” that later turned out to be very
useful to get results in the continuous leakage setting.

We believe that due to the above points the bounded tampering model is an in-
teresting alternative to avoid known impossibility results for arbitrary tampering
attacks.

1.1 Owur Contribution

We initiate a general study of schemes resilient to both bounded tamper and
leakage attacks. We call this model the bounded leakage and tampering model
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Table 1. An overview of our results for bounded leakage and tamper resilience. All
parameters |X|, || ¢, p and n are a function of the security parameter k. For the case
of Y-protocol, the set X is the set of all possible witnesses and the set ) is the set of
all possible statements for the language; we can achieve a better bound depending on
the conditional average min-entropy of the witness given the statement (cf. Section B]).

Tampering Model ID Schemes IND-CCA PKE
X-Protocols Okamoto BHHO

Secret Key v v v

Public Parameters n.a. v n.a.

Continuous Tampering ¢Floppy v v v

Key Length log | X| £logp £logp

Tampering Queries llog |X|/log|V|] —2 £—2 {—3

(BLT) model. While our general techniques use ideas from the leakage realm,
we emphasize that bounded leakage resilience does not imply bounded tamper
resilience. In fact, it is easy to find contrived schemes that are leakage resilient
but completely break for a single tampering query. At a more technical level, we
observe that a trivial strategy using leakage to simulate, e.g., faulty signatures,
has to fail as the adversary can get any polynomial number of faulty signatures
— which clearly cannot be simulated with bounded leakage only. Nevertheless,
as we show in this work, we are able to identify certain classes of cryptoschemes
for which a small amount of leakage is sufficient to simulate faulty outputs. We
discuss this in more detail below.

Our concrete schemes are proven secure under standard assumptions (DL,
factoring or DDH) and are efficient and simple. Moreover, we show that our
schemes can easily be extended to the continual setting by putting an additional
simple assumption on the hardware. We elaborate more on our main contribu-
tions in the following paragraphs (see also Table[lfor an overview of our results).
Importantly, all our results allow arbitrary key tampering and do not need any
kind of tamper detection mechanism.

Identification schemes. It is well known that the Generalized Okamoto identi-
fication scheme [34] provides security against bounded leakage from the secret
key [BI30]. In Section Bl we show that additionally it provides strong security
against tampering attacks. While in general the tampered view may contain
a polynomial number of faulty transcripts that may potentially reveal a large
amount of information about the secret key, we can show that fortunately this
is not the case for the Generalized Okamaoto scheme. More concretely, we are
able to identify a short amount of information that for each tampering query al-
lows us to simulate any number of corresponding faulty transcripts. Hence, BLT
security of the Generalized Okamoto scheme is implied by its leakage resilience.

Our results on the Okamoto identification can be further generalized to a large
class of identification schemes (and signature schemes based on the Fiat-Shamir
heuristic). More concretely, we show that X-protocols where the secret key is
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significantly longer than the public key are BLT secure. We can instantiate our
result with the generalized Guillou-Quisquater ID scheme [27], and its variant
based on factoring [24] yielding tamper resilient identification based on factoring.
We give more details in Section [3

Interestingly, for Okamoto identification security still holds in a stronger
model where the adversary is allowed to tamper not only with the secret key
of the prover, but also with the description of the public parameters (i.e., the
generator g of a group G of prime order p). The only restrictions are: (i) tamper-
ing with the public parameters is independent from tampering with the secret
key and (ii) the tampering with public parameters must map to its domain. We
also show that the latter restrictions are necessary, by presenting explicit at-
tacks when the adversary can tamper jointly with the secret key and the public
parameters or he can tamper the public parameters to some particular range.

Public key encryption. We show how to construct IND-CCA secure public key
encryption (PKE) in the BLT model. To this end, we first introduce a weaker
CPA-like security notion, where an adversary is given access to a restricted
(faulty) decryption oracle. Instead of decrypting adversarial chosen ciphertexts
such an oracle accepts inputs (m, r), encrypts the message m using randomness r
under the original public key, and returns the decryption using the faulty secret
key. This notion already provides a basic level of tamper resilience for public
key encryption schemes. Consider for instance a setting where the adversary can
tamper with the decryption key, but has no control over the ciphertexts that
are sent to the decryption oracle, e.g., the ciphertexts are sent over a secure
authenticated channel.

Our notion allows the adversary to tamper adaptively with the secret key;
intuitively this allows him to learn faulty decryptions of ciphertexts for which he
already knows the corresponding plaintext (under the original public key) and
the randomness. We show how to instantiate our basic tamper security notion
under DDH. More concretely, we prove that the BHHO cryptosystem [12] is BLT
and CPA secure. The proof uses similar ideas as in the proof of the Okamoto
identification scheme.

We then show how to transform our extended CPA-like notion to CCA security
in the BLT model. To this end, we follow the classical paradigm to transform
IND-CPA security into IND-CCA security by adding an argument of “plaintext
knowledge” 7 to the ciphertext. Our transformation requires a public tamper-
proof common reference string similar to earlier work [29]. Intuitively, this works
because the argument m enforces the adversary to submit to the faulty decryption
oracle only ciphertexts for which he knows the corresponding plaintext (and the
randomness used to encrypt it). The pairs (m,r) can then be extracted from
the argument m, allowing to reduce IND-CCA BLT security to our extended
IND-CPA security notion.

Updating the key in the iFloppy model. As mentioned earlier, if the key is not
updated BLT security is the best we can hope for when we consider arbitrary
tampering. To go beyond the bound of |sk| tampering queries we may regularly
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update the secret key with fresh randomness, which renders information that the
adversary has learned about earlier keys useless. The effectiveness of key updates
in the context of tampering attacks has first been used in the important work of
Kalai et al. [29]. We follow this idea but add an additional hardware assumption
that allows for much simpler and more efficient key updates. More concretely, we
propose the iFloppy model which is a variant of the floppy model proposed by
Alwen et al. [3] and recently studied in depth by Agrawal et al. [2]. In the floppy
model a user of a cryptodevice possesses a so-called floppy — a secure hardware
token — that stores an update keyE The floppy is leakage and tamper proof
and the update key that it holds is solely used to refresh the actual secret key
kept on the cryptodevice. One may think of the floppy as a particularly secure
device that the user keeps at home, while the cryptodevice, e.g., a smart-card,
runs the actual cryptographic task and is used out in the wild prone to leakage
and tampering attacks. We consider a variant called the iFloppy model (here “i”
stands for individual). While in the floppy model of [2/3] all users can potentially
possess an identical hardware token, in the ¢Floppy model we require that each
user has an individual floppy storing some secret key related data. We note that
from a practical point of view the iFloppy model is incomparable to the original
floppy model. It may be more cumbersome to produce personalized hardware
tokens, but on the other hand, in practice one would not want to distribute
hardware tokens that all contain the same global update key as this constitutes
a single point of failure.

We show in the iFloppy model a simple compiler that “boosts” any ID scheme
with BLT security into a scheme with continuous leakage and tamper resilience
(CLT security). Similarly, we show how to extend IND-CCA BLT security to the
CLT setting for the BHHO cryptosystem (borrowing ideas from [2]). We empha-
size that while the ¢Floppy model puts additional requirements on the way users
must behave in order to guarantee security, it greatly simplifies cryptographic
schemes, and allows us to base security on standard assumptions. Our results in
the iFloppy model are mainly deferred to the full version [17].

Tampering with the computation via the BRM. Finally, we make a simple obser-
vation showing that if we instantiate the above ID compiler with an ID scheme
that is secure in the bounded retrieval model [I5I20/3] we can provide security
in the ‘Floppy model even when the adversary can replace the original cryp-
toscheme with an arbitrary adversarial chosen functionality, i.e., we can allow
arbitrary tampering with the computation (see the full version [I7]). While easy
to prove, we believe this is nevertheless noteworthy: it seems to us that results
in the BRM naturally provide some form of tamper resilience and leave it as an
open question for future research to explore this direction further.

3 Notice that “floppy” is just terminology and we use it for consistency with earlier
works.
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1.2 Previous Work

Related key security. We already discussed the relation between BLT security
and the traditional notion of RKA security above. Below we give further details
on some important results in the RKA area. Bellare and Kohno [§] initiated the
theoretical study of related-key-attacks. Their result mainly focused on symmet-
ric key primitives (e.g. PRP, PRF). They proposed various block-cipher based
constructions which are RKA-secure against certain restricted classes of tam-
pering functions. Their constructions were further improved by [32l6]. Following
these works other cryptographic primitives were constructed that are provably
secure against certain classes of related key attacks. Most of these works con-
sider rather restricted tampering functions that, e.g., can be described by a linear
or affine function [BI32I6I5IB35I37II0]. A few important exceptions are described
below.

In [9] the authors show how to go beyond the linear barrier by extending
the class of allowed tampering functions to the class of polynomials of bounded
degree for a number of public-key primitives. Also, the work of Goyal, O’Neill and
Rao [26] considers polynomial relations that are induced to the inputs of a hash
function. Finally Bellare, Cash and Miller [7] develop a framework to transfer
RKA security from a pseudorandom function to other primitives (including many
public key primitives).

Tamper resilient encodings. A generic method for tamper protection has been
put forward by Gennaro et al. [25]. The authors propose a general “compiler”
that transforms any cryptographic device CS with secret state st, e.g., a block
cipher, into a “transformed” cryptoscheme CS’ running with state st’ that is
resilient to arbitrary tampering with st’. In their construction the original state
is signed and the signature is checked before each usage. While the above works
for any tampering function, it is limited to settings where CS does not change
its state as it would need access to the secret signing key to authenticate the
new state. This drawback is resolved by the concept of non-malleable codes
pioneered by Dziembowski, Pietrzak and Wichs [2I]. The original construction
of [21] considers an adversary that can tamper independently with bits. This has
been extended to small size blocks in [I3], and recently to so-called split-state
tampering [31IT]. While the above schemes provide surprisingly strong security
guarantees, they all require certain assumptions on the hardware (e.g., the mem-
ory has to be split into two parts that cannot tampered with jointly), and require
significant changes to the implementation for decoding, tamper detection and
self-destruct.

Continuous tamper resilience via key updates. Kalai et al. [29] provide first fea-
sibility results in the so-called continuous leakage and tampering model (CLT).
Their constructions achieve strong security requirements where the adversary
can arbitrarily tamper continuously with the state. This is achieved by up-
dating the secret key after each usage. While the tampering adversary consid-
ered in [29] is clearly stronger (continuous as opposed to bounded tampering),
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the proposed schemes are non-standard, rather inefficient and rely on non-
standard assumptions. Moreover, the approach of key updates requires a stateful
device and large amounts of randomness which is costly in practice. The main
focus of this work, are simple standard cryptosystems that neither require ran-
domness for key updates nor need to keep state.

Tampering with computation. In all the above works (including ours) it is as-
sumed that the circuitry that computes the cryptographic algorithm using the
potentially tampered key runs correctly and is not subject to tampering attacks.
An important line of works analyze to what extend we can guarantee security
when the complete circuitry is prone to tampering attacks [28/22I16]. These
works typically consider a restricted class of tampering attacks (e.g., individual
bit tampering) and assume that large parts of the circuit (and memory) remain
un-tampered.

2 Preliminaries
For space reasons, we defer some of the basic definitions to the full version [17].

Basic notation. We review the basic terminology used throughout the paper. For
n € N, we write [n] := {1,...,n}. Given a set S, we write s < S to denote that
element s is sampled uniformly from S. If A is an algorithm, y + A(x) denotes
an execution of A with input x and output y; if A is randomized, then y is a
random variable. Vectors are denoted in bold. Given a vector x = (z1,...,z)
and some integer a, we write a® for the vector (a®1,...,a%").

We denote with k the security parameter. A function §(k) is called negligible
in k (or simply negligible) if it vanishes faster than the inverse of any polynomial
in k. A machine A is called probabilistic polynomial time (PPT) if for any input
x € {0,1}* the computation of A(x) terminates in at most poly(|z|) steps and A
is probabilistic (i.e., it uses randomness as part of its logic). Random variables
are usually denoted by capital letters. We sometimes abuse notation and denote
a distribution and the corresponding random variable with the same capital
letter, say X.

Languages and relations. A decision problem related to a language £ C {0,1}*
requires to determine if a given string y is in £ or not. We can associate to any
NP-language £ a polynomial-time recognizable relation % C {0,1}* x {0,1}*
defining £ itself, i.e. £ = {y: 3z s.t. (y,z) € R} for |z| < poly(|y|). The string
x is called a witness for membership of y € £.

Information theory. The min-entropy of a random variable X over a set X
is defined as Hy(X) := —logmax, Pr[X = z], and measures how X can be
predicted by the best (unbounded) predictor. The conditional average min-
entropy [19] of X given a random variable Z (over a set Z) possibly depen-
dent on X, is defined as Hoo (X|Z) := — log B, z[2~H=(XIZ=2)] Following [3],
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we sometimes rephrase the notion of conditional min-entropy in terms of pre-
dictors A that are given some information Z (presumably correlated with X),
so Hoo(X|Z) = —log(maxa Pr[A(Z) = X]). The above notion of conditional
min-entropy can be generalized to the case of interactive predictors A, which
participate in some randomized experiment £. An experiment is modeled as
interaction between A and a challenger oracle £(-) which can be randomized,
stateful and interactive.

Definition 1 ([3]). The conditional min-entropy of a random variable X, con-
ditioned on the experiment & is Hoo(X|E) = — log(maxa Pr [A0() = X]). In
the special case that £ is _a non-interactive experiment which_simply outputs a
random variable Z, then Hoo (X|Z) can be written to denote Hoo (X|E) abusing
the notion.

We will rely on the following basic properties (see [I9, Lemma 2.2]).

Lemma 1. For all random variables X,Z and A over sets X, Z and {0,1}*
such that Hoo (X |Z) > «, we have

3 ID Schemes with BLT Security

In an identification scheme a prover tries to convince a verifier of its identity
(corresponding to its public key pk). Formally, an identification scheme is a
tuple of algorithms ZD = (Setup, Gen, P, V) defined as follows:

pp < Setup(1%): Algorithm Setup takes the security parameter as input and
outputs public parameters pp. The set of all public parameter is denoted by
PP.

(pk, sk) < Gen(1¥): Algorithm Gen outputs the public key and the secret key
corresponding to the prover’s identity. The set of all possible secret keys is
denoted by SK.

(P,V): We let (P(pp, sk) = V(pp))(pk) denote the interaction between prover
P (holding sk and using public parameters pp) and verifier V on common
input pk. Such interaction outputs a result in {accept, reject}, where accept
means P’s identity is considered as valid.

Definition 2. Let A = A(k), t = t(k) and § = §(k) be parameters and let T be
some set of functions such that T € T has a type T : SK x PP — SK xPP. We
say that ID is (A, t,0)-bounded leakage and tamper secure (in short BLT-secure)
against impersonation attacks with respect to T if the following properties are
satisfied.

(i) Correctness. For all pp < Setup(1*) and (pk,sk) < Gen(1%) we have that
(P(pp, sk) = V(pp))(pk) outputs accept.

(i) Security. For all PPT adversaries A we have that Pr[A wins] < §(k) in the
following game:
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1. The challenger runs pp + Setup(1¥) and (pk, sk) < Gen(1%), and gives
(pp, pk) to A.

2. The adversary is given oracle access to P(pp, sk) that outputs polynomi-
ally many proof transcripts with respect to secret key sk.

3. The adversary may adaptively ask t tampering queries. During the ith
query, A chooses a function T; € T and gets oracle access to P(pp;, ﬂci),
where (5@,})}31) = T;(sk,pp). The adversary can interact with the oracle
P(pp;, s~kz) a polynomially number of times, where it uses the tampered
secret key 5;7@ and the public parameter pp,.

4. The adversary may adaptively ask leakage queries. In the jth query, A
chooses a function L; : {0,1}* — {0,1} and receives back the output
of the function applied to sk.

5. The adversary loses access to all other oracles and interacts with an
honest verifier V (holding pk). We say that A wins if (A 2 V(pp))(pk)
outputs accept and Zj Aj <A

Notice that in the above definition the leakage is from the original secret key
sk. This is without loss of generality as our tampering functions are modeled as
deterministic circuits.

In a slightly more general setting, one could allow A to leak on the original
secret key also in the last phase where it has to convince the verifier. In the
terminology of [3] this is reminiscent of so-called anytime leakage attacks. Our
results can be generalized to this setting, however we stick to Definition [l for
simplicity.

The rest of this section is organized as follows. In Section 3.1l we prove that
a large class of X-protocols are secure in the BLT model, where the tampering
function is allowed to modify the secret state of the prover but not the public
parameters. In Section we look at a concrete instantiation based on the
Okamoto ID scheme, and prove that this construction is secure in a stronger
model where the tampering function can modify both the secret state of the
prover and the public parameters (but independently). Finally, in Section B3] we
illustrate that the latter assumption is necessary, as otherwise the Okamoto ID
scheme can be broken by (albeit contrived) attacks.

3.1 JX-protocols Are Tamper Resilient

We start by considering ID schemes based on X-protocols [I4]. X-protocols are
a special class of interactive proof systems for membership in a language £,
where a prover P = (Pg,P1) wants to convince a verifier V. = (Vo, V1) (both
modelled as PPT algorithms) that a shared string y belongs to £. Denote with
x the witness corresponding to y and let pp be public parameters. The protocol
proceeds as follows: (1) The prover computes a < Po(pp) and sends it to the
verifier; (2) The verifier chooses ¢ < Vo (pp, y) uniformly at random and sends it
to the prover; (3) The prover answers with z < P1(pp, (a, ¢, x)); (4) The verifier
outputs a result V1(pp,y, (a,c,2)) € {accept, reject}. We call this a public-coin
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ID Scheme from X-Protocol

Let ((Po,P1), (Vo, V1)) be a X-protocol for a relation .

Setup(1¥): Sample public parameters pp < PP for the underlying relation
R.
Gen(1%): Output a pair (y,z) € R, where z € X and y € Y and |z| is
polynomially bounded by |y|.
(P(pp,x) = V(pp))(y): The protocol works as follows.
1. The prover sends a < Po(pp) to the verifier.
2. The verifier chooses a random challenge ¢ < Vo(pp, y) and sends it to
the prover.
3. The prover computes the answer z < P1(pp, (a,c, x)).
4. The verifier accepts iff V1 (pp,y, (a,c, z)) outputs accept.

Fig. 1. ID scheme based on X-protocol for relation R

three round interactive proof system. A formal definition of X-protocols can be
found in the full version [I7].

It is well known that Y-protocols are a natural tool to design ID schemes.
The construction is depicted in Figure [l Consider now the class of tampering
functions T C T such that T € T has the following form: T = (T*¥, IDP)
where 7% : SKC — SK is an arbitrary polynomial time computable function and
IDP?P : PP — PP is the identity function. This models tampering with the secret
state of P without changing the public parameters (these must be hard-wired
into the prover’s code). The proof of the following theorem (which appears in
the full version [I7]) uses ideas of [3], but is carefully adjusted to incorporate
tampering attacks.

Theorem 1. Let k € N be the security parameter and let (P,V) be a X-protocol
for relation R with |Y| = O(k'°8*), such that the representation problem is hard
for R. Assume that conditioned on the distribution of the public input y € Y, the
witness © € X has high average min entropy S, i.e., Hoo (X|Y) > B. Then, the
ID scheme of Figure[l is (A(k),t(k), negl(k))-BLT secure against impersonation
attacks with respect to Te, where

B
A< B —tlog|Y|—k and tS\jogWJ_l

3.2 Concrete Instantiation with More Tampering

We extend the power of the adversary by allowing him to tamper not only
with the witness, but also with the public parameters (used by the prover to
generate the transcripts). However the tampering has to be independent on the
two components. This is reminiscent of the so-called split-state model (considered
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Generalized Okamoto ID Scheme

Let £ = ¢(k) be some function of the security parameter. Consider the following
identification scheme.

Setup: Choose a group G of prime order p with generator g and a vector
o + Z&, and output pp = (G, g,g*) where ¢® = (g1, .., ge).

Gen(1%): Select a vector x ¢ Z% and set y = pk = Hle g;% and sk = x.
(P(pp, sk) = V(pp))(pk): The protocol works as follows.

1. The prover chooses a random vector r < Z;, and sends a = Hle g;'

to the verifier.

2. The verifier chooses a random challenge ¢ < Z, and sends it to the
prover.
The prover computes the answer z = (r1 + ¢x1,...,7¢ + cxe).

ZL_

4. The verifier accepts if and only if H ie1 91 =a-y".

@

Fig. 2. Generalized Okamoto Identification Scheme

for instance in [31])), with the key difference that in our case the secret state does
not need to be split into two parts.

We model this through the following class of tampering functions Tspir: We
say that T € Topie if we can write T = (T**, T?P) where T** : SK — SK and
TPP : PP — PP are arbitrary polynomial time computable functions. Recall
that the input/output domains of 7%, PP are identical, hence the size of the
witness and the public parameters cannot be changed. As we show in the next
section, this restriction is necessary. Note also that Te C Tepiit C T .

Generalized Okamoto. Consider the generalized version of the Okamoto ID
scheme [34], depicted in Figure 21 The underlying hard relation here is the rela-
tion Rp and the representation problem for $Rp| is the f-representation problem
in a group G. As proven in [3], this problem is equivalent to the Discrete Log
problem in G. The proof of the following corollary appears in the full version [17].

Corollary 1. Let k € N be the security parameter and assume the Discrete Log
problem is hard in G. Then, the generalized Okamoto ID scheme is (A(k),t(k),
negl(k))-BLT secure against impersonation attacks with respect to Teplit, where

A< (—1—-t)log(p) — k and  t<L—2.

3.3 Some Attacks

We show that for the Okamoto scheme it is hard to hope for BLT security
beyond the class of tampering functions 7Tgit. We illustrate this by concrete
attacks which work in case one tries to extend the power of the adversary in two
different ways: (1) Allowing A to tamper jointly with the witness and the public
parameters; (2) Allowing A to tamper independently with the witness and with
the public parameters but increase their size.
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Tampering jointly with the public parameters. Consider the class of functions T
introduced in Definition

Claim. The generalized Okamoto ID scheme is not BLT-secure against imper-
sonation attacks with respect to 7.

Proof. The attack uses a single tampering query. Define the tampering function
T(x,pp) = (X, pp) to be as follows:

- The witness is unchanged, i.e., x = X.

- The value p is some prime of size |p| ~ |p| such that the Discrete Log
problem is easy in the corresponding group G. (This can be done efficiently
by choosing p — 1 to be the product of small prime (power) factors [36].)

- Let g be a generator of G (which exists since p is a prime) and define the
new generators as g; = g~ mod p.

Consider now a transcript (a,c,z) produced by a run of P(pp,x). We have
a = ngzlxm mod p for random r; € Zz. By computing the Discrete Log of
a in base g (which is easy by our choice of G), we get one equation Zle T =
logg(a) mod p. Asking for polynomially many transcripts, yields ¢ linearly inde-
pendent equations (with overwhelming probability) and thus allows to solve for
(x1,...,2¢). (Note here that with high probability x; mod p = z; mod p since
Il =~ [p].)

Tampering by “inflating” the prime p. Consider the following class of tampering

functions Tepie C Tgy: We say that T' € if T = (T*F,TPP), where T** :
SK — {0,1}* and T?? : PP — {0,1}*.

£ 3
split

Claim. The generalized Okamoto ID scheme is not BLT-secure against imper-

sonation attacks with respect to split-

Proof. The attack uses a single tampering query. Consider the following tam-

pering function 7' = (7%, T*PP) € aplit’

- Choose p to be a prime of size |p| = 2(¢|p|), such that the Discrete Log
problem is easy in G. (This can be done as in the proof of Claim B:3])

- Choose a generator g of G; define gi=gandg;=1forall j=2,...,¢

- Define the witness to be X such that z; = z1||...||lz¢ and Z; = 0 for all
j=2,...,¢.

Given a single transcript (a, ¢, z) the adversary learns a = g™ for some r1 € Zj.
Since the Discrete Log is easy in this group, A can find r;. Now the knowledge
of c and z; = 1 + ¢Z1, allows to recover T = (z1,...,x¢).

3.4 BLT-Secure Signatures

It is well known that every X-protocol can be turned into a signature scheme
via the Fiat-Shamir heuristic [23]. By applying the Fiat-Shamir transformation
to the protocol of Figure [T we get efficient BLT-secure signatures in the random
oracle model.
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4 IND-CCA PKE with BLT Security

We start by defining IND-CCA public key encryption (PKE) with BLT security.
A PKE scheme is a tuple of algorithms PXE = (Setup, KGen, Enc, Dec) defined
as follows. (1) Algorithm Setup takes as input the security parameter and out-
puts the description of public parameters pp; the set of all public parameters is
denoted by PP. (2) Algorithm KGen takes as input the security parameter and
outputs a public/secret key pair (pk, sk); the set of all secret keys is denoted
by SK and the set of all public keys by PK. (3) The randomized algorithm Enc
takes as input the public key pk, a message m € M and randomness r € R
and outputs a ciphertext ¢ = Enc(pk, m;r); the set of all ciphertexts is denoted
by C. (4) The deterministic algorithm Dec takes as input the secret key sk and
a ciphertext ¢ € C and outputs m = Dec(sk, c) which is either equal to some
message m € M or to an error symbol L.

Definition 3. Let A = A(k), t = t(k) and 6 = §(k) be parameters and let T
be some set of functions such that T € T has a type T : SK — SK. We say
that PKE is IND-CCA (A(k),t(k),d(k))-BLT secure with respect to Tex if the
following properties are satisfied.

(i) Correctness. For all pp + Setup(1¥), (pk,sk) + KGen(1*) we have that
Pr[Dec(sk, Enc(pk,m)) = m] = 1 (where the randomness is taken over the
internal coin tosses of algorithm Enc).

(ii) Security. For all PPT adversaries A we have that Pr [A wins] < J + 6(k) in
the following game:

1. The challenger runs pp < Setup(1¥), (pk,sk) < KGen(1*) and gives
(pp, pk) to A.

2. The adversary is given oracle access to Dec(sk,-). This oracle outputs
polynomially many decryptions of ciphertexrts using secret key sk.

3. The adversary may adaptively ask t tampering queries. During the ith
query, A chooses a function T; € T and gets oracle access to Dec(sk;, ),
where 5;7@ = T;(sk). This oracle outputs polynomially many decryptions
of ciphertexts using secret key 37%

4. The adversary may adaptively ask polynomially many leakage queries. In
the jth query, A chooses a function Lj : {0,1}* — {0,1}% and receives
back the output of the function applied to sk.

5. The adversary outputs two messages of the same length mg,m; € M
and the challenger computes ¢, < Enc(pk,my,) where b is a uniformly
random bit.

6. The adversary keeps access to Dec(sk,-) and outputs a bit b'. We say A
wins if b="0, Zj Aj < X and ¢, has not been queried for.

In case ¢ = 0 we get the notion of leakage resilient IND-CCA from [33] as a
special case. Notice that A is not allowed to tamper with the secret key after
seeing the challenge ciphertext. As we show in the full version [I7], this restriction
is necessary because otherwise A could overwrite the secret key depending on the
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plaintext encrypted in ¢, and thus gain some advantage in guessing the value
of b by asking additional decryption queries.

We build an IND-CCA BLT-secure PKE scheme in two steps. In Section E.1]
we define a weaker notion which we call IND-CPA BLT security. In Section
we show a general transformation from IND-CPA BLT security to IND-CCA
BLT security relying on tSE NIZK proofs [I§] in the common reference string
(CRS) model. The CRS is supposed to be tamper-free and must be hard-wired
into the code of the encryption algorithm; however tampering and leakage can
depend adaptively on the CRS and the public parameters. Finally, in Section [£.3]
we prove that a variant of the BHHO encryption scheme [33] satisfies our notion
of IND-CPA BLT security.

4.1 IND-CPA BLT Security

The main idea of our new security notion is as follows. Instead of giving A
full access to a tampering oracle (as in Definition [B]) we restrict his power by
allowing him to see the output of the (tampered) decryption oracle only for
ciphertexts ¢ for which A already knows both the corresponding plaintext m
and the randomness r used to generate ¢ (via the real public key). Essentially
this restricts A to submit to the tampering oracle only “well-formed” ciphertexts.

Definition 4. Let A = A(k), t = t(k) and § = §(k) be parameters and let Tg be
some set of functions such that T € Te has a type T : SK — SK. We say that
PKE is IND-CPA (A(k),t(k),0(k))-BLT secure with respect to T if it satisfies
property (i) of Definition[3 and property (ii) is modified as follows:

(ii) Security. For all PPT adversaries A we have that Pr [A wins] < } + 6(k) in
the following game:

1. The challenger runs pp < Setup(1¥), (pk,sk) < KGen(1*) and gives
(pp, pk) to A.

2. The adversary may adaptively ask t tampering queries. During the ith
query, A chooses a function T; € T and gets oracle access to
Dec*(sk;,-,-), where sk; = T;(sk). This oracle answers polynomially
many queries of the following form: Upon input a pair (m,r) € M X R,
compute ¢ < Enc(pk,m;r) and output a plaintext m = Dec(s~ki, ) using
the current tampered key.

3. The adversary may adaptively ask leakage queries. In the jth query, A
chooses a function L; : {0,1}* — {0,1}* and receives back the output
of the function applied to sk.

4. The adversary outputs two messages of the same length mg,m; € M
and the challenger computes ¢, < Enc(pk,my,) where b is a uniformly
random bit.

5. The adversary loses access to all oracles and outputs a bit b'. We say
that A wins if b=10b" and 3 ; \j < A.
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From IND-CPA BLT Security to IND-CCA BLT Security

Let PKE = (Setup, KGen, Enc, Dec) be a PKE scheme and (Gen, Prove, Verify)
be a tSE NIZK argument system for the relation:

Rexe = {(pk,c), (m,r) : ¢ = Enc(pk,m;r)}.
Define the following PKE scheme PKE’ = (Setup’, KGen’, Enc’, Dec’).

Setup’: Sample pp < Setup(1*) and (w,tk,ek) < Gen(1*) and let pp’ =
(pp,w).

KGen’: Run (pk, sk) < KGen(1¥) and set pk’ = pk and sk’ = sk.

Enc’: Sample r < R and compute ¢ + Enc(pk, m;r). Output (c, ), where
7 < Prove*((pk,c), (m,7)).

Dec’: Check that Verify”((pk,c), ) = 1. If not output L; otherwise, output
m = Dec(sk, c).

Fig. 3. How to transform IND-CPA BLT-secure PKE into IND-CCA BLT-secure PKE

4.2 A General Transformation

We compile an arbitrary IND-CPA BLT-secure encryption scheme into an IND-
CCA BLT-secure one by appending to the ciphertext ¢ an argument of “plaintext
knowledge” 7 computed through a tSE NIZK argument system. The same con-
struction has been already used by Dodis et al. [18] to go from IND-CPA security
to IND-CCA security in the context of memory leakage.

The intuition why the transformation works is fairly simple: The argument
7 enforces the adversary to submit to the tampered decryption oracle only ci-
phertexts for which he knows the corresponding plaintext (and the randomness
used to encrypt it). In the security proof the pair (m,r) can indeed be extracted
from such argument, allowing to reduce IND-CCA BLT security to IND-CPA
BLT security.

Theorem 2. Let k € N be the security parameter. Assume that PKE is an
IND-CPA (A(k),t(k),0(k))-BLT secure encryption scheme and that (Gen, Prove,
Verify) is a strong tSE NIZK argument system for relation Rpxe. Then, the
encryption scheme PKE' of Figure[d is IND-CCA (\(k),t(k), ' (k))-BLT secure
for &' <6+ negl(k).

Proof. We prove the theorem by a series of games. All games are a variant of
the IND-CCA BLT game and in all games the adversary gets correctly gener-
ated public parameters (pp, w, pk). Leakage and tampering queries are answered
using the corresponding secret key sk. The games will differ only in the way the
challenge ciphertext is computed or in the way the decryption oracles work.

Game G;. This is the IND-CCA BLT game of Definition Bl for the scheme
PKE'. Note in particular that all decryption oracles expect to receive as
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input a ciphertext of the form (¢,7) and proceed to verify the proof m
before decrypting the ciphertext (and output L if such verification fails).
The challenge ciphertext is a pair (e, mp) such that ¢, = Enc(pk, mp; ) and
7 <— Prove”((pk, c), (my, r)), where my, € {mg, my} for a uniformly random
bit . By assumption we have that

1
Pr[A wins in G1] < 5 + 0" (k).

Game G;. In this game we change the way the challenge ciphertext is computed

by replacing the argument 7, with a simulated argument 7, < S((pk, cp), tk).
It follows from the composable NIZK property of the argument system that
Gy and Gy are computationally close. In particular there exists a negligible
function 61 (k) such that |[Pr[A wins in G1] — Pr[A wins in Go] | < 61 (k).

Game Gs. We change the way decryption queries are handled. Queries (¢, 7) to

Dec(sk,-) (such that m accepts) are answered by running the extractor Ext
on m, yielding (m,r) < Ext((pk, c), , ek), and returning m.

Queries (¢, 7) to Dec(sk;, -) (such that m accepts) are answered as follows. We
first extract (m,r) < Ext((pk, ¢), m, ek) as above. Then, instead of returning
m, we recompute ¢ = Enc(pk, m;r) and return m = Dec(s~ki, c).

It follows from true simulation extractability that Go and Gz are computa-
tionally close. The reason for this is that A gets to see only a single simulated
proof for a true statement (i.e., the pair (pk,cp)) and thus cannot produce
a pair (¢,m) # (cp, m) such that the proof 7 accepts and Ext fails to ex-
tract the corresponding plaintext m. In particular there exists a negligible
function d2(k) such that |Pr[A wins in Ga] — Pr[A wins in Gs]| < d2(k).

Game G,4. In the last game we replace the ciphertext ¢, in the challenge with an

encryption of 01!, whereas we still compute the proof as m, < S((pk, c3), tk).
We claim that Gs and G4 are computationally close. This follows from IND-
CPA BLT-security of PIXE. Assume there exists a distinguisher D between
G3 and G4. We build an adversary B breaking IND-CPA BLT security for
PKE. The adversary B uses D as a black-box as follows.

Reduction BP:

1. Receive (pp, pk) from the challenger, sample (w,tk,ek) < Gen(1F)
and give pp’ = (pp,w) and pk’ = pk to A.

2. Upon input a normal decryption query (¢, 7) from A, run the extrac-
tor to compute (m,r) < Ext((pk,c), 7, ek) and return m.

3. Upon input a tampering query T; € Te, forward T; to the tam-
pering oracle for PXE. To answer a query (¢, 7), run the extrac-
tor to compute (m,r) < Ext((pk,c),m,ek). Submit (m,r) to oracle
Dec*(sk;, -, -) and receive the answer . Return i to A.

4. Upon input a leakage query L;, forward L; to the leakage oracle for
PKE.

5. When A outputs mg,m; € M, sample a random bit b’ and out-
put (mb/,()‘mb'|). Let ¢, be the corresponding challenge ciphertext.
Compute m, < S((pk, ), tk) and forward (cp, m) to A. Continue to
answer normal decryption queries (¢, 7) from A as above.
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6. Output whatever D does.
Notice that the reduction perfectly simulates the environment for A; in
particular ¢, is either the encryption of randomly chosen message among
(mo,m1) (as in Gg) or an encryption of zero (as in G4). Since PKE is (A, t,0)-
BLT secure, it must be |Pr[A wins in G3] — Pr[A wins in G4]| < (k).

As clearly Pr[A wins in G4] = 0, we have obtained

§" = |Pr[A wins in Gy] — Pr[A wins in Gg] |
< |Pr[A wins in G;] — Pr[A wins in Gg] | 4 |Pr[A wins in Go]
— Pr[A wins in G3] | + |Pr[A wins in Gs] — Pr[A wins in Gg4]|
< O1(k) + d2(k) + 6(k) = 6(k) + negl(k).

This concludes the proof.

4.3 Instantiation from BHHO

We show that the variant of the encryption scheme introduced by Boneh et
al. [12] used in [33] is IND-CPA BLT-secure. The proof relies on the observa-
tion that one can simulate polynomially many decryption queries for a given
tampered key by only leaking a bounded amount of information from the secret
key. Hence, security follows from leakage resilience. The formal description of
the scheme and the proof can be found in the full version [17].

5 Updating the Key in the 1Floppy Model

We complement the results from the previous two sections by showing how to
obtain security against an unbounded number of tampering queries in the floppy
model of [32]. Recall that in this model we assume the existence of an external
tamper-free and leakage-free storage (the floppy), which is needed to refresh
the secret key on the tamperable device. An important difference between the
floppy model considered in this paper and the model of [2] is that in our case
the floppy can contain “user-specific” information, whereas in [2] it contains a
unique master key which in principle could be equal for all users. To stress this
difference, we refer to our model as the iFloppy model.

Clearly, the assumption of a unique master key makes production easier but
it is also a single point of failure in the system since in case the content of
the floppy is published (e.g., by a malicious user) the entire system needs to
be re-initializedd A solution for this is to assume that each floppy contains a
different master key as is the case in the iFloppy model, resulting in a trade-off
between security and production cost. Due to space restrictions, we defer the
formal definitions and proofs to the full version [I7].

4 We note that in the schemes of [2] making the content of the floppy public does not
constitute a total breach of security; however the security proof completely breaks
down, leaving no security guarantee for the schemes at hand.
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