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Abstract. Fuzzy extractors derive strong keys from noisy sources. Their
security is defined information-theoretically, which limits the length of
the derived key, sometimes making it too short to be useful. We ask
whether it is possible to obtain longer keys by considering computational
security, and show the following.

— Negative Result: Noise tolerance in fuzzy extractors is usually
achieved using an information reconciliation component called a “se-
cure sketch.” The security of this component, which directly affects
the length of the resulting key, is subject to lower bounds from
coding theory. We show that, even when defined computationally,
secure sketches are still subject to lower bounds from coding the-
ory. Specifically, we consider two computational relaxations of the
information-theoretic security requirement of secure sketches, using
conditional HILL entropy and unpredictability entropy. For both
cases we show that computational secure sketches cannot outper-
form the best information-theoretic secure sketches in the case of
high-entropy Hamming metric sources.

— Positive Result: We show that the negative result can be overcome
by analyzing computational fuzzy extractors directly. Namely, we
show how to build a computational fuzzy extractor whose output
key length equals the entropy of the source (this is impossible in
the information-theoretic setting). Our construction is based on the
hardness of the Learning with Errors (LWE) problem, and is secure
when the noisy source is uniform or symbol-fixing (that is, each
dimension is either uniform or fixed). As part of the security proof,
we show a result of independent interest, namely that the decision
version of LWE is secure even when a small number of dimensions
has no error.

Keywords: Fuzzy extractors, secure sketches, key derivation, Learning
with Errors, error-correcting codes, computational entropy, randomness
extractors.

1 Introduction

Authentication generally requires a secret drawn from some high-entropy source.
One of the primary building blocks for authentication is reliable key derivation.
Unfortunately, many sources that contain sufficient entropy to derive a key are
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noisy, and provide similar, but not identical secret values at each reading (ex-
amples of such sources include biometrics [I4], human memory [37], pictorial
passwords [9], measurements of capacitance [35], timing [34], motion [I0], quan-
tum information [5] etc.).

Fuzzy extractors [15] achieve reliable key derivation from noisy sources (see
[7IT6I11] for applications of fuzzy extractors). The setting consists of two algo-
rithms: Generate (used once) and Reproduce (used subsequently). The Generate
(Gen) algorithm takes an input w and produces a key r and a public value p.
This information allows the Reproduce (Rep) algorithm to reproduce r given p
and some value w’ that is close to w (according to some predefined metric, such
as Hamming distance). Crucially for security, knowledge of p should not reveal
r; that is, r should be uniformly distributed conditioned on p. This feature is
needed because p is not secret: for example, in a single-user setting (where the
user wants to reproduce the key r from a subsequent reading w'), it would be
stored in the clear; and in a key agreement application [7] (where two parties
have w and w’, respectively), it would be transmitted between the parties.

Fuzzy extractors use ideas from information-reconciliation [5] and are defined
(traditionally) as information-theoretic objects. The entropy loss of a fuzzy ex-
tractor is the difference between the entropy of w and the length of the derived
key 7. In the information-theoretic setting, some entropy loss is necessary as the
value p contains enough information to reproduce r from any close value w’. A
goal of fuzzy extractor constructions is to minimize the entropy loss, increasing
the security of the resulting application. Indeed, if the entropy loss is too high,
the resulting secret key may be too short to be useful.

We ask whether it is possible to obtain longer keys by considering computa-
tional, rather than information theoretic, security.

Our Negative Results. We first study (in Section [B]) whether it could be fruitful
to relax the definition of the main building block of a fuzzy extractor, called a
secure sketch. A secure sketch is a one-round information reconciliation protocol:
it produces a public value s that allows recovery of w from any close value w’.
The traditional secrecy requirement of a secure sketch is that w has high min-
entropy conditioned on s. This allows the fuzzy extractor of [I5] to form the key
r by applying a randomness extractor [28] to w, because randomness extractors
produce random strings from strings with conditional min-entropy. We call this
the sketch-and-extract construction.

The most natural relaxation of the min-entropy requirement of the secure
sketch is to require HILL entropy [2I] (namely, that the distribution of w con-
ditioned on s be indistinguishable from a high-min-entropy distribution). Under
this definition, we could still use a randomness extractor to obtain r from w, be-
cause it would yield a pseudorandom key. Unfortunately, it is unlikely that such
a relaxation will yield fruitful results: we prove in Theorem [ that the entropy
loss of such secure sketches is subject to the same coding bounds as the ones
that constrain information-theoretic secure sketches.

Another possible relaxation is to require that the value w is unpredictable con-
ditioned on s. This definition would also allow the use of a randomness extractor
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to get a pseudorandom key, although it would have to be a special extractor—
one that has a reconstruction procedure (see [22] Lemma 6]). Unfortunately, this
relaxation is also unlikely to be fruitful: we prove in Theorem [2] that the unpre-
dictability is at most log the size of the metric space minus log the volume of
the ball of radius ¢. For high-entropy sources of w over the Hamming metric,
this bound matches the best information-theoretic security sketches.

Our Positive Results. Both of the above negative results arise because a secure
sketch functions like a decoder of an error-correcting code. To avoid them, we
give up on building computational secure sketches and focus directly on the
entropy loss in fuzzy extractors. Our goal is to decrease the entropy loss in a
fuzzy extractor by allowing the key r to be pseudorandom conditioned on p.

By considering this computational secrecy requirement, we construct the first
lossless computational fuzzy extractors (Construction [I), where the derived key
r is as long as the entropy of the source w. Our construction is for the Hamming
metric and uses the code-offset construction [23],[I5] Section 5] used in prior
work, but with two crucial differences. First, the key r is not extracted from w
like in the sketch-and-extract approach; rather w “encrypts” r in a way that is
decryptable with the knowledge of some close w’ (this idea is similar to the way
the code-offset construction is presented in [23] as a “fuzzy commitment”). Our
construction uses private randomness, which is allowed in the fuzzy extractor
setting but not in noiseless randomness extraction. Second, the code used is a
random linear code, which allows us to use the Learning with Errors (LWE)
assumption due to Regev [B0/3I] and derive a longer key 7.

Specifically, we use the recent result of Déttling and Miiller-Quade [I7], which
shows the hardness of decoding random linear codes when the error vector comes
from the uniform distribution, with each coordinate ranging over a small interval.
This allows us to use w as the error vector, assuming it is uniform. We also use
a result of Akavia, Goldwasser, and Vaikuntanathan [I], which says that LWE
has many hardcore bits, to hide r.

Because we use a random linear code, our decoding is limited to reconciling
a logarithmic number of differences. Unfortunately, we cannot utilize the results
that improve the decoding radius through the use of trapdoors (such as [30]),
because in a fuzzy extractor, there is no secret storage place for the trapdoor.
If improved decoding algorithms are obtained for random linear codes, they
will improve error-tolerance of our construction. Given the hardness of decoding
random linear codes [6], we do not expect significant improvement in the error-
tolerance of our construction.

In Section Bl we are able to relax the assumption that w comes from the uni-
form distribution, and instead allow w to come from a symbol-fixing source [24]
(each dimension is either uniform or fixed). This relaxation follows from our re-
sults about the hardness of LWE when samples have a fixed (and adversarially
known) error vector, which may be of independent interest (Theorem H).

An Alternative Approach. Computational extractors [26/313] have the same goal
of obtaining a pseudorandom key r from a source w in the setting without errors.
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They can be constructed, for example, by applying a pseudorandom generator to
the output of an information-theoretic extractor. One way to build a computa-
tional fuzzy extractor is by using a computational extractor instead of the
information-theoretic extractor in the sketch-and-extract construction of [15].
However, this approach is possible only if conditional min-entropy of w conditioned
on the sketch s is high enough. Furthermore, this approach does not allow the use of
private randomness; private randomness is a crucial ingredient in our construction.
We compare the two approaches in Section[4.4l

2 Preliminaries

For a random variable X = Xj||...||X,, where each X; is over some alphabet
Z, we denote by X1 = Xil|...||Xk. The min-entropy of X is Hoo(X) =
—log(max, Pr[X = z]), and the average (conditional) min-entropy of X given
Y is Hoo(X|Y) = —log(E ey max, Pr[X = z|Y = y]) [I5, Section 2.4]. The
statistical distance between random variables X and Y with the same domain
is A(X,Y) = 3>, |Pr[X = 2] — Pr[Y = 2]|. For a distinguisher D (or a class
of distinguishers D) we write the computational distance between X and Y as
§P(X,Y) = |E[D(X)] — E[D(Y)]|. We denote by Ds.., the class of randomized
circuits which output a single bit and have size at most ss... For a metric space
(M, dis), the (closed) ball of radius t around x is the set of all points within
radius ¢, that is, Bi(z) = {y|dis(z,y) < t}. If the size of a ball in a metric
space does not depend on x, we denote by |B;(-)| the size of a ball of radius t.
For the Hamming metric over 27, |B,(-)| = Y0_, (M) (IZ] = 1)°. U,, denotes the
uniformly distributed random variable on {0,1}". Usually, we use bold letters
for vectors or matrices, capitalized letters for random variables, and lowercase
letters for elements in a vector or samples from a random variable.

2.1 Fuzzy Extractors and Secure Sketches

We now recall definitions and lemmas from the work of Dodis et. al. [I5], Sections
2.5-4.1], adapted to allow for a small probability of error, as discussed in [15,
Sections 8]. Let M be a metric space with distance function dis.

Definition 1. An (M,m,¥,t, €)-fuzzy extractor with error § is a pair of ran-
domized procedures, “generate” (Gen) and “reproduce” (Rep), with the following
properties:

1. The generate procedure Gen on input w € M outputs an extracted string
r € {0,1}* and a helper string p € {0,1}*.

2. The reproduction procedure Rep takes an element w' € M and a bit string
p € {0,1}* as inputs. The correctness property of fuzzy extractors guarantees
that for w and w' such that dis(w,w") < t, if R, P were generated by (R, P) +
Gen(w), then Rep(w’, P) = R with probability (over the coins of Gen, Rep) at
least 1 — 0. If dis(w, w’) > t, then no guarantee is provided about the output
of Rep.



178 B. Fuller, X. Meng, and L. Reyzin

3. The security property guarantees that for any distribution W on M of min-
entropy m, the string R is nearly uniform even for those who observe P: if
(R, P) + Gen(W), then SD((R, P), (U, P)) < e.

A fuzzy extractor is efficient if Gen and Rep run in expected polynomial time.

Secure sketches are the main technical tool in the construction of fuzzy ex-
tractors. Secure sketches produce a string s that does not decrease the entropy
of w too much, while allowing recovery of w from a close w’:

Definition 2. An (M, m,m,t)-secure sketch with error ¢ is a pair of random-
ized procedures, “sketch” (SS) and “recover” (Rec), with the following properties:

1. The sketching procedure SS on input w € M returns a bit string s € {0, 1}*.

2. The recovery procedure Rec takes an element w' € M and a bit string
s € {0,1}*. The correctness property of secure sketches guarantees that if
dis(w,w") < t, then Pr[Rec(w’,SS(w)) = w] > 1 — 6 where the probability is
taken over the coins of SS and Rec. If dis(w,w') > t, then no guarantee is
provided about the output of Rec.

3. The security property guarantees that for any distribution W over M with
min-entropy m, the value of W can be recovered by the adversary who ob-
serves w with probability no greater than 2=™. That is, Hoo (W|SS(W)) > 7.

A secure sketch is efficient if SS and Rec run in expected polynomial time.

Note that in the above definition of secure sketches (resp., fuzzy extractors),
the errors are chosen before s (resp., P) is known: if the error pattern between
w and w’ depends on the output of SS (resp., Gen), then there is no guarantee
about the probability of correctness.

A fuzzy extractor can be produced from a secure sketch and an average-case
randomness extractor. An average-case extractor is a generalization of a strong
randomness extractor [28, Definition 2]) (in particular, Vadhan [36, Problem 6.8]
showed that all strong extractors are average-case extractors with a slight loss
of parameters):

Definition 3. Let x1, x2 be finite sets. A function ext : x1 x{0,1}% — {0,1}¢ a
(m, €)-average-case extractor if for all pairs of random variables X,Y over x1, x2
such that Hoo (X|Y) > m, we have A((ext(X,Uq),Uq,Y),Us x Ug xY) <e.

Lemma 1. Assume (SS, Rec) is an (M, m, 1, t)-secure sketch with error §, and
let ext : M x {0,1}% — {0,1}¢ be a (1, €)-average-case extractor. Then the
following (Gen, Rep) is an (M, m, £, t, €)-fuzzy extractor with error §:

— Gen(w) : generate x < {0,1}%, set p = (SS(w), x),r = ext(w;x), and output

(r,p)-
— Rep(w', (s,2)) : recover w = Rec(w', s) and output r = ext(w;x).

The main parameter we will be concerned with is the entropy loss of the con-
struction. In this paper, we ask whether a smaller entropy loss can be achieved
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by considering a fuzzy extractor with a computational security requirement. We
therefore relax the security requirement of Definition [I] to require a pseudoran-
dom output instead of a truly random output. Also, for notational convenience,
we modify the definition so that we can specify a general class of sources for
which the fuzzy extractor is designed to work, rather than limiting ourselves
to the class of sources that consists of all sources of a given min-entropy m, as
in definitions above (of course, this modification can also be applied to prior
definitions of information-theoretic secure sketches and fuzzy extractors).

Definition 4 (Computational Fuzzy Extractor). Let W be a family of
probability distributions over M. A pair of randomized procedures “generate”
(Gen) and “reproduce” (Rep) is a (M, W, £, t)-computational fuzzy extractor
that is (€, Ssec)-hard with error § if Gen and Rep satisfy the following properties:

— The generate procedure Gen on input w € M outputs an extracted string
R € {0,1} and a helper string P € {0,1}*.

— The reproduction procedure Rep takes an element w' € M and a bit string
P € {0,1}* as inputs. The correctness property guarantees that for all w,w’
where dis(w, w") < t, if (R, P) < Gen(w) then Pr[Rep(w’,P) =R] >1—§
where the probability is over the randomness of (Gen, Rep). If dis(w, w’) > ¢,
then no guarantee is provided about the output of Rep.

— The security property guarantees that for any distribution W € W, the string
R is pseudorandom conditioned on P, that is 6P ((R, P), (U, P)) < e.

Any efficient fuzzy extractor is also a computational fuzzy extractor with the
same parameters.

Remark. Fuzzy extractor definitions make no guarantee about Repbehavior when
the distance between w and w’ is larger than ¢. In the information-theoretic setting
this seemed inherent as the “correct” R should be information-theoretically un-
known conditioned on P. However, in the computationally setting this is not true.
Looking ahead, in our construction R is information-theoretically determined con-
ditioned on P (with high probability over the coins of Gen). Our Rep algorithm will
never output an incorrect key (with high probability over the coins of Gen) but may
not terminate. However, it is not clear this is the desired behavior. For this reason,
we leave the behavior of Rep ambiguous when dis(w, w') > t.

3 Impossibility of Computational Secure Sketches

In this section, we consider whether it is possible in build a secure sketch that
retains significantly more computational than information-theoretic entropy. We
consider two different notions for computational entropy, and for both of them
show that corresponding secure sketches are subject to the same upper bounds
as those for information-theoretic secure sketches. Thus, it seems that relaxing
security of sketches from information-theoretic to computational does not help.

In particular, for the case of the Hamming metric and inputs that have full
entropy, our results are as follows. In Section B.I] we show that a sketch that
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retains HILL entropy implies a sketch that retains nearly the same amount of
min-entropy. In Section B.2] we show that the computational unpredictability
of a sketch is at most log | M| — log|B¢(-)|. Dodis et al. [I5, Section 8.2] con-
struct sketches with essentially the same information-theoretic securit . In
Section B3] we discuss mechanisms for avoiding these bounds.

3.1 Bounds on Secure Sketches Using HILL Entropy

HILL entropy is a commonly used computational notion of entropy [21]. It was
extended to the conditional case by Hsiao, Lu, Reyzin [22]. Here we recall a
weaker definition due to Gentry and Wichs [19] (the term relaxed HILL en-
tropy was introduced in [32]); since we show impossibility even for this weaker
definition, impossibility for the stronger definition follows immediately.

Definition 5. Let (W, S) be a pair of random variables. W has relaxed HILL en-
tropy at least k conditioned on S, denoted HE"""*(W|S) > k if there exists a joint

distribution (X,Y), such that Hoo (X|Y) > k and §Psscc (W, ), (X,Y)) < e.

Intuitively, HILL entropy is as good as average min-entropy for all computa-
tionally bounded observers. Thus, redefining secure sketches using HILL en-
tropy is a natural relaxation of the original information-theoretic definition; in
particular, the sketch-and-extract construction in Lemma [I] would yield pseudo-
random outputs if the secure sketch ensured high HILL entropy. We will con-
sider secure sketches that retain relaxed HILL entropy: that is, we say that
(SS, Rec) is a HILL-entropy (M, m,m,t) secure sketch that is (e, ssec)-hard with
error § if it satisfies Definition [, with the security requirement replaced by
HFLL=1x(W|SS(W)) > rin.

Unfortunately, we will show below that such a secure sketch implies an er-
ror correcting code with approximately 2™ points that can correct ¢t random
errors (see [I5, Lemma C.1] for a similar bound on information-theoretic secure
sketches). For the Hamming metric, our result essentially matches the bound on
information-theoretic secure sketches of [I5, Proposition 8.2]. In fact, we show
that, for the Hamming metric, HILL-entropy secure sketches imply information-
theoretic ones with similar parameters, and, therefore, the HILL relaxation gives
no advantage.

The intuition for building error-correcting codes from HILL-entropy secure
sketches is as follows. In order to have HIM*(W|SS(W)) > s, there must
be a distribution X,Y such that Hoo (X|Y) > 7 and (X,Y) is computationally
indistinguishable from (W,SS(W)). Sample a sketch s <— SS(W). We know that
SS followed by Rec likely succeeds on W|s (i.e., Rec(w’, s) = w with high prob-
ability for w < W|s and w’ < B(w)). Consider the following experiment: 1)
sample y «+ Y, 2) draw z < X|y and 3) 2’ < Bi(x). By indistinguishability,

! The security in [I5] Section 8.2] is expressed in terms of entropy of the error rate;
recall that log B.(-) ~ Hy(t/n), where n is the number of symbols, ¢ is the alphabet
size, and Hy is the g-ary entropy function.
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Rec(z’,y) = x with high probability. This means we can construct a large set
C from the support of X|y. C will be an error correcting code and Rec an effi-
cient decoder. We can then use standard arguments to turn this code into an
information theoretic sketch.

To make this intuition precise, we need an additional technical condition:
sampling a random neighbor of a point is efficient.

Definition 6. We say a metric space (M, dis) is (Speigh, t)-neighborhood sam-
plable if there exists a randomized circuit Neigh of size Sneign that for allt’ <t,
Neigh(w, t") outputs a random point at distance t' of w.

We review the definition of a Shannon code [33]:

Definition 7. Let C be a set over space M. We say that C is an (t,€)-Shannon
code if there exists an efficient procedure Rec such that for all ¥ < t and for
all ¢ € C, Pr[Rec(Neigh(c,t')) # ¢] < e. To distinguish it from the average-error
Shannon code defined below, we will sometimes call it a maximal-error Shannon
code.

This is a slightly stronger formulation than usual, in that for every size t' < t
we require the code to correct ' random errordd. Shannon codes work for all
codewords. We can also consider a formulation that works for an “average”
codeword.

Definition 8. Let C be a distribution over space M. We say that C is an (t,€)-
average error Shannon code if there exists an efficient procedure Rec such that
for all t' <t Pre.c[Rec(Neigh(c,t')) # ] <.

An average error Shannon code is one whose average probability of error is
bounded by e. See [12, Pages 192-194] for definitions of average and maximal
error probability. An average-error Shannon code is convertible to a maximal-
error Shannon code with a small loss. We use the following pruning argument
from [12| Pages 202-204] (we provide a proof in the full version [18§]):

Lemma 2. Let C be a (t, €)-average error Shannon code with recovery procedure
Rec such that Hoo(C) > k. There is a set C' with |C'| > 2*~1 that is a (t,2¢)-
(maximal error) Shannon code with recovery procedure Rec.

We can now formalize the intuition above and show that a sketch that retains
m-bits of relaxed HILL entropy implies a good error correcting code with nearly
2™ points (proof in the full version of this work [I8]).

Theorem 1. Let (M,dis) be a (Speigh,t)-neighborhood samplable metric space.
Let (SS, Rec) be a HILL-entropy (M, m,m,t)-secure sketch that is (€, Sse.)-secure

2 In the standard formulation, the code must correct a random error of size up to t,
which may not imply that it can correct a random error of a much smaller size ¢/,
because the volume of the ball of size ' may be negligible compared to the volume
of the ball of size t. For codes that are monotone (if decoding succeeds on a set of
errors, it succeeds on all subsets), these formulations are equivalent. However, we
work with an arbitrary recover functionality that is not necessarily monotone.
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with error §. Let s,yec denote the size of the circuit that computes Rec. If Sgec >
(t(Sneigh + Srec)), then there exists a value s and a set C with |C| > 2™~ that is
a (t,4(e + t6))-Shannon code with recovery procedure Rec(-, s).

For the Hamming metric, any Shannon code (as defined in Definition [7) can be
converted into an information-theoretic secure sketch (as described in [15], Sec-
tion 8.2] and references therein). The idea is to use the code offset construction,
and convert worst-case errors to random errors by randomizing the order of the
symbols of w first, via a randomly chosen permutation 7 (which becomes part of
the sketch and is applied to w’ during Rec). The formal statement of this result
can be expressed in the following Lemma (which is implicit in [I5 Section 8.2]).

Lemma 3. For an alphabet Z, let C over Z™ be a (t,d) Shannon code. Then
there exists a (2™, m,m — (nlog|Z| — log|C|),t) secure sketch with error ¢ for
the Hamming metric over Z™.

Putting together Theorem [I] and Lemma [3 gives us the negative result for the
Hamming metric: a HILL-entropy secure sketch (for the uniform distribution)
implies an information-theoretic one with similar parameters:

Corollary 1. Let Z be an alphabet. Let (SS',Rec’) be an (€, 8se.)-HILL-entropy
(Z™,nlog|Z|, m,t)-secure sketch with error § for the Hamming metric over Z™,
with Rec’ of circuit size Syec. If Ssee > t(Srec + nlog|Z]), then there exists a

(2™, nlog|Z|,m—2,t) (information-theoretic) secure sketch with error 4(e+1td).

Note. In Corollary [l we make no claim about the efficiency of the resulting
(SS, Rec), because the proof of Theorem [Iis not constructive.

Corollary M extends to non-uniform distributions: if there exists a distribution
whose HILL sketch retains m bits of entropy, then for all distributions W, there
is an information theoretic sketch that retains Hoo (W) — (nlog | Z| — m) — 2 bits
of entropy.

3.2 Bounds on Secure Sketches Using Unpredictability Entropy

In the previous section, we showed that any sketch that retained HILL entropy
could be transformed into an information theoretic sketch. However, HILL en-
tropy is a strong notion. In this section, we therefore ask whether it is useful to
consider a sketch that satisfies a minimal requirement: the value of the input is
computationally hard to guess given the sketch. We begin by recalling the defi-
nition of conditional unpredictability entropy [22, Definition 7], which captures
the notion of “hard to guess” (we relax the definition slightly, similarly to the
relaxation of HILL entropy described in the previous section).

Definition 9. Let (W, S) be a pair of random variables. W has relaxed unpre-
dictability entropy at least k conditioned on S, denoted by HI2™™(W|S) > k,

if there exists a pair of distributions (X,Y) such that §Pssec (W, S), (X,Y)) < ¢,
and for all circuits T of size Sgee,

Pr[Z(Y) = X] <27"



Computational Fuzzy Extractors 183

A pair of procedures (SS,Rec) is a unpredictability-entropy (M, m,m,t) secure
sketch that is (e, $se.)-hard with error ¢ if it satisfies Definition [ with the secu-
rity requirement replaced by HX®™(W|SS(W)) > . Note this notion is quite
natural: combining such a secure sketch in a sketch-and-extract construction
of Lemma [l with a particular type of extractor (called a reconstructive extrac-
tor [4]), would yield a computational fuzzy extractor (per [22, Lemma 6]).
Unfortunately, the conditional unpredictability entropy m must decrease as ¢
increases, as the following theorem states. (The proof of the theorem, generalized

to more metric spaces, is in the full version [I§].)

Theorem 2. Let Z be an alphabet. Let (SS,Rec) be an unpredictability-entropy
(2™, m,m,t)-secure sketch that is (€, Ssec)-secure with error §, if ssec > t(|Rec|+
nlog|Z|), then m < nlog|Z| — log|B:(-)| + log(1 — € — t4).

In particular, if the input is uniform, the entropy loss is about log|B:(-)|. As
mentioned at the beginning of Section [3] essentially the same entropy loss can
be achieved with information-theoretic secure sketches, by using the randomized
code-offset construction. However, it is conceivable that unpredictability entropy
secure sketches could achieve lower entropy loss with greater efficiency for some
parameter settings.

3.3 Avoiding Sketch Entropy Upper Bounds

The lower bounds of Corollary [l and Theorem 2] are strongest for high entropy
sources. This is necessary, if a source contains only codewords (of an error cor-
recting code), no sketch is needed, and thus there is no (computational) entropy
loss. This same situation occurs when considering lower bounds for information-
theoretic sketches [15, Appendix C] .

Both of lower bounds arise because Rec must function as an error-correcting
code for many points of any indistinguishable distribution. It may be possible
to avoid these bounds if Rec outputs a fresh random variabldd. Such an algo-
rithm is called a computational fuzzy conductor. See [25] for the definition of a
fuzzy conductor. To the best of our knowledge, a computational fuzzy conductor
has not been defined in the literature, the natural definition is to replace the
pseudorandomness condition in Definition ] with a HILL entropy requirement.

Our construction (in Section H]) has pseudorandom output and immediately
satisfies definition of a computational fuzzy extractor (Definition H). It may be
possible to achieve significantly better parameters with a construction that is a
computational fuzzy conductor (but not a computational fuzzy extractor) and
then applying an extractor. We leave this as an open problem.

3 If some efficient algorithm can take the output of Rec and efficiently transform it back
to the source W, the bounds of Corollary [l and Theorem 2l both apply. This means
that we need to consider constructions that are hard to invert (either information-
theoretically or computationally).
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4 Computational Fuzzy Extractor Based on LWE

In this section we describe our main construction. Security of our construction
depends on the source W. We first consider a uniform source W; we consider
other distributions in Section Bl Our construction uses the code-offset construc-
tion [23], [15], Section 5] instantiated with a random linear code over a finite field
F,. Let Decode; be an algorithm that decodes a random linear code with at most
t errors (we will present such an algorithm later, in Section E.2]).

Construction 1. Letn be a security parameter and let m > n. Let q be a prime.
Define Gen, Rep as follows:

Gen Rep
1. Input: w < W (where W is some 1. Input: (w',p) (where the Haomming
distribution over Ty ). distance between w' and w is at
2. Sample A € F"*",x € Fy uni- most t).
formly. 2. Parse p as (A,c); letb=c—w'.
3. Compute p = (A, Ax + w), 3. Let x = Decode; (A, b)
r=Xi,.,n/2-
4. Output (r,p). 4. Output r = 1, n/2.

Intuitively, security comes from the computational hardness of decoding ran-
dom linear codes with a high number of errors (introduced by w). In fact, we
know that decoding a random linear code is NP-hard [6]; however, this statement
is not sufficient for our security goal, which is to show

(SDSSGC((XI,M,n/%P)’ (Un/QIqu’P)) se

Furthermore, this construction is only useful if Decode; can be efficiently imple-
mented.

The rest of this section is devoted to making these intuitive statements precise.
We describe the LWE problem and the security of our construction in Section 11
We describe one possible polynomial-time Decode; (which corrects more errors
than is possible by exhaustive search) in Section In Section 3] we describe
parameter settings that allow us to extract as many bits as the input entropy,
resulting in a lossless construction. In Section L4l we compare Construction [I]
to using a sketch-and-extract approach (Lemma[I]) instantiated with a compu-
tational extractor.

4.1 Security of Construction [I]

The LWE problem was introduced by Regev [30/31] as a generalization of “learn-
ing parity with noise.” For a complete description of the LWE problem and
related lattices problems (which we do not define here) see [30]. We now recall
the decisional version of the problem.
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Definition 10 (Decisional LWE). Let n be a security parameter. Let m =
m(n) = poly(n) be an integer and ¢ = q(n) = poly(n) be a primdd. Let A be
the uniform distribution over Fg**™, X be the uniform distribution over Fy and
X be an arbitrary distribution on Fg'. The decisional version of the LWE problem,
denoted dist-LWE,, 1, 4.x, s to distinguish the distribution (A, AX + x) from the
uniform distribution over (Fy*>" F;").

We say that dist-LWE,, 1, q.x 5 (€, Ssec)-Secure if no (probabilistic) distin-
guisher of size Ssec can distinguish the LWE instances from uniform except with
probability e. If for any ssec = poly(n), there exists ¢ = ngl(n) such that
dist-LWEy, i, q, 15 (€, Ssec)-secure, then we say it is secure.

Regev [30] and Peikert [29] show that dist-LWE,, ,,, 4 is secure when the distri-
bution x of errors is Gaussian, as follows. Let ¥, be the discretized Gaussian
distribution with variance (pq)?/2m, where p € (0, 1) with pg > 2/n. If GAPSVP
and SIVP are hard to approximate (on lattices of dimension n) within polyno-
mial factors for quantum algorithms, then dist—LWEnyqu’@;n is secure. (A recent

result of Brakerski et al. [8] shows security of LWE based on hardness of approx-
imating lattices problems for classical algorithms. We have not considered how
this result can be integrated into our analysis.)

The above formulation of LWE requires the error term to come from the dis-
cretized Gaussian distribution, which makes it difficult to use it for constructing
fuzzy extractors (because using w and w’ to sample Gaussian distributions will
increase the distance between the error terms and/or reduce their entropy). For-
tunately, recent work Dottling and Miiller-Quade [I7] shows the security of LWE,
under the same assumptions, when errors come from the uniform distribution
over a small intervall. This allows us to directly encode w as the error term in an
LWE problem by splitting it into m blocks. The size of these blocks is dictated
by the following result of Dottling and Miiller-Quade:

Lemma 4. [T7, Corollary 1] Let n be a security parameter. Let ¢ = q(n) =
poly(n) be a prime and m = m(n) = poly(n) be an integer with m > 3n. Let
o € (0,1) be an arbitrarily small constant and let p = p(n) € (0,1/10) be such
that pq > 2n'/?*t7m. If the approzimate decision-version of the shortest vector
problem (GAPSVP) and the shortest independent vectors problem (SIVP) are
hard within a factor of O(n*t7m/p) for quantum algorithms in the worst case,
then, for x the uniform distribution over [—pq, pg)™, dist-LWE,, 1, ¢, s secure.

To extract pseudorandom bits, we use a result of Akavia, Goldwasser, and
Vaikuntanathan [I] to show that X has simultaneously many hardcore bits. The
result says that if dist-LWE(,,_ m,q,y) is secure then any k variables of X in a
dist-LWE (;, 1 q,y) instance are hardcore. We state their result for a general error
distribution (noting that their proof does not depend on the error distribution):

4 Unlike in common formulations of LWE, where ¢ can be any integer, we need ¢ to
be prime for decoding.

® Micciancio and Peikert provide a similar formulation in [27]. The result Déttling and
Miiller-Quade provides better parameters for our setting.
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Lemma 5. [1, Lemma 2] If dist-LWE (,, _j, 1. q.x) 5 (€, Ssec) Secure, then
6DS“C/ ((Xl,m,kv Aa AX + X)a (Ua A7 AX + X)) S €,

where U denotes the uniform distribution over ]F’;, A denotes the uniform distri-
bution over ]F;”X”, X denotes the uniform distribution over ]Fg, X1,k denote
the first k coordinates of x, and s\, = Ssec — n°.

The security of Construction [ follows from Lemmas [ and B when parameters
are set appropriately (see Theorem B), because we use the hardcore bits of X as
our key.

4.2 Efficiency of Construction [

Construction [Mlis useful only if Decode; can be efficiently implemented. We need
a decoding algorithm for a random linear code with ¢ errors that runs in poly-
nomial time. We present a simple Decode; that runs in polynomial time and can
correct correcting O(logn) errors (note that this corresponds to a superpolyno-
mial number of possible error patterns). This algorithm is a proof of concept,
and neither the algorithm nor its analysis have been optimized for constants. An
improved decoding algorithm can replace our algorithm, which will increase our
correcting capability and improve Construction [l

Construction 2. We consider a setting of (n,m,q,x) where m > 3n. We de-
scribe Decode; :

Input A,b=Ax+w—w

Randomly select rows without replacement iy, ...,1i2, < [1,m].

Restrict A, b to rows i1, ...,12,; denote these A;, . iy sDiy,. . s, -

Find n rows of Ay, ... i, that are linearly independent. If no such rows exist,

output 1 and stop.

5. Denote by A’ b’ the restriction of Ai, .. iy, s Piy,..
rows. Compute x' = (A’)~'b/.

6. If b — Ax' has more than t nonzero coordinates, go to step (2).

7. Output x'.

e e~

(respectively) to these

5l2n

Each step is computable in time O(n?). For Decode; to be efficient, we need ¢
to be small enough so that with probability at least pol;(n), none of the 2n rows
selected in step 2 have errors (i.e., so that w and w’ agree on those rows). If this
happens, and A;, . ;,, has rank n (which is highly likely), then x’ = x, and the
algorithm terminates. However, we also need to ensure correctness: we need to
make sure that if x' # x, we detect it in step 6. This detection will happen if
b — Ax’ = A(x —x’) + (w — w’) has more than ¢ nonzero coordinates. It suffices
to ensure that A(x — x’) has at least 2¢ + 1 nonzero coordinates (because at
most ¢t of those can be zeroed out by w — w’), which happens whenever the code
generated by A has distance 2t + 1.
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Setting t = O("" logn) is sufficient to ensure efficiency. Random linear codes
have distance at least O("" logn) with probability 1 — e~ (") (the exact state-
ment is in Corollary ), so this also ensures correctness. The formal statement
is below (proof in the full version of this work [1§]):

Lemma 6 (Efficiency of Decode; when ¢ < d(m/n — 2)logn). Let d be a
positive constant and assume that dis(W,W') < t where t < d("" — 2)logn.
Then Decode; runs in expected time O(n*d*3) operations in ¥, (this expectation
18 over the choice of random coins of Decode;, regardless of the input, as long as
dis(w,w’) < t). It outputs X with probability 1 — e~ (this probability is over
the choice of the random matriz A and random choices made by Decode; ).

4.3 Lossless Computational Fuzzy Extractor

We now state a setting of parameters that yields a lossless construction. The
intuition is as follows. We are splitting our source into m blocks each of size
log pg (from Lemma M) for a total input entropy of mlog pq. Our key is derived
from hardcore bits of X: X7, and is of size klogq (from Lemma[f). Thus,
to achieve a lossless construction we need klogq = mlogpg. In other words,
in order to decode a meaningful number of errors, the vector w is of higher
dimension than the vector X, but each coordinate of w is sampled using fewer
bits than each coordinate of X. Thus, by increasing the size of ¢ (while keeping
pq fixed) we can set klogg = mlogpq, yielding a key of the same size as our
source. The formal statement is below.

Theorem 3. Let n be a security parameter and let the number of errors t =
clogn for some positive constant c. Let d be a positive constant (giving us a
tradeoff between running time of Rep and |w|). Consider the Hamming metric
over the alphabet Z = [—2°71 2571 where b = log2(c/d + 2)n? = O(logn).
Let W be uniform over M = Z™, where m = (¢/d+ 2)n = O(n). If GAPSVP
and SIVP are hard to approximate within polynomial factors using quantum
algorithms, then there is a setting of ¢ = poly(n) such that for any polyno-
mial Ssec = poly(n) there exists € = ngl(n) such that the following holds:
Constructiond is a (M, W, mlog|Z|,t)-computational fuzzy extractor that is
(€, 8sec)-hard with error § = e~ (™). The generate procedure Gen takes O(n?) op-
erations over F,, and the reproduce procedure Rep takes expected time O(n+3)
operations over IFy.

Proof. Security follows by combining Lemmas [l and B efficiency follows by
Lemma [6l For a detailed explanation of the various parameters and constraints
see the full version of this work [I§].

Theorem [3] shows that a computational fuzzy extractor can be built without
incurring any entropy loss. We can essentially think of AX 4+ W as an encryption
of X that where decryption works from any close W’.
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4.4 Comparison with Computational-Extractor-Based
Constructions

As mentioned in the introduction, an alternative approach to building a computa-
tional fuzzy extractor is to use a computational extractor (e.g., [26/3/13]) in place of
the information-theoretic extractor in the sketch-and-extract construction. We will
call this approach sketch-and-comp-extract. (A simple example of a computational
extractor is a pseudorandom generator applied to the output of an information-
theoretic extractor; note that LWE-based pseudorandom generators exist [2].)

This approach (specifically, its analysis via Lemma[Il) works as long as the
amount of entropy m of w conditioned on the sketch s remains high enough to
run a computational extractor. However, as discussed in Section Bl m decreases
with the error parameter ¢ due to coding bounds, and it is conceivable that, if
W has barely enough entropy to begin with, it will have too little entropy left
to run a computational extractor once s is known.

In contrast, our approach does not require the entropy of w conditioned on
p= (A, AX + w) to be high enough for a computational extractor. Instead, we
require that w is not computationally recoverable given p. This requirement is
weaker—in particular, in our construction, w may have no information-theoretic
entropy conditioned on p. The key difference in our approach is that instead of
extracting from w, we hide secret randomness using w. Computational extractors
are not allowed to have private randomness [26], Definition 3].

The main advantage of our analysis (instead of sketch-and-comp-extract) is
that security need not depend on the error-tolerance t. In our construction,
the error-tolerance depends only on the best available decoding algorithm for
random linear codes, because decoding algorithms will not reach the information-
theoretic decoding radius.

Unfortunately, LWE parameter sizes require relatively long w. Therefore, in
practice, sketch-then-comp-extract will beat our construction if the computa-
tional extractor is instantiated efficiently based on assumptions other than LWE
(for example, a cryptographic hash function for an extractor and a block cipher
for a PRG). However, we believe that our conceptual framework can lead to
better constructions. Of particular interest are other codes that are easy to de-
code up to t errors but become computationally hard as the number of errors
increases.

To summarize, the advantage of Construction [l is that the security of our
construction does not depend on the decoding radius ¢. The disadvantages of
Construction [T are that it supports a limited number of errors and only a uni-
formly distributed source. We begin to address this second problem in the next
section.

5 Computational Fuzzy Extractor for Nonuniform
Sources

While showing the security of Construction[I] for arbitrary high-min-entropy
distributions is an open problem, in this section we show it for a particular class
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of distributions called symbol-fixing. First we recall the notion of a symbol fixing
source (from [24], Definition 2.3]):

Definition 11. Let W = (W1, ..., Wi14) be a distribution where each W; takes
values over an alphabet Z. We say that it is a (m + «,m,|Z|) symbol fixing
source if for a indices i1,...,%iq, the symbols W, are fized, and the remaining
m symbols are chosen uniformly at random. Note that Hoo (W) = mlog|Z].

Symbol-fixing sources are a very structured class of distributions. However, ex-
tending Construction [Il to such a class is not obvious. Although symbol-fixing
sources are deterministically extractible [24], we cannot first run a deterministic
extractor before using Construction [Il This is because we need to preserve dis-
tance between w and w’ and an extractor must not preserve distance between
input points. We present an alternative approach, showing security of LWE di-
rectly with symbol-fixing sources.

The following theorem states the main technical result of this section, which
is of potential interest outside our specific setting. The result is that dist-LWE
with symbol-fixing sources is implied by standard dist-LWE (but for n and m
reduced by the amount of fixed symbols).

Theorem 4. Let n be a security parameter, m,« be polynomial in n, and q =
poly(n) be a prime and B € Z* be such that ¢~® = ngl(n). Let U denote the
uniform distribution over Z™ for an alphabet Z C F,, and let W denote an
(m + a,m,|Z|) symbol fizing source over Z™F*. If dist-LWE,, ., q.u is secure,
then dist-LWE, 4 o+ 8,m+a,q,w 18 also secure.

Theorem [4] also holds for an arbitrary error distribution (not just uniform error)
in the following sense. Let ' be an arbitrary error distribution. Define y as the
distribution where m dimensions are sampled according to x’ and the remaining
dimensions have some fixed error. Then, security of dist-LWE,, ,,, 4., implies se-
curity of dist-LWE,, 1 a4 8,m+a,q,x- We prove this stronger version of the theorem
in the full version of this work [I8].

The intuition for this result is as follows. Providing a single sample with
no error “fixes” at most a single variable. Thus, if there are significantly more
variables than samples with no error, search LWE should still be hard. We are
able to show a stronger result that dist-LWE is still hard. The nontrivial part of
the reduction is using the additional o+ ( variables to “explain” a random value
for the last o samples, without knowing the other variables. The § parameter is
the slack needed to ensure that the “free” variables have influence on the last «
samples. A similar theorem for the case of a single fixed dimension was shown
in concurrent work by Brakerski et al. [8] Lemma 4.3]. The proof techniques of
Brakerski et al. can be extended to our setting with multiple fixed dimensions,
improving the parameters of Theorem [ (specifically, removing the need for j3).

Theorem (] allows us to construct a lossless computational fuzzy extractor
from block-fixing sources:

Theorem 5. Let n be a security parameter and let t = clogn for some positive
constant c¢. Let d < ¢ be a positive constant and consider the Hamming metric
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over the alphabet Z = [—2°~1 25~ where b ~ log2(c/d + 2)n? = O(logn).
Let M = Z™T* where m = (¢/d + 2)n = O(n) and a < n/3. Let W be
the class of all (m + a,m,|Z|)-symbol fizing sources. If GAPSVP and SIVP
are hard to approximate within polynomial factors using quantum algorithms,
then there is a setting of ¢ = poly(n) such that for any polynomial Ssec =
poly(n) there exists e = ngl(n) such that the following holds: Construction ]
is a (M, W,mlog|Z|,t)-computational fuzzy extractor that is (€, Ssec)-hard with
error 6 = e~ (") The generate procedure Gen takes O(n?) operations over F,,
and the reproduce procedure Rep takes expected time O(n*@+3logn) operations
over IFy.

Proof. Security follows by Lemmas [ and B and Theorem H] . Efficiency follows
by Lemma 6l For a more detailed explanation of parameters see the full version
of this work [I§].
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A Properties of Random Linear Codes

For efficient decoding of Construction [Il we need the LWE instance to have high
distance with overwhelming probability. We will use the g-ary entropy function,
denoted H,(x) and defined as H,(r) = xlog,(¢—1)—zlog, z—(1—x)log,(1—x).
Note that Ha(z) = —zlogz — (1 —2)log(1 — z). In the region [0, 1] for any value
q > q, Hy(x) < Hy(x). The following theorem is standard in coding theory:

Theorem 6. [20, Theorem 8] For prime ¢, € [0,1 —1/¢),0 < e <1 — Hy(9)
and sufficiently large m, the following holds for n = [(1 — Hy(0) — e)m] . If
A € F"*" s drawn uniformly at random, then the linear code with A as a
generator matriz has rate at least (1 — Hy(0) — €) and relative distance at least
8 with probability at least 1 — e~
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Our setting is the case where m = poly(n) > 2n and 6 = O(logn/n). This
setting of parameters satisfies Theorem

Corollary 2. Letn be a parameter and let m = poly(n) > 2n. Let q be a prime
and 7 = O("" logn). For large enough values of n, when A € F**" is drawn
uniformly, the code generated by A has distance at least T with probability at
least 1 — e~ (M) > 1 — ¢=92(n),

Proof. Let ¢ be some constant. Let § = 7/m = Cl';g". We show the corollary
for the case when m = 2n (increasing the size of m only increases the relative
distance). It suffices to show that for sufficiently large n, there exists € > 0 where
1-— Hq(Ck;Lg") — e = 1/2 or equivalently that Hq(ClZf") < 1/2 as then setting
€=1/2— H,(°'*™) satisfies Theorem B For sufficiently large n:

n

- Cl(;g" < 1/2, so we can work with the binary entropy function Hs.

_ clf;g” < .1 <1/2 and thus Hq(ClZgn) < Hy(1).

Putting these statements together, for large enough n, Hq(Ck;Lg”) < Hy(1) <
H(.1) < 1/2 as desired. This completes the proof.
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