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Abstract. Physically impaired people may use Surface Electromyography (sEMG) 
signals to control assistive devices in an automatic way. sEMG signals directly 
reflect the human motion intention, they can be used as input information for active 
exoskeleton control. This paper proposes a set of myoelectric algorithms based on 
machine learning for detecting movement intention aimed at controlling an upper 
limb active exoskeleton. The algorithms use a feature extraction stage based on a 
combination of time and frequency domain features (mean absolute value – 
waveform length, and auto-regressive model, respectively). The pattern recognition 
stage uses Linear Discriminant Analysis, K-Nearest Neighbor, Support Vector 
Machine and Bayesian classifiers. Additionally, two post-processing techniques are 
incorporated: majority vote and transition removal. The performance of the 
algorithms is evaluated with parameters of sensitivity, specificity, positive 
predictive value, error rate and active error rate, under typical conditions. These 
evaluations allow identifying pattern recognition algorithms for real-time control of 
an active exoskeleton. 
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1 Introduction 

Passive prostheses and orthoses are devices for functional compensation and physical 
rehabilitation of the human motor system. These are used on people suffering 
amputations and muscular disorders, but do not provide an intuitive reaction in its 
control to restore motor functions. On the other hand, active exoskeletons and 
myoelectric prostheses execute these functions in a natural way according to its 
learning process [1]. Surface Electromyography signal is the electrical manifestation 
of the neuromuscular activation associated with a contracting muscle [1]. sEMG 
pattern recognition based on control has emerged as a promising alternative in 
rehabilitation robotic devices [1]. Many studies have evaluated sEMG features in 
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classification algorithms aiming to control active prostheses and robotic exoskeletons 
[2]. Different features extraction methods have been used in pattern recognition 
involving both time domain and time-frequency domain features. Some of these 
include mean absolute value [3], zero crossings (ZC) [3], slope sign changes (SSC) 
[3], auto-regressive (AR) model coefficients [3], cepstrum coefficients [3], waveform 
length (WL) [3] and wavelet packet transform [3].  Numerous studies have been 
proposed to classify the features extracted from the sEMG like Bayesian classifier 
(BYN) [4], linear discriminant analysis (LDA) [5], hidden Markov model [6], multi-
layer perceptron (MLP) [4], fuzzy classifier [7], gaussian mixture model [8] and 
support vector machines (SVM) [9]. Most of the studies have been accomplished in 
health people to verify the feasibility of implemented algorithms for sEMG-based 
pattern recognition in human upper limbs. 

This work is motivated by the ongoing development of a 4-Degree of Freedom (DoF) 
upper limb active exoskeleton for muscular rehabilitation therapies. The first stage of 
this work is related to the performance evaluation in off-line mode of myoelectric 
algorithms to control external devices. Next section describes the methodology utilized 
in the feature extraction methods, the myoelectric pattern classification process and the 
post-processing algorithms, supported on an experimental protocol. Also, the 
quantitative parameters used in the performance evaluation are here described. Later, 
the results and discussions are presented, based on the qualitative and quantitative 
parameters set. Finally, the conclusion about of this work is presented. 

2 Methods 

Figure 1 shows the blocks diagram of the different myoelectric algorithms. First, the 
sEMG data are segmented in windows of 256 ms, overlapped of 32 ms, taking into 
account that delays in myoelectric control must be inferior to 300 ms [1]. Later, each 
data segment is processed through a feature extraction method conformed from a 
combination of parameters in temporal and spectral domains aimed at extracting 
information from sEMG. Linear Discriminant Analysis, Support Vector Machine, K-
Nearest Neighbor (KNN) and Bayesian classifier are employed for pattern recognition 
of seven classes, associated to upper limb movement. Finally, majority vote and 
transition removal algorithms are used to improve the pattern classification results. 

2.1 Experimental Protocol Description 

The stages of training and validation of the proposed algorithms were implemented 
using a set of signals from a sEMG database provided by the University of Carleton, 
Canada [8] from thirty healthy subjects. From this database, six sEMG recordings 
were taken for each subject, in four trials. Acquired recordings on eight channels with 
a sampling frequency of 3 kHz were provided through Ag-AgCl electrodes arranged 
at locations of the upper limb as shown in figure 2. Previous to the classification 
process, data were undersampled to 1 kHz. In each trial, subjects repeated four times, 
and in a random way, the following seven movements: hand open, hand close, wrist 
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flexion, wrist extension, forearm pronation, forearm supination and resting. Each 
movement repetition lasted 3 s. A rest period of 5 s was introduced at beginning and 
ending of each trial, then the whole trial lasted 94 s [7]. The class identifiers for 
different movements are the following: 1- hand open; 2-hand close; 3-wrist flexion; 4-
wrist extension; 5-forearm supination; 6-forearm pronation; 7-resting. 

 

Fig. 1. Block diagram of the proposed myoelectric algorithms 

 

Fig. 2. Position of the bipolar electrodes associated to sEMG channels 

2.2 Feature Extraction Methods 

The feature extraction method includes a combination of time and frequency domain 
parameters. Recent researches have demonstrated that this mixture vectors is a 
functional and efficient configuration [2]. This configuration provides a good 
classification accuracy and, is computationally efficient, which facilitates its 
implementation on embedded systems. Furthermore, it is more robust to the 
displacement of the surface electrodes. In the temporal domain the mean absolute value 
(MAV) and the waveform length (WL) were used. The MAV provides the average 
amplitude of  xi in the segment i that is N samples in length, see equation (1). The WL 
provides the cumulative length of the waveform over the time segment, see equation (2). 
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In the frequency domain, an Auto-Regressive (AR) model was implemented, 
basically expressed by follow expression: 
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where P is the order of the AR model and wi the white noise error. In the sEMG-based 
pattern recognition process, the coefficients of the AR model ap have been used as the 
feature vector. The AR model was based on Levinson–Durbin recursive method. This 
method is efficient at computation level in the calculus of the linear prediction 
coefficients, supported on the autocorrelation matrix [3]. Considering that any one of 
a four-order to six-order auto-regressive model is enough to represent the signal as a 
temporal series for the recursive method, a four-order model to obtain the linear 
prediction coefficients was defined [3]. Finally, in the feature extraction process, a 
concatenation of vectors of several parameters calculated from each sEMG channel 
was obtained: 1 MAV coefficients, 1 WL coefficients and 4 AR coefficients. 

2.3 Myoelectric Pattern Classification 

After extracting feature vectors, four classification methods (classifiers) were applied 
independently, according to the proposal myoelectric algorithms (LDA, SVM, KNN, 
BYN), see figure 2. Each sEMG channel and theirs characteristic vectors were 
concatenated from the first four auto-regressive coefficients, MAV and WL values, 
resulting in 48 coefficients (8 channels x 6 characteristic vectors/channel). Those feature 
vectors are the input to the different classifiers. The output of each classifier represents 
in each time anyone the seven motion class, see figure 2. Linear Discriminant Analysis 
technique [5] maximizes the ratio of between-class variance to the within-class variance 
in any particular data set, thereby guaranteeing maximal separability. This classification 
algorithm does not require iterative training, avoiding the problems with over-training 
that appear in artificial neural networks. Support Vector Machine constructs an optimal 
separating hyperplane in a high-dimension feature space of training data that are 
mapped using a nonlinear kernel function [9]. Therefore, although it uses a linear 
learning machine method with respect to the nonlinear kernel function, it is in effect a 
nonlinear classifier. The high generalization and classifying linearly-inseparable 
patterns with small computational complexity are capabilities of the SVM, which can be 
useful for classifying sEMG signal patterns whose features tend to change with time and 
can allow real-time motion classification, respectively [9]. K-nearest neighbor algorithm 
[10] is a non-parametric method for classifying objects based on closest training 
examples in the feature space. The k-nearest neighbor algorithm is one of the simplest 
of all machine learning algorithms. Bayesian classifier [4] is applied for use when 
features are independent of one another within each class, but it appears to work well in 
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practice even when that independence assumption is not valid. The class-conditional 
independence assumption greatly simplifies the training step since it is possible to 
estimate the one-dimensional class-conditional density for each feature individually. 
The stages of training and validation of proposed algorithms were implemented using 
cross-validation technique evaluating the results based on partitioning the data into 
training and test sets. Specifically, k-fold cross-validation was used based on the 
partition the k samples sub-conjunct. One subset is used as testing data and the rest  (k-
1) as training data. For this evaluation the k value (k = 6) is equal to the number of 
sEMG recordings acquired in one trial. For implementation of the four myoelectric 
pattern classifiers, the information of the classes during the training process was used. 

2.4 Post-processing Techniques 

The post-processing methods are designed to manage excessive outflows in the 
classification process and improve the system performance. The majority vote method 
(MV) uses the current classification result along with the n  previous classification 
(for this case, the eight previous classifications results) and makes a classification 
decision based on the class that appears more often [8]. The resulting effect is a 
smooth operation that removes spurious misclassification. The number of decisions 
that can be used in majority vote depends upon the length of the analysis window, the 
system processing delay, and the total system delay tolerable by the user for the 
exoskeleton control. On the other side, the errors that are present normally occur 
during transitional periods, which are expected as the system is in an undetermined 
state between contractions. Indeed, it is possible to remove them using transition 
removal algorithms [8]. 

3 Results 

Feature extraction and patterns classification algorithms were implemented in an  off-
line mode using functions in Matlab (Mathworks Inc., Natick, MA). The performance 
of the proposed algorithms was evaluated based on quantitative measures that include 
sensitivity (SS), specificity (SP), predictive positive value (PPV), total error rate of 
classification (TER) and active error rate (AER). An active decision is a single output 
class from the classifier resulting in limb motion. Figure 3 presents the scatter plot 
based on the feature vectors and the representative motion class from the proposed 
myoelectric algorithms, for the eight myoelectric channels. From a qualitative 
evaluation, the four classifiers provide a good discrimination of the wrist flexion and 
extension motion class, based on MAV, WL and auto-regressive feature vectors. The 
others motion class (hand open, hand close, supination, pronation and rest) were 
grouped in homogenous and similar way from the four classifiers. Figure 4 shows the 
statistical dispersion based on the total error rate, sensitivity, specificity, active error 
rate and predictive positive value without post-processing techniques (majority vote 
and transition removal). 
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Fig. 3. Scatter plot the feature vectors and the motion class from the proposed myoelectric 
algorithms: a) LDA classifier; b) KNN classifier; c) SVM classifier; and d) BYN classifier 

LDA, KNN and SVM classifiers (Fig.4a, b and c) present a similar performance from 
quantitative parameters. The total and active error rate (TER and AER) in the Bayesian 
classifier (Fig. 4d) is higher respecting to others classifiers, meaning lower accuracy 
during the movement action classification. Additionally, the specificity (SP) accuracy is 
lower, expressing that the movement actions proportion correctly rejected is lower 
respect to the previous classifiers. Therefore, the false positive number is higher during 
the classification process. From the above results and taking as example the Bayesian 
classifier, table 1 shows the confusion matrix from one working section the 
experimental protocol. Rows in the matrix represent the inputs related to classes that are 
required to obtain, and columns represent obtained patterns as classifier outputs. The 
main diagonal in both matrices represents the concordance between the true and 
obtained classes. Shared cells in the confusion matrix of the first table, under the main 
diagonal, present positive falses, i.e., a number of occurrences of motion class with the 
class that should be obtained. This is caused by the dispersion of the feature vectors and 
their relation with the motion class based on the assumption that not always is accurate, 
for Bayesian classifiers, that the predictor variables are independent. The second table 
shows the results obtained with the combinations of the majority vote and transition 
removal technique. The total removing of the positive falses with the combinations of 
these techniques is observed. Nevertheless, a considerable reduction of the motion class 
corrected classified from main diagonal is generated, as well as the motion class 
execution time. This is caused by removing the transition periods at the beginning and 
end of the motion class period while contractions occur. 
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Fig. 4. Statistical results for a representative classification from the proposed myoelectric 
algorithms: a) LDA classifier; b) KNN classifier; c) SVM classifier; and d) BYN classifier. 

Table 1. Confusion matrix of the Bayesian classifier 

Bayesian Classifier without post-processing

Hand Opened Hand Close Wrist Flexion Wrist Extension Forearm Pronation Forearm Supination Rest

Hand Opened 293 2 1 0 1 0 4

Hand Close 2 292 2 0 0 1 0

Wrist Flexion 2 4 287 0 1 1 3

Wrist Extension 7 1 1 287 0 0 0

Forearm Pronation 5 3 14 3 280 0 1

Forearm Supination 5 3 8 1 4 280 3

Rest 3 5 3 1 3 0 506

Bayesian Classifier with majority vote and remove transitions

Hand Opened 29 0 0 0 0 0 0

Hand Close 0 72 0 0 0 0 0

Wrist Flexion 0 0 27 0 0 0 0

Wrist Extension 0 0 0 23 0 0 0

Forearm Pronation 0 0 0 0 57 0 0

Forearm Supination 0 0 0 0 0 7 0

Rest 0 0 0 0 0 0 152  

4 Conclusions 

The control of exoskeletons working as an assistance or rehabilitation tools requires 
special considerations such as robustness, reliability and safe. These are mandatory 
requirements taking into account that the device must identify the user movement 
intention, analyze the information in real-time and compute the mechanical power to 
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release in the right instant. This paper described the obtained results in a comparative 
study of four proposed algorithms to approach the detection of movement 
intentionality. Selected algorithms aim to control a robotic upper limb exoskeleton 
using sEMG signals. LDA, SVM and KNN have presented better accuracy than 
Bayesian classifier. Nevertheless, the execution time during the training and 
evaluation process of the Bayesian classifier (292 ms) is considerably lower than the 
other classifiers (LDA ‒ 1.22 s, SVM ‒ 700 ms and KNN ‒ 428 ms). This result is an 
important parameter to be considered for its implementation in on-line mode. In this 
mode, the performance of the proposal algorithms could be improved using the post-
processing techniques (majority vote and transition removal), but  it is important to 
evaluate the number of decisions that can be used, as well as the length of the analysis 
window, taking into account that delays in myoelectric control. As future work, it is 
required to implement other algorithms and evaluate them under other conditions in 
order to obtain an optimal solution for myoelectric control. 
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