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Abstract. Concurrency faults are activated by specific thread inter-
leavings at runtime. Traditional fault localization techniques and static
analysis fall short to diagnose these faults efficiently. Existing dynamic
fault-localization techniques focus on pinpointing data-access patterns
that are subject to concurrency faults. In this paper, we propose a
spectrum-based fault localization technique for localizing faulty code
blocks instead. We systematically instrument the program to create ver-
sions that run in particular combinations of thread interleavings. We run
tests on all these versions and utilize spectrum-based fault localization
to correlate detected errors with concurrently executing code blocks. We
have implemented a tool and applied our approach on several industrial
case studies. Case studies show that our approach can effectively and
efficiently localize concurrency faults.

Keywords: Debugging, multithreading, concurrency faults, thread safety,
dynamic analysis, spectrum-based fault localization.

1 Introduction

Concurrency faults are activated by specific thread interleavings at runtime,
which makes them hard to detect by testing since they do not deterministically
lead to an error. Traditional fault localization techniques and static analysis fall
short to detect these faults efficiently. Existing dynamic fault-localization tech-
niques focus on pinpointing data-access patterns that are subject to concurrency
faults [9,12,19,20,25]. Although these techniques are effective in capturing faulty
data-access patterns, the corresponding code blocks should still be identified by
the programmer to locate and fix the defect. More importantly, not all concur-
rency faults are related to data access and shared memory. There exist various
type of shared resources other than memory. Concurrent access to these shared
resources (e.g., file access) can also lead to errors.

We have applied spectrum-based fault localization [1, 3, 10, 11] for directly
pinpointing code blocks, of which multi-threaded execution leads to concurrency
errors. In our approach, we systematically instrument a multi-threaded subject
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program to force context switch within different code blocks. As such, each ver-
sion turns out to be actually the same program that is executed with a different
combination of thread interleavings. We run tests on all the generated versions
and utilize spectrum-based fault localization to correlate detected errors with
concurrently executing code blocks. The result is a ranking of code blocks with
respect to the probability that their re-entrance causes the detected errors. These
code blocks should be analyzed by the programmer to introduce thread-safety.

We have implemented a tool, dubbed SCURF, and applied our approach on
several industrial case studies. Case studies show that our approach can effec-
tively and efficiently localize concurrency faults. The contributions of this paper
are threefold

– We introduce a novel approach for localizing concurrency faults by means of
spectrum-based fault localization techniques;

– We developed a toolset, SCURF that provides automation for our approach;
– We discuss our experiences in applying our approach in several industrial

software projects.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on spectrum-based fault localization. Section 3 introduces a motivating
example. We introduce our approach in Section 4. Industrial case studies and
the evaluation of the approach are presented in Section 5. Related studies are
summarized in Section 6. Finally, conclusions are provided in Section 7.

2 Background: Spectrum-Based Fault Localization

The process of pinpointing the fault(s) that led to the observed symptoms (fail-
ures/errors) is called fault localization. Depending on the amount of knowledge
that is required about the system’s internal component structure and behavior,
the most predominant approaches can be classified as i) statistical approaches
or ii) reasoning approaches (for an overview of approaches, see [2]). The former
approach uses an abstraction of program traces, dynamically collected at run-
time (also known as program spectra [8]), to produce a list of likely candidates
to be at fault [3, 10, 11], whereas the latter combines a static model of the ex-
pected behavior with a set of observations to compute the diagnostic report [14].
In this paper, we use a statistical technique, in particular spectrum-based fault
localization [3,10] due its effectiveness in locating faults, while entailing low time
and space complexity [2].

Spectrum-based fault localization (SFL) is a dynamic program analysis tech-
nique. The basic idea of SFL is that comparing the program behavior over multi-
ple test runs can indicate which program components may be likely to contribute
to an observed program failure. In the following, we assume that a program P
comprises a set of components C and is executed using a set of test cases T that
either pass or fail, with M = |C| and N = |T |, respectively. Program (compo-
nent) activity is recorded in terms of program spectra [3,10,11]. These data are
collected at run-time and typically consist of a number of counters or flags for
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the different components of a program. Usually, the so-called hit spectra is used,
indicating whether a component was involved in a (test) run or not.
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Fig. 1. The ingredients of fault diagnosis

Both spectra and pass/fail information is input to SFL. The combined infor-
mation is expressed in terms of the N × (M + 1) activity matrix A. An element
aij is equal to 1 if component j took part in the execution of test run i, and
0 otherwise. The rightmost column of A, the error vector e, represents the test
outcome. The element ei = ai,m+1 is equal to 1 if run i failed, and 0 if run i
passed. For j ≤ M and i ≤ N , the row Ai∗ indicates whether a component was
executed in run i, whereas the column O∗j indicates in which runs component j
was involved.

In SFL one measures the similarity between the error vector e and the activity
profile vector A∗j for each component j (see Figure 1). This similarity is quanti-
fied by a similarity coefficient, sj . In this work, we employ the Ochiai similarity
coefficient, which was previously identified as the best coefficient to be used for
SFL [3].

sj =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where n11(j) is the number of failed runs in which part j is involved, n10(j) is the
number of passed runs in which part j is involved, and n01(j) is the number of
failed runs in which part j is not involved, i.e., formally and referring to Figure 1,

n01(j) = |{i | aij = 0 ∧ ei = 1}|
n10(j) = |{i | aij = 1 ∧ ei = 0}|
n11(j) = |{i | aij = 1 ∧ ei = 1}|

The Ochiai coefficient sj associated with each component Cj ∈ C indicates
the correlation between the executions of Cj and the observed incorrect program
behavior. Applying the hypothesis that closely correlated components are more
likely to be relevant to an observed misbehavior, sj can be reinterpreted as “fault
probability” and components can be listed (i.e., ranked) in order of likelihood to
be at fault. Note that n11(j) + n10(j) equals the number of runs in which part
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j is involved, whereas n11(j) + n01(j) equals the number of failed runs, which is
the same for all j.

We adapted SFL for localizing concurrency faults. For this purpose, we modi-
fied the collected hit spectra and the analysis process. In the following, we present
a motivating example, followed by our approach illustrated on this example.

3 Motivating Example

In this section, we present a running example for illustrating the problem and our
solution. A C function, addNumberToPhoneList, is shown in Listing 1.1, which
adds a name to a phone book. If the phone book already exists, the function just
opens it (Line 12) and adds the name that is provided as an argument (Line 16).
Otherwise, the function first creates the phone book (Line 6) and then adds the
name into this newly created phone book.

Listing 1.1. The motivating example

1 int addNumberToPhoneList (char ∗name , char ∗number ) {
2 FILE ∗ fp ;
3 int retVal = −1;
4

5 i f ( FALSE == doesPhoneListExist ) { /∗ Component 1 ∗/
6 fp = createPhoneBook ( ) ;
7 i f ( NULL != fp ) { /∗ Component 2 ∗/
8 doesPhoneListExist = TRUE ;
9 }

10 }
11 else { /∗ Component 3 ∗/
12 fp = openPhoneBook ( ) ;
13 }
14

15 i f ( NULL != fp ) { /∗ Component 4 ∗/
16 retVal = addPhoneBook (fp , name , number ) ;
17 (void ) closePhoneBook ( fp ) ;
18 }
19 return retVal ;
20}

In a single-threaded environment, addNumberToPhoneList function works as
expected. However, the function is subject to a concurrency fault when it is
executed concurrently by multiple threads. To illustrate this problem, we have
executed the function using three threads calling the addNumberToPhoneList
function to add different entries. As a result, we would expect the phone book to
contain three names. Most of the times, this was indeed the case. However, there
were executions where the phone book had less than three entries. The reason
is the concurrent execution of the function: a context switch can occur when a
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thread is in component 1 (lines 5-10)1. This component creates a phone book
and sets the global variable doesPhoneListExist to true to eliminate the need for
creating a phone book again. Concurrent execution of component 1 leads to an
error because every newly created phone book deletes (overrides) the old one.

In a multi-threaded program, context switches may take place at any time
depending on interrupts, operating devices, and the operating system scheduler.
Although a program is not subject to an error in a single-threaded execution,
multi-threaded execution can, in fact, lead to concurrency errors by enabling
(uncontrolled) multiple entries to a component. This is a common issue we have
observed in the industry when single-threaded legacy software is adopted within
the context of multi-threaded software systems. The legacy software has not been
developed with multi-threaded execution in mind, and testing does not always
reveal the impact of re-entrance to the employed functions.

We propose and evaluate an approach to automatically detect errors and
localize faults in multi-threaded execution of a program. We assume that the
program itself is fault-free. As such, any detected error is due to a concurrency
fault, caused by the multi-threaded execution of the program. Our approach is
explained in the following section.

4 The Approach

Our approach is based on systematically instrumenting the program to trigger
a context switch in different components. This enables us to test the same pro-
gram in different thread interleavings, potentially triggering an error. We apply
spectrum-based fault localization to reveal the particular thread interleavings of
faulty components that lead to the detected errors. We have developed a toolset
called SCURF to automate our approach2, which is realized in three steps as
described in the following.

In the first step, the program under test is instrumented to generate different
versions each of which execute in different thread interleavings. At this step, the
program code is instrumented also to collect spectra information at runtime.
Second, each version is tested being subject to the same test suite. Program-
spectra are collected for the number of re-entries to each component within
a function. Third, the collected spectra are analyzed and correlated with the
detected errors. All the components are ranked with respect to the probability
that they are subject to a concurrency fault as the cause of the detected errors.
These components should be further analyzed by the programmer and possibly
considered for introducing thread-safety. In the following subsections, we explain
the three steps of the approach in more detail.

1 We refer to code blocks (encapsulated in while, for, if, else statement etc.) as
components throughout the paper.

2 SCURF currently supports C make file projects that are deployed on Linux-based
operating systems only.
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4.1 Step I. Code Instrumentation

In this step, the source code of the program is instrumented to collect program
spectra at runtime and to control the scheduling of threads. The collected pro-
gram spectra record the number of entries made to each component. To control
the scheduling of threads, extra code is inserted at the beginning of each com-
ponent that optionally3 yields the current thread and forces a context switch.
The instrumented code does not change the behavior of the program other than
the thread interleavings.

SCURF inserts sched yield statements to force context switch at a compo-
nent. This does not guarantee, in all cases, the scheduler to switch to another
thread. We have utilized usleep statements in some Linux distributions instead.
The code insertion for context switch is performed for each combination of com-
ponents. That means that the instrumentation step generates O(2n) versions
for a function with n components. However, in practice we have seen that the
execution of O(n) versions (context switch at one of the components each time)
is usually enough to activate a concurrency fault.

4.2 Step II. Test Case Execution

In this step, the generated versions are executed being subject to the same
test suite. We assume that a test oracle and test case(s) exist. For each test, a
different thread interleaving occurs and program spectra are collected regarding
the number of entries made to each component.

An example result, regarding the addNumberToPhoneList running example,
for this step is presented in Table 1. Hereby, each row of this table represents a
test run. The table is separated into three parts. The first part shows for each
component, if a context switch is enforced or not. For example, for the first line,
we know that context switch will be forced only in the first component which
corresponds to the first if statement in the original code. The second part of
the table shows the number of entries made to each component during the test
run. For example, from the first row we can see that in test run 1, the first, the
second and the fourth components were executed three times, whereas the third
component was not executed at all. The third, and the final part/column shows
the error vector, i.e., whether an error was detected during the corresponding
test run or not.

The table is generated incrementally. First, only one component is influenced
at a time (test runs 1 through 4 in the example). Similarity calculation is applied
for only these set of runs to check if there are significant differences in rankings.
We name this step as level-1. Depending on the available resources and signif-
icance of the results, SCURF can move forward with level-2, in which context
switch is forced in two of the components at each test run (test runs 5 through
10 in the example). As such, SCURF can incrementally refine the rankings as
much as necessary and as long as resources are available [26].

3 The option to activate the inserted code block can be set ON or OFF differently for
each version.
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Table 1. Spectra Collected During Test Runs of the Versions of the addNumberTo-
PhoneList function

Context Switch Number of Entries Error
C1 C2 C3 C4 C1 C2 C3 C4 Vector

Run1 1 0 0 0 3 3 0 3 1

Run2 0 1 0 0 3 3 0 3 1

Run3 0 0 1 0 1 1 3 3 0

Run4 0 0 0 1 1 1 3 3 0

Run5 1 1 0 0 3 3 0 3 1

Run6 1 0 1 0 3 3 0 3 1

Run7 1 0 0 1 3 3 0 3 1

Run8 0 1 1 0 3 3 0 3 1

Run9 0 1 0 1 3 3 0 3 1

Run10 0 0 1 1 1 1 3 3 0

Run11 1 1 1 0 3 3 0 3 1

Run12 1 1 0 1 3 3 0 3 1

Run13 1 0 1 1 3 3 0 3 1

Run14 0 1 1 1 3 3 0 3 1

Run15 1 1 1 1 3 3 0 3 1

In the following subsection, we illustrate the third step of our approach at
level-1 for the running example.

4.3 Step III. Spectra Analysis

In this step, the collected spectra during test runs are analyzed to rank com-
ponents with respect to the probability that they cause an error. Analysis is
performed iteratively to refine the rankings incrementally until a significant re-
sult is achieved or as long as resources permit.

We use the Ochiai similarity metric [3] to correlate the detected errors with
component entries at runtime. We have slightly modified this similarity metric
to correlate errors with concurrent execution of components. The original metric
considers whether a component is executed during a test run or not. In our case,
we are interested for each test run, whether a component was executed multiple
times by different threads or not. Therefore, we modified the metric such that
n11(j) is the number of failed runs in which part j is executed multiple times
concurrently, n10(j) is the number of passed runs in which part j is executed
multiple times concurrently, and n01(j) is the number of failed runs in which
part j is executed only once or not at all, i.e., formally,

n01(j) = |{i | aij ≤ 1 ∧ ei = 1}|
n10(j) = |{i | aij > 1 ∧ ei = 0}|
n11(j) = |{i | aij > 1 ∧ ei = 1}|
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For the example case, the component rankings are formed as shown in Table 2.
Note that the calculations are based on the first group of test runs (level-1 ) only.
As we can see from the output in Table 2, s0(j) is the highest for component 1
and component 2. That means, these components are most probably subject to
a concurrency fault that leads to the detected errors. Either of these components
or both of them needs to be thread-safe. Not only for this example, but also in
our industrial case studies, we have seen that usually rankings at level-1 already
provide accurate diagnosis. In the following section, we present examples from
such industrial case studies.

Table 2. Analysis Results for the First Group of Test Runs (level-1 ) of Versions of
the addNumberToPhoneList function

C1 C2 C3 C4 Error Vector

Run1 M M N M 1

Run2 M M N M 1

Run3 S S M M 0

Run4 S S M M 0

n11(j) 2 2 0 2
n10(j) 0 0 2 2
n01(j) 0 0 2 0
s0(j) 1.0 1.0 0.0 0.707

M: Multiple Exec. (aij > 1), S: Single Exec. (aij = 1) N: No Exec. (aij = 0)

After testing a function, SCURF continues to test other functions that are
called by that function. For instance, the function createPhoneBook is called by
the addNumberToPhoneList function (Line 6). Hence, after testing the addNum-
berToPhoneList function, if the user asks, SCURF proceeds with testing the cre-
atePhoneBook function. Similarly, the functions openPhoneBook, addPhoneBook
and closePhoneBook will be tested as well. SCURF continues to follow the call
hierarchy until the tested function does not call any other function or it makes
calls to POSIX functions only, e.g., strcpy, strcat and sprintf.

5 Industrial Case Studies and Evaluation

SCURF has been applied in the context of different industrial software projects
that have been developed within TUBITAK. TUBITAK4 is a government in-
stitution, which was formed in 1964. Since then, it has been responsible for
many large-scale software development projects for the Turkish government. At
TUBITAK, we have observed that one of the common root causes of concurrency
faults was the adoption of legacy software within the context of multi-threaded
software systems. Usually, the previously implemented functions have been de-
signed to be single-threaded, without multi-threaded execution in consideration.

4 The Scientific and Technological Research Council of Turkey.
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Due to indeterministic behavior, testing does not always reveal the impact of
concurrent execution and re-entrance to these previously implemented functions.
Moreover, the lack of knowledge/documentation regarding the legacy software
makes it even harder to locate a fault manually.

Several functions from different code bases were tested to i) check if their
multi-threaded execution leads to an error, and if so, ii) locate the components
that are subject to a concurrency fault as the root cause of the error. In the
following subsections, we report three such faults that are detected/diagnosed
by SCURF and discuss our experiences with SCURF. Due to confidentiality
of the projects (and also for brevity), we present modified and simplified code
examples. Nevertheless, they are representative examples to illustrate relevant
cases and discuss our experiences.

Example 1. One of the concurrency faults was detected in a function called pipe;
see its implementation in Listing 1.2. This function also calls other functions.
The first lines of the pipe function is used for initialization. Then, a name (label)
is obtained for the pipe to be created (line 8). Two file descriptors are opened
with different access modes (lines 10 and 12). These descriptors are used as the
read and write end of the pipe.

Listing 1.2. The implementation of the pipe function

1 int pipe ( int fds [ 2 ] ) {
2 int retVal = −1;
3 // . . .
4 i f ( FALSE == isPipeInitialized ) {
5 funcRet = init ( ) ;
6 }
7 i f (0 == funcRet ) {
8 funcRet = generateNewName ( pipeName ) ;
9 i f (0 == funcRet ) {

10 fds [ 0 ] = open ( pipeName , O_CREAT | O_RDONLY , S_IRWXU ) ;
11 i f (0 <= fds [ 0 ] ) {
12 fds [ 1 ] = open ( pipeName , O_CREAT | O_WRONLY , S_IRWXU )←↩

;
13 i f (0 <= fds [ 1 ] ) {
14 retVal = 0 ;
15 }
16 else {
17 close ( fds [ 0 ] ) ;
18 remove ( pipeName ) ;
19 }
20 }
21 }
22 }
23 return retVal ;
24}
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Table 3. Spectra collected for level-1 of the versions of the pipe function

Context Switch Number of Entries Error
C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6 Vector

Run1 1 0 0 0 0 0 2 1 1 1 1 0 1

Run2 0 1 0 0 0 0 1 2 2 2 2 0 0

Run3 0 0 1 0 0 0 1 2 2 2 2 0 0

Run4 0 0 0 1 0 0 1 2 2 2 2 0 0

Run5 0 0 0 0 1 0 1 2 2 2 2 0 0

Run6 0 0 0 0 0 1 1 2 2 2 2 0 0

During the testing phase of the pipe function at level 1, SCURF collected the
spectra shown in Table 3. In this table, we can see that an error was detected
during the first test run. Note that we assume the pipe function to be fault-
free in a single-threaded environment. Therefore, the detected error must have
been caused by a concurrency fault. SCURF stopped execution after level-1. As
such, there are 6 test runs in total and in each test run, only one component is
influenced to force a context switch. SCURF runs two threads concurrently to
test the function. Therefore the number of entries for each component are either
0, 1, or 2. Multiple execution of looping components are still treated as a single
execution if being iterated within the same thread. Based on the results listed
in Table 3, SCURF calculated fault probabilities for each component as shown
in Table 4.

Table 4. Analysis results for level-1 of versions for the pipe function

C1 C2 C3 C4 C5 C6 Error Vector

Run1 M S S S S N 1

Run2 S M M M M N 0

Run3 S M M M M N 0

Run4 S M M M M N 0

Run5 S M M M M N 0

Run6 S M M M M N 0

n11(j) 1 0 0 0 0 0
n10(j) 0 5 5 5 5 0
n01(j) 0 1 1 1 1 1
s0(j) 1.0 0.0 0.0 0.0 0.0 0.0

According to the results in Table 4, it can be seen that the reason for concur-
rency violation is multiple execution of component 1, before any thread leaves
that component. In this case, the cause of the concurrency fault is a call to an-
other function, init. This function is supposed to run only once even though the
pipe function can be called multiple times. Therefore, its multiple execution was
intended to be prevented by a global variable named as isPipeInitialized. How-
ever, the access to this variable should be protected for thread-safe execution.
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To remove the fault, component 1 was protected by a lock mechanism. Although
the solution is easy to implement, it is not always easy to locate such a concur-
rency fault manually. Automated error detection and fault diagnosis facilitated
by SCURF helped to perform this task with almost no effort.
Example 2. It turns out that the function generateNewName, which is called by
the pipe function (Line 8), is also subject to a concurrency fault as detected by
SCURF. There are no issues regarding the sequential execution of the function,
which is shown in Listing 1.3. The function serves as a name generator until
it reaches a limit that is imposed by the system. Every call to this function is
supposed to return a new name.

Listing 1.3. The implementation of the generateNewName function

1 int generateNewName ( char ∗fileName ) {
2 // . . .
3 while ( (0 != fileNameList [ index ] )
4 && ( index < MAX_NUM_OF_FILES ) ) { /∗ Component 1 ∗/
5 index++;
6 }
7 i f ( MAX_NUM_OF_FILES != index ) { /∗ Component 2 ∗/
8 fileNameList [ index ] = index + 1 ;
9 // . . .

10 retVal = 0 ;
11 }
12 else { /∗ Component 3 ∗/
13 retVal = ERANGE ;
14 }
15 return retVal ;
16}

SCURF detected a concurrency error for this function during the level-1 tests.
Component 2 was associated with the detected error. When we check the code
in Listing 1.3, we can figure out that concurrent access to the global variable
named as fileNameList leads to an error because of uncontrolled access both
in component 1 and component 2. As such, both of these components must
be protected together. SCURF was of valuable help to detect the error and
locate the fault for this function. Nevertheless, manual analysis was necessary
to successfully remove the concurrency fault concerning both component 1 and
component 2.

Example 3. The third case we present is regarding a concurrency fault in a
function called syncResources. This function also makes calls to other functions
but all these functions are thread-safe. However, there is a concurrency fault
due to the implementation of the syncResources function itself. The function
reads from a buffer of a device and transfers the data to another stream to
be synchronized with the file system. Every call of this function synchronizes
the buffers and flushes them to a permanent storage space. The function has 4
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components. This case is particularly interesting because SCURF was able to
diagnose the fault only after the test runs at level-2. The collected spectra can be
seen in Table 5. A concurrency error was not triggered when only one component
is influenced at a time to trigger a context switch. At level-2, two components
were influenced at each test run to trigger an error. For instance, to trigger the
error detected in test run 7, the execution of both components 1 and 4 were
influenced. To trigger the error detected in test run 9, on the other hand, the
execution of both components 2 and 4 were influenced. SCURF blamed three
components for the detected errors. We figured out that an uncontrolled access
to a global variable in these components caused the errors.

Table 5. Spectra collected during the first and second group of test runs (level-2) of
the versions of the syncResources function

Context Switch Number of Entries Error
C1 C2 C3 C4 C1 C2 C3 C4 Vector

Run1 1 0 0 0 2 2 2 2 0

Run2 0 1 0 0 2 2 2 2 0

Run3 0 0 1 0 1 1 1 1 0

Run4 0 0 0 1 1 1 1 1 0

Run5 1 1 0 0 2 2 2 2 0

Run6 1 0 1 0 2 2 2 2 0

Run7 1 0 0 1 2 2 2 1 1

Run8 0 1 1 0 2 2 2 2 0

Run9 0 1 0 1 2 2 2 1 1

Run10 0 0 1 1 1 1 1 1 0

5.1 Performance and Scalability

One might claim that it could be impractical to instrument the code for all
possible thread interleavings. This leads to 2n versions for a function with n
components. However, in practice we have seen that test runs at level-1 are
usually enough to diagnose a concurrency fault. At this level, only one component
is influenced to trigger a context switch at each test run. As a result, n versions
are enough for a function with n components. Only in the third case, SCURF
needed to make use of test runs at level-2. Based on these observations we have
implemented an incremental approach, inspired by approximation algorithms
[26]. As such, SCURF can proceed until an error is detected or refine the rankings
as much as necessary and as long as resources are available [26]. Tests on different
versions can also be performed in parallel to improve scalability.

We performed tests on a Pentium 4 - 3.0 GHz HT Single core 32-bit desk-
top computer running openSUSE 12.1. In our first study, we executed functions
of different size (with respect to the number of components) in 2 threads con-
currently. For each of these tests, we measured the time it takes to localize a
concurrency fault. For functions that have 6, 16 and 26 components, an error
was triggered in 494 ms., 645 ms. and 720 ms., respectively.
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In our second study, we performed measurements for different number of
threads. The functions that have 6, 16 and 26 components are executed with
6, 12 and 24 threads, respectively. SCURF detected and diagnosed an error
within 499 ms., 509 ms. and 547 ms., listed in the order of the corresponding
tests.

Our approach is incomparable with respect to stress testing. We have ap-
plied stress testing on the generateNewName function (Listing 1.3). Even if the
function was concurrently being executed in 24 different threads, the concur-
rency error was still not triggered after 100,000 tests. The error was triggered
by SCURF within milliseconds.

5.2 Assumptions and Threats to Validity

SCURF requires that a test oracle and test case(s) are available for testing the
functions of the subject system. Also, the original program should not be subject
to an error when executed in a single-threaded manner. Otherwise, not all the
detected errors can be associated with concurrency issues.

We instrument the program code to force context switches at different com-
ponents. Inevitably, the effects of our instrumentation are dependent on the
platform and the operating system. We perform our tests by assigning the same
priority to all the child threads used for test runs, and a higher priority to the
parent thread where these threads are created and joined. As such, all the child
threads are created before any other terminates. Also, we use FIFO scheduling
to eliminate the context switch because of time quantum.

The running time is dependent on the test cases and the algorithmic com-
plexity of the function being tested. Hence, our performance measures can not
be interpreted as absolute measures. They only reflect relative measures for a
particular case/function.

6 Related Work

There is a large body of related work on analysis and detection of concurrency
problems. The first attempt to address this problem focused on detecting race
conditions5. Static analysis techniques addressing this issue include those based
on type systems [6], model checking [16], and general program analysis [17].
There were also dynamic analysis techniques proposed like RecPlay [23] and
Eraser [24] However, these techniques were subject to a significant number of
false positives. In our approach, we cope with this issue by exploiting a proba-
bility score to rank the components instead of providing a binary decision.

More recent dynamic analysis techniques such as CCI [9] and Bugaboo [13]
rely on predicate-based fault localization of concurrent programs. In particular,
CCI samples shared-memory accesses during program executions and computes

5 A race condition occurs when multiple threads perform unsynchronized access (with
at least one of the threads writing) to a shared memory location.
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likelihood scores for those memory accesses. Similarly, DefUse [25] samples def-
use pairs between two threads. It finds the def-use pairs that are in failed execu-
tions and not in passed executions. Recon [12] compares memory accesses with
the five previous memory accesses to compute the likelihood scores regarding the
faulty memory accesses. CTrigger [18] profiles the program execution to identify
thread interleavings correlated to atomicity violation bugs. Aspect oriented tech-
niques have been used [5] for weaving assert statements that verify sequential
access. The main distinction of our approach from these studies is that we do
not employ passive monitoring. We instrument the code to force the application
to run in different combinations of thread interleavings. This improves the di-
agnostic accuracy. As a complementary approach for improving the diagnostic
accuracy, one can utilize test frameworks such as MultithreadedTC [22] to gen-
erate test cases that deterministically exercise specific interleavings of threads
in an application.

PCT [4] is proposed as a randomized scheduler for finding concurrency bugs.
This scheduler quantifies the probability of missing bugs. The quantification is
based on so-called depth of the bug, which is defined as the minimum number
of scheduling constraints that are sufficient to find the bug. Bugs that have
higher depths are revealed in fewer schedules, making them harder to detect and
diagnose. Experimental results show that in practice, many bugs (e.g., ordering
errors, atomicity violations, and deadlocks) have small depths [4]. This result is
also consistent with our observations. SCURF is able to diagnose most of the
concurrency bugs at level-1 already, by just influencing the execution of one
component at a time.

Yet another approach for detecting concurrency errors is by detecting viola-
tions of the atomic property. It has been suggested that atomicity is a property
that could be checked to detect concurrent errors at a more abstract, higher-
level. The main limitation of atomicity violation detectors is the need for the
user to annotate the source code, incurring a considerable overhead during the
development phase of the software [7].

Similar to our approach, Falcon [19] and recently introduced UNICORN [21]
also utilize spectrum-based fault localization for localizing concurrency faults.
Conversely to our approach, both Falcon and UNICORN rank data access pat-
terns (e.g., Read1, Write2, Read1) instead of statements/code blocks. However,
not all concurrency problems are about data access. This was also the case for
our motivating example.

Chess [15] is a concurrent unit testing tool that can provide fine-grained di-
agnosis regarding concurrency bugs. In our approach, we can detect such bugs
at the component level. As an advantage over Chess, SCURF does not require
additional scaffolding or test code to facilitate concurrency testing. An existing
test suite prepared for functional unit testing can be used as is. Moreover, tests
can be run in different processes in parallel.
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7 Conclusion and Future Work

Concurrency faults are hard to diagnose. We have observed that adoption of
legacy software in the context of multi-threaded software systems is one of the
common root causes of these faults. It becomes even harder to manually locate
concurrency faults when legacy software is involved. Therefore, we proposed a
3-step automated approach to diagnose these faults. We first instrument the
code to force the program to run in different combinations of thread interleav-
ings. At runtime, we collect information regarding the number of entries to each
code block for each test. Then, we employ spectrum-based fault localization to
correlate the detected errors with code blocks. Our tool, called SCURF, has
been applied in the context of several industrial software systems. We have seen
that our approach can accurately localize concurrency faults. We also obtained
promising results with respect to performance and scalability.

As future work, we plan to experiment with various diagnostic algorithms that
exploit the information regarding the number of times components get executed.
Another interesting work is to use static analysis to determine where to enforce
context switches, as such reducing the number of tests needed.
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