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Abstract. Adaptive experiments are well defined in the context of finite state 
machine (FSM) based analysis, in particular, in FSM based testing where hom-
ing and distinguishing experiments with FSMs are used in test derivation. In 
this paper, we define and propose algorithms for deriving adaptive homing and 
distinguishing experiments for non-initialized nondeterministic finite state ma-
chines (NFSM). For NFSMs, the construction of adaptive experiments is rather 
complex as the partition over produced outputs does not define a partition over 
the set of states but rather a collection of intersecting subsets, and thus, the re-
finement of such subsets is more difficult than the refinement of a partition. 
Given a complete non-initialized observable NFSM, we establish necessary and 
sufficient conditions for having adaptive homing and distinguishing experi-
ments and evaluate the upper bound on the height of these experiments. Simple 
application examples demonstrating a proposed approach are provided. 

Keywords: Nondeterministic finite state machine, conformance testing, adap-
tive homing and distinguishing experiments.  

1 Introduction 

Many methods are known for the development of experiments and conformance tests 
based on the specification given in the form of a finite state machine (FSM) [see, for 
example, 1-7]. In FSM-based testing, given a machine or an implementation under 
test (IUT) about which we lack some information, experiments are performed with the 
machine to deduce some lacked information. An experiment consists of applying 
input sequences to the machine, observing corresponding output responses and draw-
ing the conclusion about the machine under test. An experiment is preset if input se-
quences are known before starting the experiment and an experiment is adaptive if at 
each step of the experiment the next input is selected based on previously observed 
outputs [3][8]. Well-known types of experiments include distinguishing and homing 
experiments which are used when deriving FSM based tests with the guaranteed fault 
coverage and those experiments are elaborated for different types of FSMs. An FSM 
is initialized if it has one initial state, otherwise, weakly-initialized or non-initialized. 
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An FSM is observable if at each state the machine has at most one transition under a 
given input/output pair. Given an FSM, assuming that the initial state is unknown, a 
distinguishing experiment determines the initial state of the FSM, i.e., a state of the 
FSM before the experiment and such an experiment is widely used when checking the 
correspondence between transitions of an IUT and those of the specification FSM. A 
homing experiment identifies the final state reached at the end of the experiment and 
it is used when deriving a checking sequence for non-initialized FSMs [9,10].  

Ongoing research on preset and adaptive homing experiments for deterministic 
FSMs started since the seminal paper on “gedanken experiments” by Moore [8]. For 
information and surveys on FSM-based experiments and some related algorithms, a 
reader may refer to [4, 5, 11]; in particular, in [3, 5] a reader can find methods for 
deriving preset and adaptive distinguishing experiments for deterministic FSMs with 
corresponding evaluation of the length of these experiments. Preset homing experi-
ments are considered in [3, 4, 12, 13]. Derivation of minimal length preset homing 
sequences can be done using the homing tree method introduced by Gill [3] and re-
ported in details in Kohavi [4]. Any deterministic complete reduced FSM with n 
states has been shown to have a homing sequence of length up to n(n - 1)/2 and Hib-
bard [14] showed that deterministic machines require adaptive homing sequences 
with length of the same order. There is also some work devoted to the derivation of a 
synchronizing sequence that takes the FSM from any initial state to the same state 
independent of produced output sequences. As in this case, outputs are not important, 
most researchers derive such sequences for corresponding automata where only input 
actions are considered. A related detailed survey is given by Sandberg in [15]. Parallel 
algorithms for related problems are surveyed by Ravikumar [see, for example, 16]. 

In this paper, we consider homing and distinguishing experiments with nondeter-
ministic FSMs, as nowadays, analysis and testing of nondeterministic systems are 
capturing a lot of attention. Preset distinguishing and homing experiments for non-
deterministic FSMs are considered in [17, 18]. In particular, Spitsyna et al. [17]  
presented the method for deriving a sequence that separates two initialized nondeter-
ministic FSMs. An input sequence is a separating sequence of two FSMs if the sets of 
output sequences produced by the NFSMs to the input sequence do not intersect [19]. 
Kushik et al. [18] showed that differently from deterministic FSMs a homing se-
quence does not necessarily exist for a complete reduced nondeterministic FSM and 
proposed an algorithm for deriving a preset homing sequence for a given nondetermi-
nistic FSM when such a sequence exists. A tight lower bound on a shortest preset 

homing sequence is shown to be of the order 
2

2n where n is the number of states of 
the nondeterministic FSM. Moreover, it has been shown [20] that there exists a spe-
cial class of FSMs with n states and (n - 1) inputs, for which a shortest homing se-
quence has the length 2n - 1 - 1. i.e., its length is exponential not only with respect to 
the number of FSM states but also the number of FSM transitions. Zhang and Cheung 
studied related problems when deriving transfer and distinguishing trees for observa-
ble nondeterministic FSMs with probabilistic and weighted transitions [21].  

Adaptive experiments with nondeterministic FSMs are considered in [22-25]. In [23], 
Petrenko and Yevtushenko introduced the notion of a test case for describing an adap-
tive experiment as an initialized observable FSM with an acyclic transition diagram 
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such that at each non-deadlock state only one input is defined with all possible outputs. 
A representation of a test case using the same formal model is widely used for transition 
systems such as LTS, input/output automata etc. [see, for example 26]. Such definition 
of a test case allows defining distinguishing/checking/homing test cases based on the 
properties of the intersection of a transition system under experiment and a given test 
case. In [22-25] it is shown how a distinguishing test case can be derived for two states 
of NFSMs when such a distinguishing test case exists. In particular, Alur et al. [22] 
show that the length of a shortest adaptive distinguishing test case that distinguishes two 
states of an observable nondeterministic FSMs with n states is at most n(n - 1)/2. Pe-
trenko and Yevtushenko [25] consider a set of adaptive test cases which have three 
parts: a preamble for reaching an appropriate state, a traversal input/output sequence and 
a state identifier. In this case, the length of an identifier can be optimized when distin-
guishing not two but several states with the same distinguishing test case. In addition, a 
checking sequence derived for a non-initialized FSM [9, 10] also can be adaptive but in 
this case, an adaptive homing experiment should be performed before applying such a 
sequence. Gromov et al. [27] and El-Fakih et al. [28] presented adaptive experiments for 
two timed nondeterministic observable FSMs.  

In this paper, we consider adaptive homing and distinguishing experiments for 
non-initialized nondeterministic finite state machines. Similar to many other papers 
described above, an adaptive experiment is represented by a test case that is an initia-
lized observable FSM with the acyclic flow diagram where only one input is defined 
at each intermediate state. Lee and Yannakakis [5] proposed an approach for deriving 
an adaptive distinguishing sequence of a deterministic FSM that is based on refining a 
partition of the set of states based on different outputs. In this paper, we deal with 
nondeterministic FSMs and unlike [5], the output partition defines not a partition of 
the set of states but rather a set system, which is a collection of intersecting subsets, 
for which it is difficult to define a corresponding refinement. For this reason, in this 
paper, necessary and sufficient conditions for having adaptive homing/distinguishing 
test cases are established based on extending the notion of k-r-distinguishability of 
two states [29] to subsets of states and an algorithm for deriving a hom-
ing/distinguishing adaptive test case with minimal length is proposed. The upper 
bound on the length of homing/distinguishing experiments is determined and an ex-
ample illustrating that the upper bound seems to be tight for the length of distinguish-
ing test cases is presented.  

This paper is organized as follows. Section 2 includes preliminaries. Homing and 
distinguishing test cases with related properties are introduced in Section 3. Section 4 
contains an approach for deriving a homing/distinguishing test case with correspond-
ing statements about the complexity. Section 5 concludes the paper. 

2 Preliminaries 

In this paper, we consider experiments with weakly initialized Finite State Machines. 
A weakly initialized Finite State Machine (FSM) S is a 5-tuple (S, I, O, hS, S′), where 
S is a finite set of states with the set S′ ⊆ S of initial states; I and O are finite non-
empty disjoint sets of inputs and outputs, respectively; hS ⊆ S × I × O × S is a  
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transition relation, where a 4-tuple (s, i, o, s′ ) ∈  hS is a transition. If |S′| = 1 then the 
FSM S is an initialized FSM. An input i ∈ I is a defined input at state s of S if there 
exists a transition (s, i, o, s′ ) ∈  hS for some s′∈ S and o ∈ O. 

An FSM S = (S, I, O, hS, S′) is complete if for each pair (s, i) ∈  S  ×  I  there exists 
(o, s′ ) ∈  O  ×  S  such that (s, i, o, s′ ) ∈  hS. FSM S is nondeterministic if for some 
pair (s, i) ∈  S  ×  I , there exist at least two transitions (s, i, o1, s1), (s, i, o2, s2) ∈  hS, 
such that o1 ≠  o2 or s1 ≠  s2. FSM S is observable if for each two transitions (s, i, o, s1), 
(s, i, o, s2) ∈  hS it holds that s1 = s2. FSM S is single-input if at each state there is at 
most one defined input at the state, i.e., for each two transitions (s, i1, o1, s1), (s, i2, o2, 
s2) ∈  hS it holds that i 1  = i2 , and FSM S is output-complete if for each pair (s ,  i)  ∈  
S  ×  I  such that the input i is defined at state s, there exists a transition from s with i 
for every output in O [21, 25].  

A trace of S at state s is a sequence of input/output pairs of sequential transitions 
starting from state s. Let Tr(S/s) denote the set of all traces of S at state s including 
the empty trace and let Tr(S/S′ ) denote the union of Tr(S/s) over all states s ∈ S′ . As 
usual, for state s and a sequence γ ∈ (IO)* of input-output pairs, next_stateS(s, γ) de-
notes the set of all states that are reached from s by γ. If γ is not a trace at state s then 
the set next_stateS(s, γ) is empty; otherwise, each state of the set next_stateS(s, γ) is a 
γ-successor of state s. For an observable FSM S, |next_stateS(s, γ)| ≤ 1 for any string γ 
∈ (IO)*. Given a nonempty subset S′  of states of the FSM S and γ ∈ (IO)*, the set 
next_stateS(S′ , γ) is the union of the sets next_stateS(s, γ) over all s ∈ S′  and this set is 
a γ-successor of the set S′. An FSM S is acyclic if the set Tr(S/S′) is finite, i.e., the 
FSM transition diagram has no cycles. 

To characterize the common behavior of two weakly initialized machines, we ex-
tend the operation of the intersection of initialized FSMs as follows. Given two com-
plete FSMs S and P with the sets S′ and P′ of initial states, the intersection S ∩ P is 
the connected FSM Q such that states of Q are pairs (b, c) of sets of states of FSMs 
S and P, the initial state of Q is (S′, P′), and hQ is the smallest set derived using the 
following rule: Given state (b, c), b ⊆ S and c ⊆ P, and an input/output pair i/o, the 
FSM Q has a transition ((b, c), i, o, (b′, c′)) if there exist states s ∈ b and p ∈ c with an 
outgoing transition labeled by the pair i/o, and b′ and c′ are i/o–successors of subsets 
b and c. By definition, the FSM S ∩ P is observable even for non-observable FSMs 
S and P.  

As an example of the FSM intersection, consider FSMs P (Fig. 1) and S (Fig. 2). 
FSM P is an initialized FSM while S has three initial states marked in bold. The inter-
section S  ∩ P is shown in Fig. 3. As usual, the intersection of two weakly initialized 
FSMs describes the common behavior of component FSMs, and in addition, it also 
provides some information about the structure of their transition sets. For example, a 
state of the intersection provides information about which states of the corresponding 
machines are reachable from the initial states under a corresponding trace. In fact, the 
following proposition holds.  

Proposition 1. Given FSMs S and P with the sets S′ and P′ of initial states and state 
(b, c) of the intersection S ∩ P that is reachable from the initial state under a trace γ, 
the set b is the γ-successor of the set S′ while the set c is the γ-successor of the set P′.  
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As in this paper we consider adaptive experiments with nondeterministic FSMs, in 
order to identify a state of a weakly initialized FSM before or after the experiment, a 
finite input sequence is applied to an FSM under experiment where the next input 
(except of the first one) of the sequence is determined based on the output of the FSM 
produced to the previous input. Formally, such an experiment can be described using 
a single-input output-complete FSM with an acyclic transition graph and similar to 
[23, 25] we refer to such an FSM as a test case.  

Given an input alphabet I and an output alphabet O, a test case TC(I, O) is an in-
itially connected single-input output-complete observable initialized FSM 
P = (P, I, O, hP, p0) with acyclic transition graph. By definition, if |I| > 1 then a test 
case is a partial FSM.  

A test case P over alphabets I = {a, b} and O = {0, 1} is shown in Fig. 1.  
 
 

 

 

 

 

Fig. 1. A test case P over alphabets I = {a, b} and O = {0, 1} 

A test case TC(I, O) over alphabets I and O defines an adaptive experiment with 
any FSM S over the same alphabets. As an example, consider the test case P in  
Fig. 1. An adaptive experiment with an FSM S over alphabets I = {a, b} and O = {0, 
1} is conducted using P as follows. At the first step the input b is applied to S as this 
input is the only input defined at the initial state of P. If the output of the FSM S to 
this input is 1, then the experiment is over, since we reach the deadlock state p3 of P. 
If the FSM S produces the output 0 to input b then the experiment is not over, since 
the test case P enters the intermediate state p2 where the single input a is defined. As 
this input does not take the test case to a deadlock state, the next input which is also a 
is applied. If the output to a is 0 then the next input is b; otherwise, the next input is a. 
For this example, the length of a longest trace of the test case is three, i.e., at most 
three inputs are applied during this adaptive experiment. 

In general, given a test case P, the length of the test case P is determined as the 
length of the longest trace from the initial state to a deadlock state of P and it specifies 
the length of the longest input sequence that can be applied to an FSM S during the 
experiment that is also often called the height of the adaptive experiment. As usual, 
for testing, one is interested in deriving a test case (experiment) with minimal length 
(height). 
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Fig. 2. FSM S with three initial  
states 

Fig. 3. The intersection S ∩ P 

3 Homing and Distinguishing Test Cases 

In this section, we define the notions of homing and distinguishing test cases that can 
be used in the context of adaptive testing of non-initialized nondeterministic observa-
ble FSMs. A homing (distinguishing) experiment allows determining the unknown 
current (initial) state of the machine under experiment. Hereafter, if not stated other-
wise, we consider an FSM under experiment to be a weakly initialized complete non-
deterministic observable FSM and in the following sections we propose a method for 
deriving homing and distinguishing test cases for an FSM and we also determine the 
upper bound on minimal length of a test case.  

Given a complete observable FSM S over input and output alphabets I and O, let S′ 
be the set of initial states of FSM S. A test case P is a homing test case for FSM S if 
for each deadlock state (b, c) of the intersection S ∩  P, the set b is a singleton. 

A test case P is a distinguishing test case for FSM S = (S, I, O, hS, S′) if (1) for 
each deadlock state (b, c) of the intersection S ∩ P subset b is a singleton, and (2) for 
each transition ((b, c), i, o, (b′, c′)) of the intersection S ∩ P the subset b does not 
have two different states which have the same i/o–successor, i.e., 

∀s1, s2 ∈ b ((s1, i, o , s′) ∈ hS & (s2, i, o , s′) ∈ hS  s1 = s2). 
If there exists a homing (distinguishing) test case for the FSM then the set is S′ is a 

homing (distinguishing) set and the test case P is a homing (distinguishing) test case 
for the set S′ or the test case P homes (distinguishes) states of the set S′. 

According to the above definitions, the following statement holds. 

Proposition 2. Given a weakly initialized observable FSM S, each distinguishing test 
case for S is also a homing test case. However, the converse is not necessarily true.  

Example. As an example of homing and distinguishing test cases, consider a weakly 
initialized FSM S in Fig. 2 and the test case P in Fig. 1. By direct inspection, one can 
assure that each deadlock state of the intersection S ∩  P (Fig. 3) is labeled by a pair of 
singletons and each two different states of any subset b such that (b, c) labels an inter-
mediate state of the intersection do not have the same i/o-successor. Thus, the set  
{1, 2, 3} is not only a homing but also a distinguishing set and the test case in Fig. 1 is a 
homing test case and a distinguishing test case for FSM S. For example, if the output 1 



 Adaptive Homing and Distinguishing Experiments for NFSMs 39 

 

is produced to the input b at the initial state of the FSM S then the FSM reaches state 2 
after experiment and we certainly know that the initial state before the experiment was 
2. However, we later show that the FSM S has a shorter homing test case. 

A homing (distinguishing) test case is used for representing a homing (distinguish-
ing) adaptive experiment with a nondeterministic FSM. An adaptive homing (distin-
guishing) experiment has two steps. At the first step a finite input sequence is applied 
to an FSM under experiment where the next input (except of the first one) significant-
ly depends on the output of the FSM produced to the previous input. At the next step, 
after observing a produced output sequence, the conclusion is drawn about a state of 
the FSM after (before) the experiment and such a state has to be unique for the hom-
ing (distinguishing) experiment. If all the traces of a test case have the same input 
projection, then the test case defines a preset input sequence and a corresponding 
adaptive experiment becomes a preset experiment. In the same way, when having a 
homing or separating sequence for a given FSM a corresponding test case can be 
derived by augmenting this sequence with all possible output sequences.  

Propositions 3 and 3′ state necessary and sufficient conditions for a test case to be a 
homing and/or a distinguishing test case. As the proofs are almost the same, we only 
prove Proposition 3.  

Proposition 3. Given a weakly initialized observable FSM S = (S, I, O, hS, S′), a test 
case P is a homing test case for S if and only if every trace of P from the initial state 
to a deadlock state that is a trace at two different initial states of the set S' takes the 
FSM S from these initial states to the same state. 

Proof.  Let P be a homing test case for FSM S = (S, I, O, hS, S′). Suppose that ∃ s1, 
s2 ∈ S' ∃ α ∈ I* ∃ β ∈ O* (β ∈ out(s1, α) ∩ out(s2, α)) and the trace α/β takes the 
FSM P from the initial to a deadlock state (b, c). The deadlock state (b, c) of the  
intersection S ∩  P contains α/β-successors of states s1, s2 (Proposition 1), i.e., α/β-
successors of these states coincide.  

⇐ Consider a trace α/β that takes the FSM P from the initial state to a deadlock 
state p. Let s1, s2 ∈ S' be initial states where the trace α/β can be executed and state s' 
is an α/β-successor of states s1 and s2 (since FSM S is observable). By the intersection 

construction, the FSM S ∩ P has a deadlock state ( s′ , p ) where both items are  

singletons.                

Proposition 3′. Given a weakly initialized observable FSM S = (S, I, O, hS, S′), a test 
case P is a distinguishing test case for FSM S if and only if every trace from the initial 
state to a deadlock state of P is a trace at only one  initial state of the set S′.  

According to the above Propositions 3 and 3′, given a weakly initialized FSM S 
there exists an adaptive homing (distinguishing) experiment for the FSM S if and only 
if the FSM S has a homing (distinguishing) test case. 

Here we note that the above propositions establish one-to-one correspondence  
between homing/distinguishing test cases and adaptive homing/distinguishing expe-
riments only for observable FSMs; for non-observable FSMs, the definition of a  
distinguishing test case that corresponds to an adaptive distinguishing experiment 
should be modified. If a given FSM S is observable then according to the following 
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proposition there is a simple way to check whether there exists a corresponding hom-
ing experiment. 

Proposition 4. Given a weakly initialized observable FSM S with the set S′ of initial 
states, there exists a homing test case for the set S′ of S if each subset {si,  sj} of two 
states of S is a homing set. 

Proof. We prove this proposition by construction. Let for each two different states si and 
sj, si ≠ sj, of S there exist a homing test case Pi,j. Without loss of generality we assume 
that S′ = {s1, .., sm}. Consider a homing test case P1,2 for the set {s1, s2} and derive a test 
case P1,2,3 by adding the state s3 into the set labeling the initial state of P1,2 and obtain 
P1,2,3  that includes all the transitions of P1,2. Subsets of states that label deadlock states 
of S ∩ P1,2,3 are not necessarily singletons but they contain at most two states, since 
FSM is observable. Each pair of different states of S is homing, thus, for each deadlock 
state ( ji ss , , p ) of S ∩ P1,2,3 we concatenate the initial test case P1,2,3 with the cor-

responding test case Pi,j. Proceeding in the same way we derive test case P1,2,…,m. By 
construction, the derived test case is homing for the FSM S.                                               

Corollary. Given a weakly initialized observable FSM S with the set S of initial 
states, there exists a homing test case for FSM S if and only if there exists a homing 
test case for each two different states si and sj of S. 

Proposition 4′. Given a nondeterministic observable FSM S = (S, I, O, hS, S), if for 
each two different states si and sj of S there exists a homing test case, then there exists 
a homing test case for FSM S with length O(n3). 

Proof. Each pair of states of an observable FSM can be homed by a sequence of in-
puts of length at most Cn

2 that covers in the worst case all pairs of different FSM 
states. The number of states to be appended at each step of the procedure used in the 
proof of Proposition 4 equals (n – 1). Thus, the maximal length of the trace in the test 
case P1,2,…,n has length at most of the order n3.                                                             

In other words, if each pair of states of an observable FSM S with n states can be 
adaptively homed then there exists a homing test case for the set S of FSM states and the 
length of this test case is of the order n3. The proof of Proposition 4 proposes a proce-
dure for deriving such a homing test case when the conditions of the proposition hold. 

Example. As an example of applying the construction stated in Proposition 4, consid-
er the FSM S with the set of initial states S′ = {1, 2, 3} in Fig. 4 below. FSM S is 
complete and observable. We derive a homing test case for this FSM by deriving a 
test case Pi,j for each pair (i, j), i ≠ j, of the FSM states and then derive a test case for 

the set S′. The set of transitions of P12 equals {( 2,1 , i1, o1, 1 ), ( 2,1 , i1, o2, 2 )}; the 

set of transitions of P13 equals {( 3,1 , i3, o1, 1 ), ( 3,1 , i3, o2, 3 )}; and the set of P23 

transitions equals {( 3,2 , i2, o1, 2 ), ( 3,2 , i2, o2, 3 )}. We add state 3 to the pair 2,1 , 
include transitions of P12 into P123 and concatenate the obtained test case with ap-
propriate test cases for subsets of two states. More precisely, this is done as follows. 
First, we consider input i1 at state 3 for which a single output o1 can be obtained, thus, 
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the corresponding transitions at state 3,2,1  of P123 are {( 3,2,1 , i1, o1, 2,1 ), ( 3,2,1 , i1, 

o2, 2 )}. At state 2,1 , we append corresponding transitions from the test case P12 and 

obtain the set of transitions for P123: {( 3,2,1 , i1, o1, 2,1 ), ( 3,2,1 , i1, o2, 2 ), ( 2,1 , i1, o1, 

1 ), ( 2,1 , i1, o2, 2 )}. The length of such adaptive homing test case equals two. How-
ever, if we selected an input i3 when deriving the set of transitions of P12 a corres-
ponding adaptive homing test case for the set S′ = {1, 2, 3} would have length 1. 

 

 

Fig. 4. FSM S Fig. 5. Homing test case P for the FSM in Fig. 2 

Thus, we observe that when deriving an adaptive test case using the above proce-
dure the length of a returned test case significantly depends on the enumeration of 
states of the set S′ as well as on selected inputs at each step and therefore, does not 
guarantee the derivation of a homing test case of minimal length. Moreover, such a 
procedure does not guarantee the homing test derivation when there exists a pair of 
two different states of the FSM that is not homing. In the following we propose an 
algorithm that returns a homing test case with minimal length for a given FSM.  

We also note that a proposition similar to Proposition 4 does not hold for a distin-
guishing test case. That is, given an observable FSM where each pair of two different 
states has a distinguishing test case, there is no guarantee that there exists a  
distinguishing test case for FSM S. 

In order to derive a homing/distinguishing test case with minimal length, we intro-
duce the notion of k-homing/k-distinguishing sets not only for pairs but for arbitrary 
subsets of states.   

A subset g of states of an observable FSM S is 0-homing if g is a singleton. Let all 
(k – 1)-homing sets, k > 0, be already defined. The subset g is a k-homing set if (1) g 
is a (k - 1)-homing, or (2) there exists an input i ∈ I, such that for each o ∈ O, the set 
of i/o-successors of states of g is either empty or is a (k – 1)-homing  set.  

In order to define a distinguishing test case for an observable FSM, the previous 
definition can be used, where the notion of k-homing is replaced by k-distinguishing 
and a subset g of an FSM S = (S, I, O, hS, S′) is called a k-distinguishing set if (1) 
applies, i.e., g is a (k - 1)-distinguishing set,  and for (2) as previously, there exists an 
input i ∈ I, such that for each o ∈ O, the set of i/o-successors of states of g is either 
empty or is a (k – 1)-distinguishing  set, and in addition, the i/o-successors of two 
different states of g do not coincide.  
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Proposition 5. Given a weakly initialized observable complete FSM S with the set S′ 
of the initial states, the set S′ is k-homing/k-distinguishing, k > 0, if and only if there 
exists a homing/distinguishing adaptive experiment of height k for the weakly initia-
lized FSM S = (S, I, O, hS, S′). If S′ is k-homing/k-distinguishing, k > 0, but is not  
(k – 1)-homing/(k – 1)-distinguishing then k is the minimal height of a corresponding 
adaptive experiment.  

Proof. We provide the proof of the Proposition for the case of a homing experiment 
as for the distinguishing test case the proof is almost the same. 

 We use the induction on k. Let k = 1. By definition, there exists an input i ∈ I, 
such that for each o ∈ O, the set of i/o-successors of states of S′ is either empty or is a 
0-homing  set (a singleton), i.e., there exists an adaptive experiment of length 1 for the 
S = (S, I, O, hS, S′). 

Let the statement hold for all k ≤ K and S′ is not a K-homing set but S′ is a (K + 1)-
homing set. In this case, by definition, there exists an input i ∈ I, such that for each  
o ∈ O, the set of i/o-successors of states of S′ is either empty or is a K-homing and 
according to the induction assumption, each if i/o-successors can be homed by an 
adaptive experiment of length at most K. Thus, S′ can be homed by an adaptive  
experiment of length at most (K + 1). 

⇐ Suppose there exists a test case P of a height k > 1. By definition, the states of P 
that have transitions to deadlock states are 1-homing. Thus, the states of P that are 
connected to these states are 2-homing, etc. The states of P that are connected to the 
deadlock states via a sequence of length k are k-homing.                                              

Based on Propositions 3, 3′ and 5, the following proposition holds. 

Proposition 6. Given a set S′, |S′| > 1, of states of an observable FSM S, the set S′ is 
homing/distinguishing if and only if S′ is k-homing/k-distinguishing for some k > 0. 

4 Deriving Homing and Distinguishing Test Cases 

Based on the notion of k-homing sets, Procedure 1 given below can be used for deriv-
ing a homing/distinguishing test case for a homing/distinguishing set S′ of states of a 
given observable FSM S. If the set S′ is not homing/distinguishing then the states of 
the set S′ cannot be homed/distinguished by an adaptive experiment. The main idea of 
the procedure below is to iteratively derive subsets of states that are 
homed/distinguished by adaptive applying an input sequence of the length j ∈ {1, 2, 
…, k}. The set of corresponding subsets we hereafter denote as Qj. If for some j the Qj 

is empty and the subset S′ ∉ 
1

1

−

=

j

k

jQ  then a fixed point is reached and a homing expe-

riment for the FSM S does not exist. The states of a test case under construction are 
labeled by subsets of S states. We describe a procedure for a homing test case, since 
for a distinguishing test case the procedure is almost the same.  
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Procedure 1: Deriving a homing test case for a subset S' of states of an FSM S  
Input: Complete observable nondeterministic weakly initialized FSM  
S = (S, I, O, hS, S′), |S'| > 1 
Output: A homing test case P with minimal length for the subset S' of FSM S or a 
message “there is no adaptive homing experiment for the subset S'” 
Step-1: j: = 0 
Derive the set Qj of all singletons {s} of the set S of FSM S 
Step-2: Derive the set Qj+1 that contains each (j+1)-homing set of states of the FSM S 
that is not j-homing as follows: 

For each subset A of states of FSM S that is not in the set 
j

k

kQ
1=

  

If there exists an input i ∈ I, such that for each o ∈ O, the i/o-successor of A 

is either empty or is an item of the set 
j

k

kQ
1=

then 

Include the set A into Qj+1, 
Derive a set TrA that contains each 4-tuple (A, i, o, A′) where A′ is a 
non-empty i/o-successor of the set A; 

  End For 
If the set of subsets Qj+1 is empty then Return the message “there is no adaptive 
homing experiment for the subset S'”.  
If Qj+1 does not contain the set S′ as an item then 

j := j + 1 and Go-to Step-2; 
 
Step-3: Derive a homing test case P with the set P of states as follows: 

States of P are subsets of states of the FSM S and the initial state of P is 
the set S′; i.e., include S′ into P; 
Mark the initial state of P labeled with the set S′ as a “non-visited” state in 
P;  
While there is a ‘non-visited’ state A in P  

For each 4-tuple (A, i, o, A′) in TrA  
Add to the test case P as an outgoing transition of the state 
A the transition (A, i, o, A′);  

If A′ ∉ P  
Then add A′ to P and if A′ is not a singleton, mark 
the added state with A′ as a ‘non-visited’ state. 

            EndFor 
      EndWhile 

If P is not output-complete then 
              For each intermediate state p of P where a single input i is defined 

If there is no transition (p, i, o, p′) for some o ∈ O then  
add a transition (p, i, o, p′) where p′ is any state of P; 

EndFor 
Return P.   
END Procedure 1.                                                                                                       
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Theorem 1. FSM P returned by Procedure 1 is a homing test case with minimal 
length for observable FSM S if and only if the set S' is a homing set.  

Proof. ⇐ The set S' is homing if this set is k-homing for some k. For this reason, 
when deriving at Step 2 (j + 1)-homing sets an input i ∈ I with the desired features 
always exists. By construction, FSM P returned by Procedure 1 is acyclic and at each 
intermediate state only one input is defined with all possible outputs, i.e., P is a test 

case. At Step 3, each trace α/β ∈ TrS(s), s ∈ S', that takes P to a deadlock state 
___

ks ,  

takes FSM S from any state of the set S' where this trace can be executed to state sk of 
S. Thus, the test case P is a homing test case for FSM S.  

 Let FSM P returned by Procedure 1 be a test case for FSM S of the height l. By 
definition, in this case the set S' is a l-homing set, i.e. S' is a homing set.   

According to Procedure 1, if S' is an l-homing but it is not (l-1)-homing, then the 
procedure returns a test case (Step-3) of length l (the set Ql, Step-2) that is a test case 
of minimal length (Proposition 5).                                                                                  

Example. Consider the FSM S in Fig. 2. At Step-1, Q0 = {{1}, {2}, {3}, {4}}. Then, 
at Step-2, the set Q1 = {{1, 4}, {2, 3}, {3, 4}, {2, 4}, {2, 3, 4}} as by direct inspec-
tion, one can assure that the sets {1, 4}, {2, 3}, {3, 4}, {2, 4} and {2, 3, 4} are  

1-homing with the corresponding sets of transitions Tr{1,4} = {(
___

4,1 , b, 0, 1 ), (
___

4,1 ,  

b, 1, 2 )}, Tr{2,3} = {(
___

3,2 , b, 1, 2 ), (
___

3,2 , b, 0, 3 )}, Tr{3,4} = {( 4,3 , b, 1, 2 ), ( 4,3 , 

b, 0, 3 )}, Tr{2,4} = {( 4,2 , b, 1, 2 ) } and Tr{2,3,4} = {( 4,3,2 , b, 1, 2 ), ( 4,3,2 , b, 0, 

3 )}. As the set Q1 does not contain the set S′={1,2,3} of the FSM S, we go back to 
Step-2, and then observe that the subset {1, 2, 3} is 2-homing with the corresponding 

set of transitions Tr{1,2,3} = {( 3,2,1 , a, 1, 4,2 ), ( 3,2,1 , a, 0, 
___

3,2 )}. The correspond-

ing homing test case derived by Procedure 1 for the FSM S is presented in Fig. 5. 
Therefore, the distinguishing test case in Fig. 1 is not a shortest homing test case for 
the FSM S, as there exists a homing test case for S of length 2. A distinguishing test 
case returned by Procedure 1 for the FSM S is a test case in Fig. 1. 

We now add some comments how Procedure-1 can be optimized. Step-2 of Proce-
dure 1 can be performed by an exhaustive search of all subsets and of all possible 
inputs with all possible output responses. To optimize this search at each step the 
subsets with minimal cardinality can be checked first. The reason is that if a subset A 
is not j-homing, thus each superset of A is not j-homing too. Therefore, when check-

ing all subsets of S states that are not in the set 
j

k

kQ
1=

an optimal solution can be to 

start with pairs of states, then turn to triples, 4-tuples, etc.  
For the same reason, at Step-2 only maximal subsets A can be included into the set 

Qj+1, i.e., if A contains a subset B ⊂ A that is (j + 1)-homing then B is not included into 
the set Qj+1. In this case, given a 4-tuple (A, i, o, B) where B is an i/o successor of A, 
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the set B not necessary is in the set 
j

k

kQ
1=

; for this reason, we add to the set TrA a 

transition (A, i, o, A′) where A′ ∈ 
j

k

kQ
1=

 and B ⊂ A′.  

The lower bound on the height of a shortest adaptive homing/distinguishing expe-
riment significantly depends on the number of initial states of the observable FSM 
under experiment.  

Theorem 2. Given a complete observable FSM S with n states and m initial states, the 

lower bound on the length of a shortest homing/distinguishing test case is 
=

m

i

i
nC

2

.  

Proof. If an FSM S is observable, then the corresponding lower bound on the length 
of adaptive experiment is proven for homing experiments in [18]. Since the length of 
adaptive distinguishing experiment is bounded by the same number of different  
subsets of states with cardinality (m – 1), (m – 2), …, 2, thus, the lower bound is  

exactly 
=

m

i

i
nC

2

.                                                                                                              

Additional research is needed in order to check whether the bound 2n – n – 1 is 
tight for distinguishing test cases and for homing test cases for machines that have 
non-homing pairs of states. For distinguishing test cases, the upper bound seems to be 
exponential. Below we show that there exists an observable FSM with four states, all 
of which are initial states, such that the longest trace in the distinguishing test case 
traverses all subsets with at least two states, i.e., its length equals 11 = 24 – 4 – 1.   

Consider an FSM S with the flow table in Table 1 and with the set {1, 2, 3, 4} of 
initial states. The FSM S has 11 inputs and four outputs. The inputs are defined x123, 
x124, x134, …, x12 to demonstrate which subset is traversed when applying this input. 
An input x123 defines x123/0-successor of the subset {1, 2, 3, 4} in the distinguishing 
test case, this successor coincides with the index of the input, i.e. it is the set {1, 2, 3}.  
 

Table 1. Flow Table of the FSM S 

x\s 1 2 3 4 
x123 1/0, 2, 3 2/0, 2, 4 3/0, 3, 4 4/2, 3, 4 
x124 1/0, 1 2/0, 1 4/0 3/0;    4/1 
x134 1/0, 1 3/0 2/0;    3/1 4/0, 1 
x234 2/0;    ½ 1/0;   2/1 3/0, 2 4/0, 1 
x34 1/1, 2, 4;   2/5 3/2;    2/4, 5 3/0, 1, 4 4/0, 1, 5;    2/2 
x24 1/0, 1, 2 3/0;    2/1 2/0;    3/2 4/0;    3/1 
x14 2/0;    1/1 1/0 3/0, 1 4/0, 1 

x13 1/0, 1 2/0, 1, 2 4/1;    3/0 3/0, 1;    4/2 
x23 2/0, 3;    1/1 1/0;    2/1, 2 3/0, 2 3 3/1;    4/2, 3;    1/0 
x12 3/0;    1/1 2/0, 1 1/0;    3/2 4/0, 1, 2 
xsep 1/0, 2 2/1, 3 2/1;    ½ 1/0;    2/1 
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The two last state subsets that are traversed by a longest trace in the distinguishing 
test case are {2, 3} and {1, 2}. The set {1, 2} is an x12/0-successor of the subset {2, 3} 
in the test case. The last input xsep separates states 1 and 2 of the FSM S and takes the 
test case to different 0-distinguishing sets. We further illustrate how this distinguish-
ing test case can be derived for the FSM S using a Procedure similar to Procedure 1. 

We first derive all 0-distinguishing sets that are singletons {1}, {2}, {3}, {4}.  
according to the Procedure similar to Procedure 1, we then derive a set Q1, and one 
can assure that there is a single 1-distinguishing set for the FSM S. This is the set  
{1, 2} that is included into the set Q1. The set Q2 contains a single set {2, 3}, the set 
{1, 3} is a single 3-distinguishing set that is included into the set Q3, etc. Thus, one 
can iteratively derive all Q1, Q2, Q3, ..., sets, till reaching the set Q11 that contains the 
set {1, 2, 3, 4} of initial states. A shortest distinguishing experiment traverses all non-
empty subsets of the set {1, 2, 3, 4} and thus, has the length 11. The longest trace of 
the experiment covers the chain of sets {1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 
3, 4}, {3, 4}, {2, 4}, {1, 4}, {1, 3}, {2, 3}, and {1, 2}, respectively. All other traces 
do not allow to uniquely determine a state of the FSM before the experiment and thus, 
since a sequence of all subsets of some set is traversed by a trace of a test case of 
minimal length it seems that the exponential upper bound can be reached for adaptive  
experiments with observable nondeterministic FSMs.  

5 Conclusion 

Given a non-initialized complete nondeterministic observable FSM, a method for 
deriving adaptive homing/distinguishing experiments is proposed. Adaptive experi-
ments are represented as special nondeterministic observable machines, called test 
cases, and necessary and sufficient conditions for having adaptive hom-
ing/distinguishing test cases with minimal length for observable nondeterministic 
FSMs are presented. The lower bound on the length of shortest homing/distinguishing 
test cases is evaluated. Possible extensions to the proposed work include extending 
the proposed method for non-observable FSMs and adapting the work to partial non-
deterministic FSMs by extending related work in [23] and to timed nondeterministic 
FSMs based on the work presented in [28]. Also it would be interesting to determine 
the tight lower bound on the length of shortest homing/distinguishing test cases. 
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