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Abstract. Revocation and key evolving paradigms are central issues in cryptog-
raphy, and in PKI in particular. A novel concern related to these areas was raised
in the recent work of Sahai, Seyalioglu, and Waters (Crypto 2012) who noticed
that revoking past keys should at times (e.g., the scenario of cloud storage) be ac-
companied by revocation of past ciphertexts (to prevent unread ciphertexts from
being read by revoked users). They introduced revocable-storage attribute-based
encryption (RS-ABE) as a good access control mechanism for cloud storage. RS-
ABE protects against the revoked users not only the future data by supporting
key-revocation but also the past data by supporting ciphertext-update, through
which a ciphertext at time T can be updated to a new ciphertext at time T + 1
using only the public key. Motivated by this pioneering work, we ask whether
it is possible to have a modular approach, which includes a primitive for time
managed ciphertext update as a primitive. We call encryption which supports
this primitive a “self-updatable encryption” (SUE). We then suggest a modular
cryptosystems design methodology based on three sub-components: a primary
encryption scheme, a key-revocation mechanism, and a time-evolution mecha-
nism which controls the ciphertext self-updating via an SUE method, coordinated
with the revocation (when needed). Our goal in this is to allow the self-updating
ciphertext component to take part in the design of new and improved cryptosys-
tems and protocols in a flexible fashion. Specifically, we achieve the following
results:

– We first introduce a new cryptographic primitive called self-updatable en-
cryption (SUE), realizing a time-evolution mechanism. We also construct an
SUE scheme and prove its full security under static assumptions.

– Following our modular approach, we present a new RS-ABE scheme with
shorter ciphertexts than that of Sahai et al. and prove its security. The length
efficiency is mainly due to our SUE scheme and the underlying modularity.

– We apply our approach to predicate encryption (PE) supporting attribute-
hiding property, and obtain a revocable-storage PE (RS-PE) scheme that is
selectively-secure.

– We further demonstrate that SUE is of independent interest, by showing it
can be used for timed-release encryption (and its applications), and for aug-
menting key-insulated encryption with forward-secure storage.
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1 Introduction

Cloud data storage has many advantages: A virtually unlimited amount of space can be
flexibly allocated with very low costs, and storage management, including back-up and
recovery, has never been easier. More importantly, it provides great accessibility: users
in any geographic location can access their data through the Internet. However, when
an organization is to store privacy-sensitive data, existing cloud services do not seem
to provide a good security guarantee yet (since the area is in its infancy). In particular,
access control is one of the greatest concerns, that is, the sensitive data items have to be
protected from any illegal access, whether it comes from outsiders or even from insiders
without proper access rights.

One possible approach for this problem is to use attribute-based encryption (ABE)
that provides cryptographically enhanced access control functionality in encrypted data
[14, 18, 30]. In ABE, each user in the system is issued a private key from an authority
that reflects their attributes (or credentials), and each ciphertext specifies access to itself
as a boolean formula over a set of attributes. A user will be able to decrypt a ciphertext
if the attributes associated with their private key satisfy the boolean formula associated
with the ciphertext. To deal with the change of user’s credentials that takes place over
time, revocable ABE (R-ABE) [3] has been suggested, in which a user’s private key can
be revoked. In R-ABE, a key generation authority uses broadcast encryption to allow
legitimate users to update their keys. Therefore, a revoked user cannot learn any partial
information about the messages encrypted when the ciphertext is created after the time
of revocation (or after the user’s credential has expired).

As pointed out by Sahai, Seyalioglu, and Waters [29], R-ABE alone does not suffice
in managing dynamic credentials for cloud storage. In fact, R-ABE cannot prevent a
revoked user from accessing ciphertexts that were created before the revocation, since
the old private key of the revoked user is enough to decrypt these ciphertexts. To over-
come this, they introduced a novel revocable-storage ABE (RS-ABE) which solves this
issue by supporting not only the revocation functionality but also the ciphertext update
functionality such that a ciphertext at any arbitrary time T can be updated to a new ci-
phertext at time T + 1 by any party just using the public key (in particular, by the cloud
servers).

Key-revocation and key evolution are general sub-area in cryptosystems design, and
ciphertext-update is a new concern which may be useful elsewhere. So, in this paper,
we ask natural questions:

Can we achieve key-revocation and ciphertext-update in other encryption schemes?
Can we use ciphertext-update as an underlying primitive by itself?

We note that, in contrast to our questions, the methodology that Sahai et al. [29] used
to achieve ciphertext-update is customized to the context of ABE. In particular, they
first added ciphertext-delegation to ABE, and then, they represented time as a set of
attributes, and by doing so they reduced ciphertext-update to ciphertext-delegation.



Self-Updatable Encryption 237

1.1 Our Results

We address the questions by taking a modular approach, that is, by actually constructing
a cryptographic component realizing each of the two functionalities: key revocation and
ciphertext update. In particular, our design approach is as follows:

– The overall system has three components: a primary encryption scheme (i.e., ABE or
some other encryption scheme), a key-revocation mechanism, and a time-evolution
mechanism.

– We combine the components by putting the key-revocation mechanism in the center
and connecting it with the other two. This is because the revoked users need to be
taken into account both in the decryption of the primary scheme and in the time-
evolution of ciphertexts.

There are a few potential benefits to this approach. First, we may be able to achieve key-
revocation and time-evolution mechanisms, independently of the primary encryption
scheme. Secondly, each mechanism may be of independent interest and be used in other
interesting scenarios. Thirdly, looking at each mechanism alone may open the door to
various optimizations and flexibilities of implementations.

Time-Evolution Mechanism: Self-Updatable Encryption. We first formulate a new
cryptographic primitive called self-updatable encryption (SUE), realizing a time-
evolution mechanism. In SUE, a ciphertext and a private key are associated with time
Tc and Tk respectively. A user who has a private key with time Tk can decrypt the ci-
phertext with time Tc if Tc ≤ Tk. Additionally, anyone can update the ciphertext with
time Tc to a new ciphertext with new time T ′

c such that Tc < T ′
c . We construct an SUE

scheme in composite order bilinear groups. In our SUE scheme, a ciphertext consists
of O(logTmax) group elements, and a private key consists of O(logTmax) group ele-
ments, where Tmax is the maximum time period in the system. Our SUE scheme is
fully secure under static assumptions by using the dual system encryption technique of
Waters [19, 31].

RS-ABE with Shorter Ciphertexts. Following the general approach above, we con-
struct a new RS-ABE scheme and prove that it is fully secure under static assumptions.
In particular, we take the ciphertext-policy ABE (CP-ABE) scheme of Lewko et al. [18]
as the primary encryption scheme, and combine it with our SUE scheme and a revoca-
tion mechanism. The revocation mechanism follows the design principle of Boldyreva,
Goyal, and Kumar [3] that uses the complete subtree method to securely update the keys
of the non-revoked users. Compared with the scheme of Sahai et al. [29], our scheme
has a shorter ciphertext length consisting of O(l + logTmax) groups elements where l
is the size of row in the ABE access structure; a ciphertext in their scheme consists of
O(l logTmax + log2 Tmax) group elements (reflecting the fact that time is dealt with in a
less modular fashion there, while we employ the more separated SUE component which
is length efficient).

Revocable-Storage Predicate Encryption. We apply our approach to predicate en-
cryption (PE) and give the first RS-PE scheme. In particular, taking the PE scheme of
Park [26] as the primary encryption scheme, we combine it with the same revocation
functionality and (a variant of) our SUE scheme. The scheme is in prime-order groups
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and is shown to be selectively secure (a previously used weaker notion than (full) secu-
rity, where the adversary selects the target of attack at the start). Obviously, compared
with the RS-ABE scheme, the RS-PE scheme is a PE system and, thus, additionally sup-
ports the attribute-hiding property: even a decryptor cannot obtain information about the
attributes x of a ciphertext except f (x), where f is the predicate of its private key.

Other Systems. These are discussed below in this section.

1.2 Our Technique

To devise our SUE scheme, we use a full binary tree structure to represent time. The
idea of using the full binary tree for time was already used by Canetti et al. [8] to
construct a forward-secure public-key encryption (FSE) scheme. However, our scheme
greatly differs on a technical level from their approach; in our scheme, a ciphertext is
updated from time Ti to time Tj > Ti, whereas in their scheme a private key is updated
from time Ti to time Tj > Ti. We start from the HIBE scheme of Boneh and Boyen [4],
and then construct a ciphertext delegatable encryption (CDE) scheme, by switching
the structure of private keys with that of ciphertexts; our goal is to support ciphertext
delegation instead of private key delegation. In CDE, each ciphertext is associated with
a tree node, so is each private key. A ciphertext at a tree node vc can be decrypted by
any keys with a tree node vk where vk is a descendant (or self) of vc. We note that
the CDE scheme may be of independent interest. The ciphertext delegation property of
CDE allows us to construct an SUE scheme. An SUE ciphertext at time Ti consists of
multiple CDE ciphertexts in order to support ciphertext-update for every Tj such that
Tj > Ti. We were able to reduce the number of group elements in the SUE ciphertext by
carefully reusing the randomness of CDE ciphertexts.

Our key-revocation mechanism, as mentioned above, uses a symmetric-key broad-
cast encryption scheme to periodically broadcast update keys to non-revoked users.
A set of non-revoked users is represented as a node (more exactly the leaves of the
subtree rooted at the node) in a tree, following the complete subset (CS) scheme of
Naor et al. [22]. So, we use two different trees in this paper, i.e., one for representing
time in the ciphertext domain, and the other for managing non-revoked users in the key
domain.

In the RS-ABE/RS-PE setting, a user u who has a private key with attributes x and an
update key with a revoked set R at time T ′ can decrypt a ciphertext with a policy f and
time T if the attribute satisfies the policy ( f (x) = 1) and the user is not revoked (u /∈ R),
and T ≤ T ′. The main challenge in combining all the components is protecting the
overall scheme against a collusion attack, e.g., a non-revoked user with a few attributes
should not decrypt more ciphertexts than he is allowed to, given the help of a revoked
user with many attributes. To achieve this, we use a secret sharing scheme as suggested
in [3]. Roughly speaking, the overall scheme is associated with a secret key α . For each
node vi in the revocation tree, this secret key α is split into γi for ABE/PE, and α −γi for
SUE, where γi is random. Initially, each user will have some tree nodes vis according
to the revocation mechanism, and get ABE/PE private keys subject to his attributes at
each of vis (associated with the ABE/PE master secret γi). In key-update at time T , only
non-revoked users receive SUE private keys with time T at a tree node v j representing
a set of non-revoked users (associated with the SUE master secret α − γ j).
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1.3 Other Applications

Timed-Release Encryption. One application of SUE is timed-release encryption (TRE)
and its variants [27, 28]. TRE is a specific type of PKE such that a ciphertext specified
with time T can only be decrypted after time T . In TRE, a semi-trusted time server pe-
riodically broadcasts a time instant key (TIK) with time T ′ to all users. A sender creates
a ciphertext by specifying time T , and a receiver can decrypt the ciphertext if he has a
TIK with time T ′ such that T ′ ≥ T . TRE can be used for electronic auctions, key escrow,
on-line gaming, and press releases. TRE and its variants can be realizable by using IBE,
certificateless encryption, or forward-secure PKE (FSE) [10, 27]. An SUE scheme can
be used for a TRE scheme with augmented properties, since a ciphertext with time T
can be decrypted by a private key with time T ′ ≥ T from using the ciphertext update
functionality, and, in addition, we have flexibility of having a public ciphertext server
which can tune the ciphertext time forward before final public release. In this scheme,
a ciphertext consists of O(logTmax) and a TIK consists of O(logTmax). TRE, in turn,
can help in designing synchronized protocols, like fair exchanges in some mediated but
protocol-oblivious server model.

Key-Insulated Encryption with Ciphertext Forward Security. SUE can be used to
enhance the security of key-insulated encryption (KIE) [12]. KIE is a type of PKE that
additionally provides tolerance against key exposures. For a component of KIE, a mas-
ter secret key MK is stored on a physically secure device, and a temporal key SKT for
time T is stored on an insecure device. At a time period T , a sender encrypts a mes-
sage with the time T and the public key PK, and then a receiver who obtains SKT by
interacting with the physically secure device can decrypt the ciphertext. KIE provides
the security of all time periods except those in which the compromise of temporal keys
occurred. KIE can be obtained from IBE. Though KIE provides strong level of secu-
rity, it does not provide security of ciphertexts available in compromised time periods,
even if these ciphertexts are to be read in a future time period. To enhance the security
and prevent this premature disclosure, we can build a KIE scheme with forward-secure
storage by combining KIE and SUE schemes. Having cryptosystems with key-insulated
key and forward-secure storage is different from intrusion-resilient cryptosystems [11].

1.4 Related Work

Attribute-Based Encryption. As mentioned, ABE extends IBE, such that a ciphertext
is associated with an attribute x and a private key is associated with an access structure
f . When a user has a private key with f , only then he can decrypt a ciphertext with x
that satisfies f (x) = 1. Sahai and Waters [30] introduced fuzzy IBE (F-IBE) that is a
special type of ABE. Goyal et al. [14] proposed a key-policy ABE (KP-ABE) scheme
that supports flexible access structures in private keys. Bethencourt et al. [2] proposed
a ciphertext-policy ABE (CP-ABE) scheme such that a ciphertext is associated with
an access structure f and a private key is associated with an attribute x. After that,
numerous ABE schemes with various properties were proposed [9, 18, 20, 25, 32].

Predicate Encryption. PE is also an extension of IBE that additionally provides an
attribute-hiding property in ciphertexts: A ciphertext is associated with an attribute x
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and a private key is associated with a predicate f . Boneh and Waters [7] introduced
the concept of PE and proposed a hidden vector encryption (HVE) scheme that sup-
ports conjunctive queries on encrypted data. Katz et al. [15] proposed a PE scheme
that supports inner-product queries on encrypted data. After that, many PE schemes
with different properties were proposed [17, 23, 24, 26]. Boneh, Sahai, and Waters [6]
formalized the concept of functional encryption (FE) by generalizing ABE and PE.

Revocation. Boneh and Franklin [5] proposed a revocation method for IBE that period-
ically re-issues the private key of users. That is, the identity ID of a user contains time
information, and a user cannot obtain a valid private key for new time from a key gen-
eration center if he is revoked. However, this method requires for all users to establish
secure channels to the server and prove their identities every time. To solve this prob-
lem, Boldyreva et al. [3] proposed an R-IBE scheme by combining an F-IBE scheme
and a full binary tree structure. Libert and Vergnaud [21] proposed a fully secure R-IBE
scheme.

2 Preliminaries

2.1 Notation

We let λ be a security parameter. Let [n] denote the set {1, . . . ,n} for n ∈N. For a string
L ∈ {0,1}n, let L[i] be the ith bit of L, and L|i be the prefix of L with i-bit length. For
example, if L = 010, then L[1] = 0,L[2] = 1,L[3] = 0, and L|1 = 0,L|2 = 01,L|3 = 010.
Concatenation of two strings L and L′ is denoted by L||L′.

2.2 Full Binary Tree

A full binary tree BT is a tree data structure where each node except the leaf nodes has
two child nodes. Let N be the number of leaf nodes in BT . The number of all nodes
in BT is 2N − 1. For any index 0 ≤ i < 2N − 1, we denote by vi a node in BT . We
assign the index 0 to the root node and assign other indices to other nodes by using
breadth-first search. The depth of a node vi is the length of the path from the root node
to the node. The root node is at depth zero. Siblings are nodes that share the same parent
node.

For any node vi ∈ BT , L is defined as a label that is a fixed and unique string. The
label of each node in the tree is assigned as follows: Each edge in the tree is assigned
with 0 or 1 depending on whether the edge is connected to its left or right child node.
The label L of a node vi is defined as the bitstring obtained by reading all the labels of
edges in the path from the root node to the node vi. Note that we assign a special empty
string to the root node as a label.

2.3 Subset Cover Framework

The subset cover (SC) framework introduced by Naor, Naor, and Lotspiech [22] is
a general methodology for the construction of efficient revocation systems. The SC
framework consists of the subset-assigning part and key-assigning part for the subset.
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We define the SC scheme by including only the subset-assigning part. The formal defi-
nition of SC is given in the full version of this paper [16].

We use the complete subset (CS) scheme proposed by Naor et al. [22] as a building
block for our schemes. The CS scheme uses a full binary tree BT to define the subsets
Si. For any node vi ∈ BT , Ti is defined as a subtree that is rooted at vi and Si is defined
as the set of leaf nodes in Ti. For the tree BT and a subset R of leaf nodes, ST (BT ,R) is
defined as the Steiner Tree induced by the set R and the root node, that is, the minimal
subtree of BT that connects all the leaf nodes in R and the root node. we simply denote
ST (BT ,R) by ST (R). The CS scheme is described as follows:

CS.Setup(Nmax): This algorithm takes as input the maximum number of users Nmax.
Let Nmax = 2d for simplicity. It first sets a full binary tree BT of depth d. Each user
is assigned to a different leaf node in BT . The collection S of CS is {Si : vi ∈ BT }.
Recall that Si is the set of all the leaves in the subtree Ti. It outputs the full binary
tree BT .

CS.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let
vu be the leaf node of BT that is assigned to the user u. Let (v j0 ,v j1 , . . . ,v jd )
be the path from the root node v j0 = v0 to the leaf node v jn = vu. It sets PVu =
{S j0 , . . . ,S jd}, and outputs the private set PVu.

CS.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of
users. It first computes the Steiner tree ST(R). Let Ti1 , . . .Tim be all the subtrees
of BT that hang off ST (R), that is all subtrees whose roots vi1 , . . .vim are not in
ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a covering set
CVR = {Si1 , . . . ,Sim}.

CS.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si1 , . . . ,Sim}
and a private set PVu = {S j0 , . . . ,S jd}. It finds a subset Sk such that Sk ∈ CVR and
Sk ∈ PVu. If there is such a subset, it outputs (Sk,Sk). Otherwise, it outputs ⊥.

Lemma 1 ( [22]). Let Nmax be the number of leaf nodes in a full binary tree and r be
the size of a revoked set. In the CS scheme, the size of a private set is O(logNmax) and
the size of a covering set is at most r log(Nmax/r).

3 Self-Updatable Encryption

3.1 Definitions

Ciphertext Delegatable Encryption (CDE). Before introducing self-updatable encryp-
tion, we first introduce ciphertext delegatable encryption. Ciphertext delegatable en-
cryption (CDE) is a special type of public-key encryption (PKE) with the ciphertext
delegation property such that a ciphertext can be easily converted to a new ciphertext
under a more restricted label string by using public values. The following is the syntax
of CDE.

Definition 1 (Ciphertext Delegatable Encryption). A ciphertext delegatable encryp-
tion (CDE) scheme for the set L of labels consists of seven PPT algorithms Init, Setup,
GenKey, Encrypt, DelegateCT, RandCT, and Decrypt, which are defined as follows:
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Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it
outputs a group description string GDS.

Setup(GDS,dmax). The setup algorithm takes as input a group description string GDS
and the maximum length dmax of the label strings, and it outputs public parameters
PP and a master secret key MK.

GenKey(L,MK,PP). The key generation algorithm takes as input a label string L ∈
{0,1}k with k ≤ dmax, the master secret key MK, and the public parameters PP,
and it outputs a private key SKL.

Encrypt(L,s,s,PP). The encryption algorithm takes as input a label string L ∈ {0,1}d

with d ≤ dmax, a random exponent s, an exponent vector s, and the public parame-
ters PP, and it outputs a ciphertext header CHL and a session key EK.

DelegateCT(CHL,c,PP). The ciphertext delegation algorithm takes as input a cipher-
text header CHL for a label string L ∈ {0,1}d with d < dmax, a bit value c ∈ {0,1},
and the public parameters PP, and it outputs a delegated ciphertext header CHL′

for the label string L′ = L||c.
RandCT(CHL,s′,s,PP). The ciphertext randomization algorithm takes as input a ci-

phertext header CHL for a label string L ∈ {0,1}d with d < dmax, a new random
exponent s′, a new vector s, and the public parameters PP, and it outputs a re-
randomized ciphertext header CH ′

L and a partial session key EK′.
Decrypt(CHL,SKL′ ,PP). The decryption algorithm takes as input a ciphertext header

CHL, a private key SKL′ , and the public parameters PP, and it outputs a session key
EK or the distinguished symbol ⊥.

The correctness property of CDE is defined as follows: For all PP,MK generated by
Setup, all L,L′, any SKL′ generated by GenKey, any CHL and EK generated by Encrypt
or DelegateCT, it is required that:

– If L is a prefix of L′, then Decrypt(CHL,SKL′ ,PP) = EK.
– If L is not a prefix of L′, then Decrypt(CHL,SKL′ ,PP) =⊥ with all but negligible

probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal
to that of Encrypt.

Remark 1. The syntax of CDE is different with the usual syntax of encryption since
the encryption algorithm additionally takes input random values instead of selecting its
own randomness. Because of this difference, we cannot show the security of SUE under
the security of CDE, but this syntax difference is essential for the ciphertext efficiency
of SUE.

Self-Updatable Encryption (SUE). Self-updatable encryption (SUE) is a new type of
PKE with the ciphertext updating property such that a time is associated with private
keys and ciphertexts and a ciphertext with a time can be easily updatable to a new
ciphertext with a future time. In SUE, the private key of a user is associated with a time
T ′ and a ciphertext is also associated with a time T . If T ≤ T ′, then a user who has a
private key with a time T ′ can decrypt a ciphertext with a time T . That is, a user who has
a private key for a time T ′ can decrypt any ciphertexts attached a past time T such that
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T ≤ T ′, but he cannot decrypt a ciphertext attached a future time T such that T ′ < T .
Additionally, the SUE scheme has the ciphertext update algorithm that updates the time
T of a ciphertext to a new time T + 1 by using public parameters. The following is the
syntax of SUE.

Definition 2 (Self-Updatable Encryption). A self-updatable encryption (SUE) scheme
consists of seven PPT algorithms Init, Setup, GenKey, Encrypt, UpdateCT, RandCT,
and Decrypt, which are defined as follows:

Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it
outputs a group description string GDS.

Setup(GDS,Tmax). The setup algorithm takes as input a group description string GDS
and the maximum time Tmax, and it outputs public parameters PP and a master
secret key MK.

GenKey(T,MK,PP). The key generation algorithm takes as input a time T , the master
secret key MK, and the public parameters PP, and it outputs a private key SKT .

Encrypt(T,s,PP). The encryption algorithm takes as input a time T , a random value
s, and the public parameters PP, and it outputs a ciphertext header CHT and a
session key EK.

UpdateCT(CHT ,T + 1,PP). The ciphertext update algorithm takes as input a cipher-
text header CHT for a time T , a next time T +1, and the public parameters PP, and
it outputs an updated ciphertext header CHT+1.

RandCT(CHT ,s′,PP). The ciphertext randomization algorithm takes as input a ci-
phertext header CHT for a time T , a new random exponent s′, and the public pa-
rameters PP, and it outputs an re-randomized ciphertext header CH ′

T and a partial
session key EK′.

Decrypt(CHT ,SKT ′ ,PP). The decryption algorithm takes as input a ciphertext header
CHT , a private key SKT ′ , and the public parameters PP, and it outputs a session
key EK or the distinguished symbol ⊥.

The correctness property of SUE is defined as follows: For all PP,MK generated by
Setup, all T,T ′, any SKT ′ generated by GenKey, and any CHT and EK generated by
Encrypt or UpdateCT, it is required that:

– If T ≤ T ′, then Decrypt(CHT ,SKT ′ ,PP) = EK.
– If T > T ′, then Decrypt(CHT ,SKT ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal
to that of Encrypt.

Remark 2. For the definition of SUE, we follow the syntax of key encapsulation mech-
anisms instead of following that of standard encryption schemes since the session key
of SUE serves as the partial share of a real session key in other schemes.

Definition 3 (Security). The security property for SUE schemes is defined in terms of
the indistinguishability under a chosen plaintext attack (IND-CPA). The security game
for this property is defined as the following game between a challenger C and a PPT
adversary A:
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1. Setup: C runs Init and Setup to generate the public parameters PP and the master
secret key MK, and it gives PP to A.

2. Query 1: A may adaptively request a polynomial number of private keys for times
T1, . . . ,Tq′ , and C gives the corresponding private keys SKT1 , . . . ,SKTq′ to A by run-
ning GenKey(Ti,MK,PP).

3. Challenge: A outputs a challenge time T ∗ subject to the following restriction: For
all times {Ti} of private key queries, it is required that Ti < T ∗. C chooses a random
bit b ∈ {0,1} and computes a ciphertext header CH∗ and a session key EK∗ by
running Encrypt(T ∗,s,PP). If b = 0, then it gives CH∗ and EK∗ to A. Otherwise,
it gives CH∗ and a random session key to A.

4. Query 2: A may continue to request private keys for additional times Tq′+1, . . . ,Tq

subject to the same restriction as before, and C gives the corresponding private keys
to A.

5. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvSUE
A (λ ) =

∣
∣Pr[b = b′]− 1

2

∣
∣ where the probability

is taken over all the randomness of the game. A SUE scheme is fully secure under a
chosen plaintext attack if for all PPT adversaries A, the advantage of A in the above
game is negligible in the security parameter λ .

Remark 3. In the above security game, it is not needed to explicitly describe Upda-
teCT since the adversary can run UpdateCT to the challenge ciphertext header by just
using PP. Note that the use of UpdateCT does not violate the security game since the
adversary only can request a private key query for Ti such that Ti < T ∗.

3.2 Bilinear Groups of Composite Order

Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime numbers. Let G and GT be two
multiplicative cyclic groups of same composite order n and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zn, e(ua,vb) = e(u,v)ab.
2. Non-degeneracy: ∃g such that e(g,g) has order N, that is, e(g,g) is a generator of

GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bi-
linear map e are all efficiently computable. Furthermore, we assume that the description
of G and GT includes generators of G and GT respectively. We use the notation Gpi to
denote the subgroups of order pi of G respectively. Similarly, we use the notation GT,pi

to denote the subgroups of order pi of GT respectively.

3.3 Complexity Assumptions

We give three static assumptions in bilinear groups of composite order that were intro-
duced by Lewko and Waters [19]. The Assumption 1 (Subgroup Decision), the Assump-
tion 2 (General Subgroup Decision), and the Assumption 3 (Composite Diffie-Hellman)
are described in the the full version of this paper [16].
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3.4 Design Principle

We use a full binary tree to represent time in our SUE scheme by assigning time periods
to all tree nodes instead of assigning time periods to leaf nodes only. The use of binary
trees to construct key-evolving schemes dates back to the work of Bellare and Miner [1],
and the idea of using all tree nodes to represent time periods was introduced by Canetti,
Halevi, and Katz [8]. They used a full binary tree for private key update in forward-
secure PKE schemes, but we use the full binary tree for ciphertext update.

In the full binary tree BT , each node v (internal node or leaf node) is assigned a
unique time value by using the pre-order tree traversal that recursively visits the root
node, the left subtree, and the right subtree. Note that we use breadth-first search for
index assignment, but we use pre-order traversal for time assignment. Let Path(v)
be the set of path nodes from the root node to a node v, RightSibling(Path(v))1 be
the set of right sibling nodes of Path(v), and TimeNodes(v) be the set of nodes that
consists of v and RightSibling(Path(v)) excluding the parent’s path nodes. That is,
TimeNodes(v) = {v}∪RightSibling(Path(v))\Path(Parent(v)). Pre-order traversal
has the property such that if a node v is associated with time T and a node v′ is associ-
ated with time T ′, then we have

TimeNodes(v)∩Path(v′) 
=∅ if and only if T ≤ T ′.

Thus if a ciphertext has the delegation property such that it’s association can be changed
from a node to its child node, then a ciphertext for the time T can be easily delegated
to a ciphertext for the time T ′ such that T ≤ T ′ by providing the ciphertexts of its own
and right sibling nodes of path nodes excluding path nodes.

For the construction of an SUE scheme that uses a full binary tree, we need a CDE
scheme that has the ciphertext delegation property in the tree such that a ciphertext
associated with a node can be converted to another ciphertext associated with its child
node. Hierarchical identity-based encryption (HIBE) has the similar delegation property
in the tree, but the private keys of HIBE can be delegated [4, 13]. To construct a CDE
scheme that supports the ciphertext delegation property, we start from the HIBE scheme
of Boneh and Boyen [4] and interchange the private key structure with the ciphertext
structure of their HIBE scheme. To use the structure of HIBE, we associate each node
with a unique label string L ∈ {0,1}∗. The ciphertext delegation property in CDE is
easily obtained from the private-key delegation property of HIBE.

To build an SUE scheme from the CDE scheme, we define a mapping function ψ that
maps time T to a label L in the tree nodes since these two scheme uses the same full
binary tree. The SUE ciphertext for time T consists of all CDE ciphertexts for all nodes
in TimeNodes(v) where time T is associated with a node v. Although the ciphertext of
SUE just consists of O(logTmax) number of CDE ciphertexts, the ciphertext of SUE can
be O(log2 Tmax) group elements since the ciphertext of a naive CDE scheme from the
HIBE scheme has O(logTmax) number of group elements. To improve the efficiency of
the ciphertext size, we use the randomness reuse technique for CDE ciphertexts. In this
case, we obtain an SUE scheme with O(logTmax) group elements in ciphertexts.

1 Note that we have RightSibling(Path(v)) = RightChild(Path(Parent(v))) where
RightChild(Path(v)) be the set of right child nodes of Path(v) and Parent(v) be the
parent node of v.
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3.5 Construction

CDE.Init(1λ ): This algorithm takes as input a security parameter 1λ . It generates a
bilinear group G of composite order N = p1 p2 p3 where p1, p2, and p3 are random
primes. It chooses a random generator g1 ∈ Gp1 and outputs a group description
string as GDS = ((N,G,GT ,e),g1, p1, p2, p3).

CDE.Setup(GDS,dmax): This algorithm takes as input the string GDS and the maxi-
mum length dmax of the label strings. Let l = dmax. It chooses random elements w,
{ui,0,ui,1}l

i=1,{hi,0,hi,1}l
i=1 ∈ Gp1 , a random exponent β ∈ ZN , and a random ele-

ment Y ∈ Gp3 . We define Fi,b(L) = uL
i,bhi,b where i ∈ [l] and b ∈ {0,1}. It outputs

the master secret key MK = (β ,Y ) and the public parameters as

PP =
(

(N,G,GT ,e),g = g1, w, {ui,0,ui,1}l
i=1, {hi,0,hi,1}l

i=1, Λ = e(g,g)β
)

.

CDE.GenKey(L,MK,PP): This algorithm takes as input a label string L ∈ {0,1}n, the
master secret key MK, and the public parameters PP. It first selects a random ex-
ponent r ∈ ZN and random elements Y0,Y1,Y2,1, . . . ,Y2,n ∈Gp3 . It outputs a private
key as

SKL =
(

K0 = gβ w−rY0, K1 = grY1, K2,1 = F1,L[1](L|1)rY2,1, . . . , K2,n = Fn,L[n](L|n)rY2,n

)

.

CDE.Encrypt(L,s,s,PP): This algorithm takes as input a label string L ∈ {0,1}d, a
random exponent s ∈ ZN , a vector s = (s1, . . . ,sd) ∈ Z

d
N of random exponents, and

PP. It outputs a ciphertext header as

CHL =
(

C0 = gs, C1 = ws
d

∏
i=1

Fi,L[i](L|i)si , C2,1 = g−s1 , . . . , C2,d = g−sd

)

and a session key as EK =Λ s.
CDE.DelegateCT(CHL,c,PP): This algorithm takes as input a ciphertext header

CHL = (C0, . . . ,C2,d) for a label string L ∈ {0,1}d, a bit value c ∈ {0,1}, and PP. It
selects a random exponent sd+1 ∈ ZN and outputs a delegated ciphertext header for
the new label string L′ = L||c as

CHL′ =
(

C0, C′
1 =C1 ·Fd+1,c(L

′)sd+1 , C2,1, . . . , C2,d , C′
2,d+1 = g−sd+1

)

.

CDE.RandCT(CHL,s′,s′,PP): This algorithm takes as input a ciphertext header
CHL = (C0, . . . ,C2,d) for a label string L ∈ {0,1}d , a new random exponent s′ ∈ZN ,
a new vector s′ = (s′1, . . . ,s

′
d) ∈ Z

d
N , and PP. It outputs a re-randomized ciphertext

header as

CH ′
L =

(

C′
0 =C0 ·gs′ , C′

1 =C1 ·ws′
d

∏
i=1

Fi,L[i](L|i)s′i , C′
2,1 =C2,1 ·g−s′1 , . . . ,

C′
2,d =C2,d ·g−s′d

)

.

and a partial session key EK′ =Λ s′ that will be multiplied with the session key EK
of CHL to produce a re-randomized session key.
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CDE.Decrypt(CHL,SKL′ ,PP): This algorithm takes as input a ciphertext header CHL

for a label string L∈ {0,1}d, a private key SKL′ for a label string L′ ∈ {0,1}n, and PP.
If L is a prefix of L′, then it computes CH ′

L′ = (C′
0, . . . ,C

′
2,n) by running DelegateCT

and outputs a session key as EK = e(C′
0,K0) · e(C′

1,K1) ·∏n
i=1 e(C′

2,i,K2,i). Other-
wise, it outputs ⊥.

Let ψ be a mapping from time T to a label L2. Our SUE scheme that uses our CDE
scheme as a building block is described as follows:

SUE.Init(1λ ): This algorithm outputs GDS by running CDE.Init(1λ ).
SUE.Setup(GDS,Tmax): This algorithm outputs MK and PP by running CDE.Setup

(GDS,dmax) where Tmax = 2dmax+1 − 1.
SUE.GenKey(T,MK,PP): This algorithm outputs SKT by running CDE.GenKey

(ψ(T ),MK,PP).
SUE.Encrypt(T,s,PP): This algorithm takes as input a time T , a random exponent

s ∈ ZN , and PP. It proceeds as follows:
1. It first sets a label string L ∈ {0,1}d by computing ψ(T ). It sets an exponent

vector s = (s1, . . . ,sd) by selecting random exponents s1, . . . ,sd ∈ ZN , and ob-
tains CH(0) by running CDE.Encrypt(L,s,s,PP).

2. For 1 ≤ j ≤ d, it sets L( j) = L|d− j||1 and proceeds the following steps:

(a) If L( j) = L|d− j+1, then it sets CH( j) as an empty one.
(b) Otherwise, it sets a new exponent vector s′ = (s′1, . . . ,s

′
d− j+1) where

s′1, . . . s
′
d− j are copied from s and s′d− j+1 is randomly selected in ZN since

L( j) and L have the same prefix string. It obtainsCH( j) = (C′
0, . . . ,C

′
2,d− j+1)

by running CDE.Encrypt(L( j),s,s′,PP). It also prunes the redundant el-
ements C′

0,C
′
2,1, . . . ,C

′
2,d− j from CH( j), which are already contained in

CH(0).
3. It removes all empty CH( j) and sets CHT =

(

CH(0),CH(1), . . . ,CH(d′)
)

for
some d′ ≤ d that consists of non-empty CH( j).

4. It outputs a ciphertext header as CHT and a session key as EK = Λ s.

SUE.UpdateCT(CHT ,T + 1,PP): This algorithm takes as input a ciphertext header
CHT = (CH(0), . . . ,CH(d)) for a time T , a next time T + 1, and PP. Let L( j) be the
label of CH( j). It proceeds as follows:

1. If the length d of L(0) is less than dmax, then it first obtains CHL(0)||0 and

CHL(0)||1 by running CDE.DelegateCT(CH(0),c,PP) for all c ∈ {0,1} since
CHL(0)||0 is the ciphertext header for the next time T +1 by pre-order traversal.
It also prunes the redundant elements in CHL(0)||1. It outputs an updated ci-

phertext header as CHT+1 =
(

CH ′(0) = CHL(0)||0,CH ′(1) = CHL(0)||1,CH ′(2) =

CH(1), . . . ,CH ′(d+1) =CH(d)
)

.

2 In a full binary tree, each node is associated with a unique time T by the pre-order traversal
and a unique label L by the label assignment. Thus there exist a unique mapping function ψ
from a time T to a label L.
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2. Otherwise, it copies the common elements in CH(0) to CH(1) and simply re-
move CH(0) since CH(1) is the ciphertext header for the next time T +1 by pre-
order traversal. It outputs an updated ciphertext header as CHT+1 =

(

CH ′(0) =

CH(1), . . . ,CH ′(d−1) =CH(d)
)

.
SUE.RandCT(CHT ,s′,PP): This algorithm takes as input a ciphertext header CHT =

(CH(0), . . . ,CH(d)) for a time T , a new random exponent s′ ∈ ZN , and PP. Let L( j)

be the label of CH( j) and d( j) be the length of the label L( j). It proceeds as follows:
1. It first sets a vector s′ =(s′1, . . . ,s

′
d(0)

) by selecting random exponents s′1, . . . ,s
′
d(0)

∈ ZN , and obtains CH ′(0) by running CDE.RandCT(CH(0),s′,s′,PP).
2. For 1 ≤ j ≤ d, it sets a new vector s′′ = (s′1, . . . ,s

′
d( j) ) where s′1, . . . s

′
d( j)−1

are

copied from s′ and s′
d( j) is randomly chosen in ZN , and obtains CH ′( j) by run-

ning CDE.RandCT(CH( j),s′,s′′,PP).
3. It outputs a re-randomized ciphertext header as CH ′

T =
(

CH ′(0), . . . ,CH ′(d))

and a partial session key as EK′ = Λ s′ that will be multiplied with the session
key EK of CHT to produce a re-randomized session key.

SUE.Decrypt(CHT ,SKT ′ ,PP): This algorithm takes as input a ciphertext header CHT ,
a private key SKT ′ , and PP. If T ≤ T ′, then it finds CH( j) from CHT such that L( j) is
a prefix of L′ =ψ(T ′) and outputs EK by running CDE.Decrypt(CH( j),SKT ′ ,PP).
Otherwise, it outputs ⊥.

Remark 4. The ciphertext delegation (or update) algorithm of CDE (or SUE) just out-
puts a valid ciphertext header. However, we can easily modify it to output a ciphertext
header that is identically distributed with that of the encrypt algorithm of CDE (or SUE)
by applying the ciphertext randomization algorithm.

3.6 Correctness

In CDE, if the label string L of a ciphertext is a prefix of the label string L′ of a private
key, then the ciphertext can be changed to a new ciphertext for the label string L′ by us-
ing the ciphertext delegation algorithm. Thus the correctness of CDE is easily obtained
from the following equation.

e(C0,K0) · e(C1,K1) ·
n

∏
i=1

e(C2,i,K2,i)

= e(gs,gβ w−rY0) · e(ws
n

∏
i=1

Fi,L[i](L|i)si ,grY1) ·
n

∏
i=1

e(g−si ,Fi,L[i](L|i)rY2,i)

= e(gs,gβ ) · e(gs,w−r) · e(ws,gr) = e(g,g)β s

The SUE ciphertext header of a time T consists of the CDE ciphertext headers
CH(0),CH(1), . . . ,CH(d) that are associated with the nodes in TimeNodes(v). If the
SUE private key of a time T ′ associated with a node v′ satisfies T ≤ T ′, then we can
find a unique node v′′ such that TimeNodes(v)∩Path(v′) = v′′ since the property of the
pre-order tree traversal. Let CH ′′ be the CDE ciphertext header that is associated with
the node v′′. The correctness of SUE is easily obtained from the correctness of CDE
since the label string L′′ of CH ′′ is a prefix of the label string L′ of the private key.
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In CDE, the output of CDE.DelegateCT is a valid ciphertext header since the func-
tion Fd+1,c(L′) is used with a new random exponent sd+1 for the new label string L′

with depth d + 1. The output of CDE.RandCT is statistically indistinguishable from
that of CDE.Encrypt since it has a random exponent s′′ = s+ s′ and a random vector
s′′ = (s1 + s′1, . . . ,sd + s′d) where s,s1, . . . ,sd are original values in the ciphertext header
and s′,s′1, . . . ,s

′
d are newly selected random values.

In SUE, the output of SUE.UpdateCT is a valid ciphertext header since the out-
put of CDE.DelegateCT is a valid ciphertext header and the CDE ciphertext headers
CH(0), . . .CH(d) are still associated with the nodes in TimeNodes(v) where v is a node
for the time T + 1. The output of SUE.RandCT is statistically indistinguishable from
that of the encryption algorithm since new random exponents s′,s′1, . . . ,s

′
d(0)

are chosen
and these random exponents are reused among the CDE ciphertext headers.

3.7 Security Analysis

Theorem 1. The above SUE scheme is fully secure under a chosen plaintext attack
if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary A, we have that
AdvSUE

A (λ ) ≤ AdvA1
B (λ ) + 2qAdvA2

B (λ )+AdvA3
B (λ ) where q is the maximum number

of private key queries of A.

The proof of this theorem is given in the full version of this paper [16].

4 Revocable-Storage Attribute-Based Encryption

4.1 Definitions

Revocable-storage attribute-based encryption (RS-ABE) is attribute-based encryption
(ABE) that additionally supports the revocation functionality and the ciphertext update
functionality. Boldyreva, Goyal, and Kumar introduced the concept of revocable ABE
(R-ABE) that provides the revocation functionality [3], and Sahai, Seyalioglu, and Wa-
ters introduced the concept of RS-ABE that provides the ciphertext update functionality
in R-ABE [29].

Definition 4 (Revocable-Storage Attribute-Based Encryption). A revocable-storage
(ciphertext-policy) attribute-based encryption (RS-ABE) scheme consists of seven PPT
algorithms Setup, GenKey, UpdateKey, Encrypt, UpdateCT, RandCT, and Decrypt,
which are defined as follows:

Setup(1λ ,U ,Tmax,Nmax). The setup algorithm takes as input a security parameter 1λ ,
the universe of attributes U , the maximum time Tmax, and the maximum number of
users Nmax, and it outputs public parameters PP and a master secret key MK.

GenKey(S,u,MK,PP). The key generation algorithm takes as input a set of attributes
S ⊆ U , a user index u ∈ N , the master secret key MK, and the public parameters
PP, and it outputs a private key SKS,u.

UpdateKey(T,R,MK,PP). The key update algorithm takes as input a time T ≤ Tmax, a
set of revoked users R ⊆N , the master secret key MK, and the public parameters
PP, and it outputs an update key UKT,R.
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Encrypt(A,T,M,PP). The encryption algorithm takes as input an access structure A,
a time T ≤ Tmax, a message M, and the public parameters PP, and it outputs a
ciphertext CTA,T .

UpdateCT(CTA,T ,T +1,PP). The ciphertext update algorithm takes as input a cipher-
text CTA,T for an access structure A and a time T , a new time T + 1 such that
T + 1 ≤ Tmax, and the public parameters PP, and it outputs an updated ciphertext
CTA,T+1.

RandCT(CTA,T ,PP). The ciphertext randomization algorithm takes as input a cipher-
text CTA,T for an access structure A and a time T , and the public parameters PP,
and it outputs a re-randomized ciphertext CT ′

A,T .
Decrypt(CTA,T ,SKS,u,UKT ′,R,PP). The decryption algorithm takes as input a cipher-

text CTA,T , a private key SKS,u, an update key UKT ′,R, and the public parameters
PP, and it outputs a message M or the distinguished symbol ⊥.

The correctness property of RS-ABE is defined as follows: For all PP,MK generated
by Setup, all S and u, any SKS,u generated by GenKey, all A, T , and M, any CTA,T
generated by Encrypt or UpdateCT, all T ′ and R, any UKT ′,R generated by UpdateKey,
it is required that:

– If (S ∈ A)∧ (u /∈ R)∧ (T ≤ T ′), then Decrypt(CTA,T ,SKS,u,UKT ′,R,PP) = M.
– If (S /∈ A)∨ (u ∈ R)∨ (T ′ < T ), then Decrypt(CTA,T ,SKS,u,UKT ′,R,PP) =⊥ with

all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal
to that of Encrypt.

Definition 5 (Security). The security property for RS-ABE is defined in terms of the
indistinguishability under a chosen plaintext attack (IND-CPA). The security game for
this property is defined as the following game between a challenger C and a PPT ad-
versary A:

1. Setup: C runs Setup to generate the public parameters PP and the master secret
key MK, and it gives PP to A.

2. Query 1:A may adaptively request a polynomial number of private keys and update
keys. C proceeds as follows:

– If this is a private key query for a set of attributes S and a user index u, then it gives
the corresponding private key SKS,u to A by running GenKey(S,u,MK,PP).
Note that the adversary is allowed to query only one private key for each user
u.

– If this is an update key query for an update time T and a set of revoked
users R, then it gives the corresponding update key UKT,R to A by running
UpdateKey(T,R,MK,PP). Note that the adversary is allowed to query only
one update key for each time T .

3. Challenge: A outputs a challenge access structure A
∗, a challenge time T ∗, and

challenge messages M∗
0 ,M

∗
1 ∈M of equal length subject to the following restric-

tion:
– It is required that (Si /∈ A

∗)∨ (ui ∈ R j)∨ (Tj < T ∗) for all {(Si,ui)} of private
key queries and all {(Tj,R j)} of update key queries.
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C chooses a random bit b and gives the ciphertext CT ∗ to A by running Encrypt(A∗,
T ∗,M∗

b ,PP).
4. Query 2: A may continue to request private keys and update keys subject to the

same restrictions as before, and C gives the corresponding private keys and update
keys to A.

5. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvRS-ABE
A (λ ) =

∣
∣Pr[b= b′]− 1

2

∣
∣ where the probability

is taken over all the randomness of the game. A RS-ABE scheme is fully secure under a
chosen plaintext attack if for all PPT adversaries A, the advantage of A in the above
game is negligible in the security parameter λ .

Remark 5. In the above security game, it is not needed to explicitly describe Upda-
teCT since the adversary can run UpdateCT to the challenge ciphertext by just using
PP. Note that the use of UpdateCT does not violate the security game because of the
restrictions in the game.

4.2 Construction

For our RS-ABE scheme, we use the (ciphertext-policy) ABE scheme of Lewko et al.
[18] as a primary encryption scheme with slight modifications. That is, we use the key
encapsulation mechanism version of CP-ABE and the encryption algorithm additionally
takes input a random exponent for a session key. The detailed description of CP-ABE is
given in the full version of this paper [16]. Our RS-ABE scheme is described as follows:

RS-ABE.Setup(1λ ,U ,Tmax,Nmax): This algorithm takes as input a security parameter
1λ , the universe of attributes U , the maximum time Tmax, and the maximum number
of users Nmax.
1. It first generates bilinear groups G,GT of composite order N = p1 p2 p3 where

p1, p2, and p3 are random primes. Let g1 be the generator of Gp1 . It sets GDS=
((N,G,GT ,e),g1, p1, p2, p3).

2. It obtains MKABE ,PPABE and MKSUE ,PPSUE by running ABE.Setup(GDS,U)
and SUE.Setup(GDS,Tmax) respectively. It also obtains BT by running
CS.Setup(Nmax) and assigns a random exponent γi ∈ ZN to each node vi in
BT .

3. It selects a random exponent α∈ZN , and then it outputs MK=(MKABE ,MKSUE ,
α,BT ) and PP =

(

PPABE,PPSUE ,g = g1,Ω = e(g,g)α).
RS-ABE.GenKey(S,u,MK,PP): This algorithm takes as input a set of attributes S, a

user index u, MK = (MKABE ,MKSUE ,α,BT ), and PP.
1. It first obtains PVu = {S j0 , . . . ,S jd} by running CS.Assign(BT ,u) and retrieves

{γ j0 , . . . ,γ jd} from BT where γi is assigned to the node vi.
2. For 0 ≤ k ≤ d, it sets MK′

ABE = (γ jk ,Y ) and obtains SKABE,k by running
ABE.GenKey(S,MK′

ABE ,PPABE).
3. It outputs SKS,u =

(

PVu,SKABE,0, . . . ,SKABE,d
)

.
RS-ABE.UpdateKey(T,R,MK,PP): This algorithm takes as input an update time T ,

a set of revoked users R, MK, and PP.
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1. It first obtains CVR = {Si1 , . . . ,Sim} by running CS.Cover(BT ,R) and retrieves
{γi1 , . . . ,γim} from BT .

2. For 1 ≤ k ≤ m, it sets MK′
SUE = (α − γik ,Y ) and obtains SKSUE,k by running

SUE.GenKey(T,MK′
SUE ,PPSUE).

3. It outputs UKT,R =
(

CVR,SKSUE,1, . . . ,SKSUE,m
)

.
RS-ABE.Encrypt(A,T,M,PP): This algorithm takes as input an LSSS access struc-

ture A, a time T , a message M, and PP. It selects a random exponent s∈ZN and ob-
tains CHABE and CHSUE by running ABE.Encrypt(A,s,PPABE) and SUE.Encrypt
(T,s,PPSUE) respectively. It outputs as CTA,T =

(

CHABE ,CHSUE ,C = Ω s ·M
)

.
RS-ABE.UpdateCT(CTA,T ,T + 1,PP): This algorithm takes as input a ciphertext

CTA,T =(CHABE ,CHSUE ,C) for an LSSS access structureA and a time T, a new time
T +1, and PP. It obtainsCH ′

SUE by running SUE.UpdateCT(CHSUE ,T +1,PPSUE).
It outputs CTA,T+1 =

(

CHABE ,CH ′
SUE ,C

)

.
RS-ABE.RandCT(CTA,T ,PP): This algorithm takes as input a ciphertext CTA,T =

(CHABE ,CHSUE ,C) and PP. It first selects a random exponent s′ ∈ ZN . It obtains
CH ′

ABE and CH ′
SUE by running ABE.RandCT(CHABE ,s′,PPABE) and SUE.RandCT

(CHSUE ,s′,PPSUE), respectively. It outputs CT ′
A,T =

(

CH ′
ABE ,CH ′

SUE ,C
′ =C ·Ω s′

)

.
RS-ABE.Decrypt(CTA,T ,SKS,u,UKT ′,R,PP): This algorithm takes as input a cipher-

text CTA,T =(CHABE ,CHSUE ,C), a private key SKS,u =(PVu,SKABE,0, . . . ,SKABE,d),
an update key UKT ′,R = (CVR,SKSUE,1, . . . ,SKSUE,m), and PP.
1. If u /∈ R, then it obtains (Si,S j) by running CS.Match(CVR,PVu). Otherwise, it

outputs ⊥.
2. If S ∈ A and T ≤ T ′, then it can obtain EKABE and EKSUE by running

ABE.Decrypt(CHABE ,SKABE, j,PPABE) and SUE.Decrypt(CHSUE ,SKSUE,i,

PPSUE) respectively and outputs M by computing C ·
(

EKABE ·EKSUE
)−1

. Oth-
erwise, it outputs ⊥.

Remark 6. The ciphertext update algorithm of our scheme just outputs a valid updated
ciphertext since a past ciphertext will be erased in most applications. However, the
definition of Sahai et al. [29] requires that the output of UpdateCT should be equally
distributed with that of Encrypt. Our scheme also can meet this strong requirement by
applying RandCT to the output of UpdateCT.

Theorem 2. The above RS-ABE scheme is fully secure under a chosen plaintext at-
tack if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary A, we have that
AdvRS-ABE

A (λ )≤AdvA1
B (λ )+O(q)·AdvA2

B (λ )+AdvA3
B (λ ) where q is the maximum num-

ber of private key and update key queries of A.

The proof of this theorem is given in the full version of this paper [16].

4.3 Discussions and RS-PE Results

Efficiency. In our RS-ABE scheme, the number of group elements in a ciphertext is
2l + 3logTmax where l is the row size of an access structure. In the RS-ABE scheme
of Sahai et al. [29], the number of group elements in a ciphertext is 2 logTmax · (l +
2logTmax) since a piecewise CP-ABE scheme was used.
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Revocable-Storage Predicate Encryption. If we use the PE scheme of Park [26] as a
primary encryption scheme, then we can build an RS-PE scheme in prime order bilinear
groups that additionally supports attribute-hiding property. The definition, construction,
and proof of RS-PE are given in the full version of this paper [16].

Theorem 3. The RS-PE scheme is selectively secure under a chosen plaintext attack if
the DBDH and the DLIN assumptions hold. That is, for any PPT adversary A, we have
that AdvRS-PE

A (λ )≤ 2AdvDLIN
B (λ )+AdvDBDH

B (λ ).
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