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Abstract. While combining more than one biometric sample, recog-
nition algorithm, modality or sensor, commonly referred to as multi-
biometrics, is common practice to improve accuracy of biometric systems,
fusion at segmentation level has so far been neglected in literature. This
paper introduces the concept of multi-segmentation fusion for combin-
ing independent iris segmentation results. Fusion at segmentation level
is useful to (1) obtain more robust recognition rates compared to sin-
gle segmentation; (2) avoid additional storage requirements compared to
feature-level fusion, and (3) save processing time compared to employing
parallel chains of feature-extractor dependent segmentation. As proof of
concept, manually labeled segmentation results are combined using the
proposed technique and shown to increase recognition accuracy for rep-
resentative algorithms on the well-known CASIA-V4-Interval dataset.

1 Introduction

Aiming to bridge the performance gap of image-based biometric systems between
highly accurate standardized cooperative applications and less constrained sce-
narios has attracted many researchers to propose algorithms improving prepro-
cessing and segmentation techniques, which are reported to play an important
role due to susceptibility to poor image quality [I0]. The human iris is one of the
most unique biometric identifiers, and also selected to be one of two modalities
to be employed in the world’s largest biometric deployment, Aadhaar, targeting
biometric identification of each Indian citizen. It is clear, that such large-scale
applications demand high accuracy to avoid misclassification. Furthermore, the
discrepancy between users aware of the acquisition and the observed decreased
rate when applied in unconstrained scenarios with reported VR (verification
rate) as low as 44.6% [14] versus >99% VR at 0.1% FAR (false acceptance rate)
for a series of iris biometric systems in constrained environments [I] support the
claimed need for higher accuracy in less constrained applications.

A combination of multiple biometric information can increase accuracy at
the cost of additional resources and is traditionally employed at the score or
decision-level [I5]. Such fusion rules unfortunately exhibit limitations: (1) many
algorithms conduct the same or similar costly processing steps; (2) segmentation
errors propagate along the biometric processing chain, and; (3) contradicting in-
formation may derogate system performance. This leads to the question: Can
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fusion at lower levels (segmentation) lead to more accurate (and faster) bio-
metric systems? This paper is dedicated to providing a positive answer to the
feasibility of fusion at segmentation stage, i.e. whether the combination of in-
dependent segmentation results lead to better system performance in terms of
recognition accuracy, independent of the chosen feature extraction and compar-
ison algorithm. Note, that the choice of methods may impact processing time.
The remainder of this paper is organized as follows: Section 2 reviews related
work with respect to multi-biometric fusion. Section [B] formalizes the referred
segmentation model and introduces the concept of fusion at segmentation stage.
Section Ml introduces experimental setup and Section [B] presents an experimental
evaluation of the proposed technique. Finally, Section [6] concludes this work.

2 Multibiometric Fusion

Multibiometric fusion refers to the “use of multiple pieces of evidence in order
to deduce or verify human identity” [I8] and can be applied at different stages
in the biometric processing chain [15]:

1. Data/Feature Level: consolidating information from the raw biometric sig-
nal or after feature extraction from individual classifiers into a single high-
dimensional template.

2. Score Level: consolidating comparison scores with density-based (using the
likelihood ratio after modeling genuine and imposter score distributions),
transformation-based and classifier-fusion-based (learning boundaries from
observed data) solutions, this is probably the most-intensively studied type
of fusion leaving other processing modules unaffected.

3. Rank/Decision Level: depending on whether biometric authentication is per-
formed in identification mode (1-to-N comparison with all subjects registered
with the system to determine an identity from a biometric sample) or verifi-
cation mode (1-to-1 comparison to justify the authenticity of an identification
claim as genuine or imposter), this fusion type consolidates the outcome of
individual decision processes, i.e. ranking lists or class decisions.

Due to the development of embedded solutions and with the rise of new biomet-
ric modalities focusing on specific parts and/or scales, the original classification
of fusion scenarios in [I5] into (1) multiple sensors, (2) multiple biometrics, (3)
multiple units, (4) multiple snapshots, (5) multiple matchers is less strict and
new scenarios emerge [16]. While an integration at early level is claimed to be
more effective [15], it is more complex to design. The majority of proposed multi-
biometric techniques targeting biometric surveillance (e.g., [T9/145]) are score-
level fusion approaches. Only few data/feature level fusion techniques exist: [4]
is the first signal-level fusion approach in iris recognition creating a single high-
resolution image from multiple frames in video outperforming score-level fusion
techniques. Their proposed technique is essentially an image fusion of iris images
at the pixel level. Our approach is different in targeting not multiple snapshots
but a single-snapshot only and combining the result of multiple segmentation
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Fig. 1. Basic operation mode of novel proposed iris segmentation fusion

results in order to improve recognition accuracy. This is the first approach on
combining segmentation results for improved iris recognition.

3 Iris Segmentation Fusion

This paper proposes to allow for a combination of multiple segmentation re-
sults S1,.5,,....5k of the same input iris image [ using multiple segmentation
algorithms, see Fig[Ilfor an illustration on how iris segmentation fusion can be in-
tegrated into iris processing chains between sensing and normalization. Since not
all iris feature extraction techniques require the same preprocessing tasks, the
proposed fusion technique uses segmentation results by employing Daugman’s
normalization [2], which serves as the basis for most commercial applications
[12]. A good reference work for practices on image segmentation classifier com-
bination is [6].

3.1 Daugman’s Iris Normalization Model

In Daugman’s algorithm [2], binary features are extracted after mapping iris
texture between inner pupillary and outer limbic boundary into a representation
called “Faberge coordinates” applying a rubbersheet transform, see Fig.[2l This
process involves essentially two tasks [12]: (1) iris segmentation detecting the two
(originally circular, but extensible to arbitrarily shaped) boundaries, pupillary
and limbic polar curves P,L : [0,27) — [0,m] x [0,n], for the eye instance
in the m x n input image (we assume, that eye detection and quality checks
indicate exactly one such instance is present and of sufficient quality); and (2)
iris normalization, which creates a normalized representation of the iris texture,
invariant under pupillary dilation and facilitating for rotational alignment via
simple pixel-shifts using angular # and pupil-to-limbic radial r coordinates:

R:[0,27) x [0,1] — [0,m] x [0,n]. R(0,7) := (1 —7)- P(0) +r-L(A). (1)

Besides the mapping in doubly dimensionless coordinates using R, due to
eyelids and reflections, the resulting rectangular area does not only contain iris
texture, but also areas, which should be masked out during feature extraction
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Fig. 2. Iris rubbersheet transform model with circular P, L and paraboloid E., E;

and comparison. While [I3] shows, that indeed, a reordering of pixels based on
reliability has almost a similar effect like noise masks (and render their use less
effective), traditional processing also creates a binary noise mask as part of the
normalization task, N : [0,27) x [0,1] — {0,1}, marking areas occluded by
eyelids, eyelashes or reflections. Usually, in order to build this noise mask, upper
and lower eyelids are fitted by paraboloid or polynomial curves E,,, E; : [0,1] —
[0,m] x [0,n] to mask out occluded areas in the noise mask.

3.2 Combination of Segmentation Results

Motivated by the observation, that more generic alignment using Levenshtein
instead of Hamming distance (HD) is able to increase recognition [17], the goal
of the fusion module is to obtain a better pupillary and limbic boundary repre-
sentation for minimizing the effect of mapping deformations due to inaccurately
localized boundaries in the rubbersheet transform. While there are several differ-
ent possibilities to accomplish this task (e.g., for practices on image segmentation
classifier combination see [6]), we exemplary introduce two different techniques:

— Sum-Rule Interpolation: A very natural choice of a fusion rule combining
multiple boundaries By, Ba,... By : [0,27) — [0,m] x [0,n] into a single
boundary B is, in analogy to the sum rule in score-level-fusion, the arithmetic
mean of sampled boundaries:

Sum Rule : B(0) := li: ZBi(G) (2)

This interpolation is executed for B = P and B = L separately. The same
method can be applied to interpolate between upper and lower eyelid ap-
proximations E,, E; to derive a common noisemask.

— Augmented-Model Interpolation: in case boundaries are rather different
and/or the curves’ sampling interval [0, 27] is not “equally spaced”, i.e. for
discretized equidistant samples of arguments x1, ...z, € [0, 27] the boundary
polygon B(z1), B(x2), ... B(xs) has large variation in the length of boundary
line segments, sum rule interpolation may lead to inaccurate results. While in
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this case a re-parametrization of boundary curves may be useful or necessary
for sum-rule interpolation, an alternative approach to the fusion of boundary
curves is fitting a model to the union of sampled edge points:

Aug Rule : B() := ModelFit( U U Bi(xj))(Q) (3)

1<i<k 1<5<s

where ModelFit is a fitting routine taking a set of points and providing a suit-
able shape (closed boundary curve) minimizing a model-error, e.g. Fitzgib-
bon’s ellipse fitting method [3] in case of B = P or B = L. For upper and
lower eyelid curves B = E,,, B = E;, input points can be used to fit a polygon
of second order to the input points.

4 Experimental Setup

In order to estimate the usability of the proposed new fusion framework, we
assess its performance on manually segmented iris images. This test is useful,
since (1) any dependencies between segmentation algorithms can be avoided in
this case enabling a fair test of the fusion rule, (2) a positive outcome justifies
its application in building high-confidence fused ground truth for evaluating
segmentation algorithms, (3) manual segmentations are state-of-the-art (e.g. in
the Noisy Iris Challenge Evaluation [I1]) to evaluate segmentation techniques
(i.e. considered superior to automated evaluations), therefore if segmentation
fusion is able to improve manual segmentation, it is a positive result for also
automated segmentation techniques, which are continuously improved to achieve
close-to-manual performance.

For experiments we employ the entire CASIA- V4-Intervaﬂ dataset of high
quality NIR illuminated indoor images with 320 x 280 pixel resolution (2639
images, 395 classes). For manual segmentations, a male (Manual 1) and female
(Manual 2) expert manually labeled boundary points until the fitted elliptic
inner pupillary and outer limbic boundaries sufficiently (according to the opinion
of the expert) approximated the true possibly occluded iris boundary. The same
procedure was also executed for upper and lower boundaries using a polynomial
of order two as the curves’ model. During manual segmentation, the expert could
zoom in/out and see the original and fitted (segmented) image.

As feature extraction algorithms operating on normalized iris textures, three
representative implementations available in USITH were employed: Masek [§] is
a feature extraction algorithm extracting phase angles from the row-wise con-
volution of the 1D intensity signals with scaled and oriented Log-Gabor kernels
encoding each phase angle with 2 bits leading to a 10240 bits code. Fractional HD
is employed for comparison. Ma [7] is a feature extraction algorithm tracking the
positions of minima and maxima (switching bit sequences) after executing 1D

! The Center of Biometrics and Security Research, CASIA Iris Image Database,
http://biometrics.idealtest.org
2 University of Salzburg Iris Toolbox, http://wavelab.at/sources/USIT/
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wavelet transform on the 10 one-dimensional signals, each one averaged from the
pixels of 5 adjacent rows for each of two subbands. Again, fractional HD is the
comparison criterion. Finally, Monro [9] employs a 1D discrete cosine transform
(DCT) on diamond-shaped image patches using a Hanning window approach to
locally summarize data. The final 2x128 bytes code tracks zero crossings of the
differences between the DCT coefficients of adjacent patch vectors using first
three DCT coefficients for a total of 7 shift positions (0; +4; +8; +12). Also for
the other codes (Masek, Ma) the comparison routine employed 7 bit shifts in
either direction for optimal alignment.

5 Results

We evaluate segmentation accuracy by assessing the impact on verification recog-
nition accuracy, i.e. ROC curves plotting false acceptance rate (FAR) versus
genuine acceptance rate (GAR), given in Figs. B [ and Bl GAR at fixed FAR
(£ 0.01%) for each of the two manual segmentations as well as fused results are
reported in Table [l

First, we can see that independent of the employed feature extraction algo-
rithm, both manual segmentations exhibit the same order in performance over
the entire operational ROC range: manual segmentation 2 delivers more accu-
rate results with 97.64% GAR at FAR < 0.01% for Masek, 98.34% for Ma and
95.72% for DCT-based Monro versus 97.46% for Masek, 98.19% for Ma and
93.94% Monro in case of the first manual segmentation. This suggests, that
manual segmentation 2 is more accurate/consistent. Both segmentations needed
approximately 9 working days to segment the dataset.

The second important observation is an algorithm-dependent impact of seg-
mentation on recognition accuracy. While typically, algorithms are compared by
using their own segmentation technique, we can see that the sensitivity against
segmentation among algorithms is quite different and should be considered when
comparing algorithms. While for Masek performance differences are almost invis-
ible (1.17% EER Manual 1 vs. 1.15% EER Manual 2, but still better performance
for segmentation fused Sum Rule with 1.13% EER and Aug-Rule with 1.12%
EER), differences for Monro are clearly present (1.84% EER Manual 1 vs. 1.62%
EER Manual 2, vs. Sum Rule with 1.52% EER and Aug-Rule with 1.48% EER).

Third, with respect to the targeted feasibility study of segmentation fusion
we can report, that fusion algorithms were able to increase accuracy of both
segmentation results, independent of the chosen feature extraction algorithm - a
result which is not self-evident and justifies its future investigation with existing
segmentation algorithms. Sum Rule Interpolation, which has the advantage of
being fast in computing an averaged segmentation representation, could increase
GAR from 97.46% to 97.84% for Masek, from 98.19 to 98.57% for Ma, and from
93.94% to 96.74% for the Monro implementation, which did not consider noise
masks. Relative performance differences to the Augmented Model Interpolation
were insignificant (97.84% GAR for Masek, 98.51% Ma and 96.8% for Monro),
i.e. both fusion rules performed almost equally well.
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6 Conclusion

Recent challenges like the Noisy Iris Challenge Evaluation (NICE) or Multiple
Biometrics Grand Challenge (MBGC) have put a strong focus on the segmen-
tation problem of challenging iris images. But so far, there has been no sys-
tematic framework of combining segmentation results from different algorithms.
We showed, that besides combining outcomes of biometric feature extraction or
comparison algorithms, it may be useful to combine segmentation and normaliza-
tion information from multiple sources. Evaluations using manual segmentation
on CASIA-V4-Interval revealed improvement by segmentation fusion for each of
the employed feature extraction algorithms and fusion rules. Segmentation-fused
recognition was as high as 96.8% GAR at < 0.01% FAR (Aug-Rule) vs. 93.94%
and 95.72% for individual segmentations in case of Monro’s feature. Future work
will focus on automatic segmentation algorithms, more challenging datasets, and
quality-related information assisting fusion rule selection.
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