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Abstract. The purpose of this paper is to suggest and justify a framework for 
the history of computing that interests a wide public. The aim is to set the 
history of computing in the much broader context of automation, while also 
addressing the evolution of ideas. It suggests first a new detailed classification 
of programs (in the broad sense). Then it tries in particular to sketch out a 
“phylogenesis” of automation from the 12th to 19th centuries in Europe. It 
discusses various automatic devices: particularly, clocks and their annexes, but 
also organs, games, looms and early computers. Finally, it addresses the stored-
program computer and high-level languages. 
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1 Introduction 

According to French historian Fernand Braudel [5],  
“History occurs at different levels […]. On the surface, the history of 
events works itself out in the short term: it is a sort of microhistory. 
Halfway down, a history of conjunctures follows a broader, slower rhythm. 
[…] And over and above this ‘recitatif’ of conjuncture, structural history, 
or the history of the longue durée, inquires into whole centuries at a time. It 
functions along the border between the moving and the immobile, and 
because of the long-standing stability of its values, it appears unchanging 
compared with all the histories which flow and work themselves out more 
swiftly, and which in the final analysis gravitate around it. […] In any case, 
it is in relation to these expanses of slow-moving history that the whole of 
history is to be rethought, as if on the basis of an infrastructure. All the 
stages, all the thousands of stages, all the thousand explosions of historical 
time can be understood on the basis of these depths”. 

 
To make the history of computing attractive, I would like, following Braudel, to 

suggest that we examine, in a general manner, the long-term, multidimensional 
history. In particular, I propose to focus on the history of automation from Antiquity 
to the ‘stored program computer’, while also addressing the related mental evolution 
and highlighting the dematerialization that occurs on the technical level at the same 
time as the increased autonomy of the machine.  
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For the past 10 years, I have had the experience each year of giving lectures 
(lasting 30 minutes to 30 hours) to students at the University of Namur (Belgium) or 
on a more sporadic basis during speeches given to a wider public. In my experience, 
this approach generates a great deal of interest on the part of students. It could, I 
believe, also be used in a museum setting. In this article, I therefore propose to 
explain and justify the main thread of my approach.  

Long histories, tracing the full evolution of a specific object from its origins, are 
rare in the field of science and technology. Those relating to automation are 
particularly infrequent, since they involve a wide range of applications and call on 
specialists in very diverse disciplines. We can cite two such studies, both published 
after 1960: the paper by Jean Sablière [49] which at one time was a primary reference 
in the field, and the more recent article by Brian Randell [44]. The latter is a major 
contribution to this subject and is essential reading. Randell analyses the origins of 
computer programming, focusing on the concept of sequence control. To do this, he 
reviews early automatic devices (pointing out the “pegged cylinder” as a 
programming medium), Vaucanson’s and Jacquard’s contributions (underlining that 
punched media are “clearly separate”), Babbage’s contributions, the contributions of 
some of his direct successors and, finally, the stored-program concept (taking into 
account, moreover, the ability of the machine to calculate the addresses of the 
variables, but not envisaging high-level languages). 

The current paper revisits Randell’s analysis and generalizes it, while 
supplementing it with additional information. It proposes a broader conception of the 
notion of a program1 and provides a detailed typology of this concept. Furthermore, it 
integrates that concept into the much broader one of automation. The frame of 
reference that I propose is both generalized and inclusive: it is aimed not only at 
providing a rigorous definition of any automaton, but also coherently describing the 
evolution of automation, leading to the development of stored-program computers 
equipped with software enabling programming in high-level languages. Two 
comments need to be made at this point. First, it should be stressed that this 
framework was designed in the spirit of texts written by specialists in computer 
organization and design, in particular J. P. Meinadier [39] as well as D. A. Patterson 
and J. L. Hennessy [41]. Second, it should be noted that application of this frame of 
reference to the history of automation should, in the end, be a tool to help non-
computer scientists understand what a computer that enables programming in high-
level languages is.  

Furthermore, in his introduction, Randell [44] states the following about his own 
choice of historic milestones:  

“It is important to realize that many of these particular developments have 
been selected more because I personally find them interesting than because 
of any contemporary importance (…)”  

Like Randell, I have selected2 stages in history that are interesting in order to 
illustrate the analytical perspective that I have adopted. However, our perspectives do 
not completely overlap, and the milestones I have chosen differ slightly from 

                                                           
1  The definition proposed here is also broader than that of A. G. Bromley [9] who in analyzing 

Babbage’s machines, reserves the word program for a “user-level application”. 
2  Steps not addressed here may, in particular, be found in an article by Randell [43].  



 Telling the Long and Beautiful (Hi)Story of Automation! 175 

 

Randell’s. In contrast with Randell, for example, I have examined in greater depth the 
history of mechanical clocks and their annexes, highlighting the passage from the 
wheel (not discussed by Randell) to the cylinder as well as the transition, which from 
my point of view is fundamental, from stationary pegs to moving ones (which Randell 
mentions only in passing). 

Now that this brief, annotated review of the literature on the long-term history of 
automation has been completed, we should address the history of different fields that 
over the centuries were affected by automation. It should be noted that, in general, 
these fields do not intersect, are unfamiliar with each other and use different 
vocabularies. Furthermore, these specialized literatures often omit to give pertinent 
details for those who are interested in automation, since they generally have other 
preoccupations. For example, a specialist in the history of carillons is interested in the 
complexity of the melodies played via automation, but not in the programming of 
those melodies. Overall, the literature pertaining to automata reveal, when compared 
side by side, many points of confusion, gaps and inconsistencies. It is therefore 
particularly important to start by providing some definitions. Examples and 
illustrations will come later. First, let us recall that the word “automaton” comes from 
the Greek “automatos” and thus means etymologically “that which moves by itself.” 
According to Devaux [15], “automation” denotes a mechanism by which the more or 
less complex sequence of operations takes place spontaneously each time it is 
triggered. I suggest that an automaton3 be defined as a machine incorporating 
automation. Following Sablière [49], Jacomy [29] and Gille [21], let us consider that 
two principles allow automation to function: regulation (which implies simultaneity in 
relation to the process being regulated) and programming (which implies precedence 
in relation to the process being programmed). Let us also note that the two principles 
are not incompatible. Regulation is synonymous with feedback in a broad sense. As 
defined by Wikipedia, “feedback describes the situation when output from a 
phenomenon in the past will influence an occurrence or occurrences of the same 
phenomenon (or the continuation / development of the original phenomenon) in the 
present or future”. As to programming (in a broad sense4), it can be defined as 
determining in advance the sequence of operations (or actions or motions) that have to 
be performed by a machine and then recording this sequence on a medium that serves 
as a memory.5 It is useful to emphasize that all programming therefore implies, by 
definition even, the existence of a memory.6 A program (in a broad sense) is an 
ordered set of operations (or actions or motions) performed by an automatic system. I 
would like to explicitly mention an elucidating distinction between the program as it 
is conceived by humans and the program as it is ‘understood’ (i.e. read) by the 
machine.  

Starting from the understanding of Meinadier [39] that there are three major 
categories of programs which have succeeded each other over time, and adopting his 

                                                           
3  This concept is not taken into account by J. Lafitte [31]. 
4  As concerns the semantics of the word “program”, my attitude is therefore opposed to that 

of A. Brennecke [7] which considerably limits the meaning of this word. 
5  Definition adapted from J. Marguin [38]. 
6  A so-called “stored program” used by the stored-program computer is thus only a special 

case. 
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vocabulary, I would also like to propose a new (more detailed) classification of 
programs (as they are understood by the machine). According to Meinadier’s 
typology [39] (see Table 1), a program is said to be internal (to the machine) if it is 
fixed. Furthermore, a program is termed “external”7 by Meinadier if, like Jacquard’s 
loom, it is not unchangeable but rather is (manually) interchangeable. Personally, I 
will explain this concept later but, as B. Randell [45] suggested to me, I propose to 
consider the category of external programs as containing two sub-categories, which 
are above all relevant for comparing calculating machines8: the sub-category of 
exchangeable programs (taken into account by Meinadier) but also the more primitive 
sub-category of programs that are manually modifiable in situ9. In any case, such 
programs are accessible to the user. Finally, a program is defined as a “stored 
program” in the last possible case. Meinadier does not note that this last type of 
program is fully ‘manageable’ automatically, (as we will describe at length below) i.e. 
by the machine itself. However, as we are going to see, this point is fundamental.  

Table 1. Suggested classification (and evolution) of programs (as understood by the machine) 

Programs (as understood by the machine) 
Classes Feature 

1. ‘Internal’  Fixed 
2. ‘External’  

 2.1. In situ Modifiable manually 

 2.2. Logically separate from the 
 programmed device 

Replaceable 
manually 

3. ‘Stored program’  Fully manageable 
automatically 

 

We still have to state a basic detail that is rarely addressed in the literature: a 
machine can have several levels of programming (possibly of the same class). This 
configuration is quite frequent and applies to most of the automata that will be 
discussed in the text.  

2 Automata Prior to Stored Program Computers 

We should begin by stressing the importance of the Mechanicians’ School of 
Alexandria [18] (3rd century BCE - 1st century CE) as pioneers in the history of 

                                                           
7  D. A. Grier [23] stresses that the expression “external programming” was employed for the 

first time in 1951. This was in a “paper by IBM researchers which attacked the concept [of 
stored-program computer]. This paper described the IBM card programmed calculator, 
which was an accounting machine connected to an electronic arithmetic unit” [23]. 

8  This distinction is not however very useful for analyzing the history of pegged cylinders 
used in musical automata: these cylinders either have mobile pegs (e.g. in carillons) or 
exchangeable ones (e.g., in organs), essentially as a function of their size.  

9  I would, however, like to stress that there are intermediate cases.  



 Telling the Long and Beautiful (Hi)Story of Automation! 177 

 

automation. These early mechanicians, using, on the one hand, pegged10 wheels and, 
on the other hand, levers, ropes, cylinders,11 pulleys, etc., were able to build automata, 
notably in the fields, closely related at the time, of religion and theatre. It is certain 
that they used the principle of programming. However, in contrast with what certain 
authors have stated, it seems that they did not use any regulation [25] [26]. 

We can now move on to the successors of the Alexandrians as concerns automata: 
the Byzantines12 and the Arabs. The latter collected the manuscripts of Alexandria 
and translated them into Arabic. They also refined some of the techniques: we can see 
that they used the principle of regulation in addition to programming in order to build 
automata.13 Furthermore, it has been proven that the oldest description of a “pegged 
cylinder” used to automate the playing of a musical instrument is the work of the 
Musa brothers, in 9th century Bagdad [32] [34]. The “flute player” automaton that 
they described was very sophisticated and based on water power. To produce the 
desired music automatically, a wooden programming cylinder had to be made, with 
pegs of the proper dimensions and in the right places, and this cylinder had to be 
rotated at the proper speed. The Musa brothers provide a great volume of technical 
details: for example, they state that several melodies can be memorized on a single 
cylinder. They also explain that if one wanted to have several melodies for the 
mechanism, it was better to build a wide cylinder (rather than one with a large 
diameter) [32]. However, it seems that they did not raise the possibility of modifying 
a cylinder or replacing it, once the automated musical instrument had been made. The 
program can therefore be described as internal, according to the classification 
proposed above.  

The knowledge of the Arab world was transmitted to the West, in particular by 
means of translation into Latin, starting in the 12th century, in Muslim-occupied 
Spain. Let’s now turn to Europe.  

2.1 Programmed Automata not Used for Calculation in Europe  

According to Dohrn-van Rossum [16], from the 12th century, technical innovations 
were made in Europe to wake the monks: the direct coupling of one or several bells 

                                                           
10  According to their actual shape, the pegs (or teeth or cams) offer, as a general rule, the 

possibility of producing different movements (from all or nothing [binary effect], all the 
way to very progressive movement [“continuous” effect]). At the time of the ancient 
Greeks, it seems that each peg was an equilateral triangle [17]. 

11  As underlined by B. Randell [44], Heron of Alexandria did not use ‘pegged cylinders’ as 
such but rather their forerunners implying ropes. “The rope contained eyelets which fitted 
over pegs protruding from the cylinder, and was fixed to the cylinder with wax. Thus as it 
was slowly pulled off the cylinder, the cylinder rotated first one way, then another, at 
various speeds [44]”. I would like to add that this technique is primitive to the extent that it 
does not involve any long-term memorization of the sequence of the desired movements: 
when the rope is unwound, it must be rewound properly around the cylinder and refastened 
before the process is started again.  

12  See, for example, the water-clock from Gaza (Palestine) circa 530 (see G. Dohrn-van 
Rossum [16]). 

13  Via conical valves (cf. Hill [25] [26]).  
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and a water-clock as well as the automation of the repeated striking of one bell 
(ringing) or of several bells (tune). This automation is based on an internal program.  

One of the very rare accounts of this type of programming can be found in the 
rather rough representation on the reverse of the last folio of a manuscript dating from 
the reign of James II of Catalonia (1291-1327)14: it shows a mechanism consisting of 
a water-clock (on the bottom), and a set of bells (on top) that the clock would ring at a 
given interval. According to Farré-Olivé [20]: “This could be used as an alarm, or as 
a diversion for a party of assembled guests, or at some gathering of people.” On the 
drawing, a set of bells can be seen (only five are shown), above which is a pegged 
wheel. This pegged wheel can definitely be considered a program: we can imagine 
that the pegged wheel would rotate and strike the bells, creating a sequence of sounds 
represented on a musical score, drawn in the top left part of the original document. 
This program can be characterized as internal. It should be noted that it is more 
rudimentary than the mechanism proposed by the Musa brothers: a wheel can be seen 
as a cylinder with a single track... It should also be stressed that the drawing does not 
give any indication “of how the pins actuate the hammers placed by the bells below” 
[20]. As Farré-Olivé [20] mentions: “we are presented with a structure conveying the 
main ideas, without practical details.” 

The next stage in the history of automation is a major event of the Middle Ages, 
even though it seemed to have passed virtually unnoticed at the time: the invention of 
mechanical clocks. This probably occurred in the 13th century simultaneously at 
several European monasteries. It apparently predates the representation of the Catalan 
clepsydra, but as Farré-Olivé [20] explains: 

“The old water-clocks and the new weight clocks could well have existed 
side-by-side for a period of time… because the water-clock time measurer 
would be far less costly to construct than any type of early weight clock.” 

 

For purely technical reasons, the invention of mechanical clocks led to the passage 
from unequal hours15 (as measured by water-clocks) to equal hours16. In addition, as 
Dohrn-van Rossum [16] notes:  

“Mechanical clocks offered the possibility of animating large, heavy 
automata and of keeping them running more reliably than could be done 
until then with hydraulic movements.”  

 

It therefore became possible to build mechanisms known as “monumental 
astronomical clocks”, which were used for entertainment purposes. This involved 
hoisting the clock and its annexes into a tower (initially a church tower) in order to 
make them more visible and more audible. According to the classification proposed 
by Lehr [32], the annexes of mechanical clocks implemented from the 14th century 
onwards in Europe can be divided into three groups: astronomical and time 
measurement instruments (astrolabes, dials with representation of astral movements, 
calendars, etc.), musical instruments (automated mechanical organs, carillons, etc.) 

                                                           
14  The drawing may be a later addition. According to the analysis by Farré-Olivé (p. 374), it 

was undoubtedly made between 1291 and 1430. 
15  By convention, the period of daylight was always 12 hours in winter and in summer: it was 

therefore the duration of an hour that varied by the seasons and by the latitudes. 
16  Equal hours imply that the duration of one hour is set as 1/24th of one day. 
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on the production of a toothed wheel, or “count wheel”: the breadth of the bump 
determines the number of times the bell rings. This is manifestly a case of automation 
based once again on a centralized, internal program. And this time the invention, 
though it may appear relatively commonplace to us, was considered very significant 
at the time. It was only by being combined with hourly bells that mechanical clocks 
would become widespread, first in the cities and later in the countryside. This led to a 
secularization of time (public clocks) [16]. 

A manuscript18 dating from the mid-14th century shows an improvement in a 
variant19 of the programming technique for carillons or organs: the melody to be 
played was still short and simple, but now it could be modified thanks to the 
possibility of moving the programming pegs20. Of course, there is no proof that the 
described innovation was ever actually implemented. And while this new feature may 
seem of little importance from a musical point of view, it is fundamental from the 
perspective of the present article. Could this not be seen as the first mention of an 
external program (modifiable in situ) in the history of European, and most likely 
world, technology?  

The next step in perfecting automated carillons led, in the late 15th century, to a 
greater number of bells and to increased length and complexity of the melodies. For 
programming, this involved the use of several toothed wheels, arranged in parallel, 
thus forming a sort of cylinder with fixed pegs [34] (see Figure 2), equivalent to the 
cylinder drawn by the Musa brothers in the 9th century. Then, around 1530 according 
to Lehr [33]21, automated carillons were built with moveable cylinder pegs (see 
Figure 3): this made it possible to change the tunes, now potentially quite 
sophisticated, that the carillon could play [34].22 It is therefore certain that by the early 
16th century in Europe, mechanicians had built automata with external programs.  

 

                                                           
18  Kraków, Universytet Jagielloński, Biblioteka Jagiellońska, ms. 551, fol. 47 rev. – 49 rev. 

(cited by A. Lehr [32]).  
19  The pegs are not located around the circumference of the wheel, but rather on several radii 

of the programming wheel.  
20  On this subject, see A. Lehr [32] and A. Lehr et al. [34]. 
21  This innovation is sometimes attributed to a certain Barthélémy Coecke or de Koecke, also 

known as the “Buffoon of Aalst.” However, such an attribution seems to be pure fancy, in 
light of the results of in-depth studies on this subject by A. Lehr. According to Lehr ([33] 
and [34]), the “Zot van Aalst” only became known as “Barthélémy Coecke” in the 19th 
century, and his role in the improvement, in the 15th century, did not involve the 
programming cylinder, but rather the technique enabling manual playing of the carillon. 
Furthermore, the text written by a monk from Saint Michael’s Abbey in Old Flemish, 
mentioning “eenen sot van aelst” and giving rise to far-fetched interpretations, has been 
commented by L. Rombouts [46]. 

22  “A regular grid of holes on the cylinder made it possible to move the cleats and thus modify 
the piece of music, particularly as a function of the religious calendar. However, these 
changes were rarely made more than four times each year […]” (Buchner and Rouillé [11]). 
See also: http://whc.unesco.org/en/list/943/video 
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After Bouchon, Jean-Philippe Falcon and then Jacques Vaucanson developed 
automated machines for the weaving of designs, using external programs on a 
punched medium. Then in the early 19th century, Joseph-Marie Jacquard further 
perfected the automated loom and made its use in an industrial setting. As we will see, 
these looms would also have an influence on calculating machines. 

2.2 Calculating Machines  

Calculating machines are automata that are quite different from those envisaged up 
till now in this contribution: in effect, they have the specificity of manipulating 
symbols. As such, it is relevant to make the distinction between the two varieties of 
memorized information: first, the data (which can be apprehended at different levels) 
and, second, the operations (more or less complex and whose sequencing constitutes a 
program) to be performed on those data.  

How do we define a basic calculating machine? Marguin [38] provides the 
following definition: such a machine “includes an automatic mechanism to carry 
tens”. Let’s adopt this definition, while still noting that it is focused on the automation 
of the rules used for mental calculation, involving position numbering (regardless of 
the base used). We propose here that each basic24 mechanism for adding numbers 
should be considered a form of programming (in the broad sense), since it 
incorporates calculation rules and is based on a given algorithm to process the various 
digits that make up the numbers to be added, this algorithm being more or less 
complex depending on the machine in question. The mechanism for carrying tens is 
particularly crucial in a mechanical machine that uses toothed gears to represent the 
digits. As Babbage [3] explains:  

“The process of addition requires for its completion that an apparatus 
should be attached to the wheels on which the sum is placed for the purpose 
of carrying any tens that may occur to the next highest digit. This 
mechanism may be constructed upon three different principles. It may be: 

• Successive in its operation 
• It may postpone its operations 
• It may anticipate operations”. 

 

One of the first and most famous calculating machines was invented in 1642 by 
Blaise Pascal. As Marguin [37] states:  

“It is surprising that automation of the carry operation was invented so 
late, at a time when machines in general and clock mechanisms in 
particular had reached a remarkable degree of perfection.”  

 

 

 

                                                           
24 This is not the case for the other basic mechanisms (as listed by Bromley [9]) of non-

rudimentary calculating machines: the basic apparatus for storing and transferring numbers. 
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But we have to understand the mindset of the time:  
“Daring to invent a machine with the ability to automatically perform an 
operation that until then was strictly intellectual was akin to denying the 
divine nature of man.” [38]  

 

 

Fig. 4. Diagram of the carry mechanism, the basis for the Pascaline 

The “Pascaline” [19] is a simple adding machine. We consider here that it is based 
on an internal program that automates the carrying of digits, thanks to a series of carry 
mechanisms, each located between two toothed wheels. The central part in Figure 4 is 
the carry mechanism. It “is gradually lifted by the B wheel for the units. When it 
passes 10, it is suddenly released and falls (under its own weight), pushing the A 
wheel for the tens forward one position.” In the Pascaline, tens are carried 
successively. Furthermore, it should be noted that in this machine, the storing and 
computing functions are not separate. 

The next important steps in the history of calculating machines occurred in the 19th 
century and were the work of Charles Babbage. His “Difference Engine”25, aimed at 
generating accurate and precise numerical tables, was “designed to calculate using 
repeated addition as in the method of finite difference.”26 There was not yet a 
separation of the memory and calculation functions. However, it did have two levels 
of programming: in addition to the internal program (analogous to the Pascaline 
program, but refined) for carrying the tens27, it also included a higher level internal 

                                                           
25  Babbage worked on his “Difference Engine No. 1, from 1822 until 1833” (Bromley [9]). In 

1846, he “worked on another machine which he called Difference Engine No. 2” (Bromley 
[9]). 

26  R. Horton [28] explains: “When calculating a polynomial using the method of finite 
differences and after the initial starting values have been calculated by hand, it is possible 
by using the method of differences to generate the rest of the required table using repeated 
addition.” 

27  “In Difference Engine No. 1, that carry propagation was a sequential process” (Bromley 
[9]). 
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understood, in the form of a set of pegged cylinders30), which in turn controlled 
notably the sequencing of carry operations, performed by another internal program. 
We should note that Babbage equipped his Analytical Engine with sophisticated 
“anticipating”31 carry mechanisms, located on three “carriage axes” (“with their 
peculiar apparatus”32).  

Moreover, the Analytical Engine had to be capable of making a decision on the 
basis of a result that it had obtained. In other words, it had to enable what is currently 
called “conditional branching”33, which is another way of saying it had to be 
“regulated” (as defined above)34. We must also note another significant detail. Another 
innovation was needed in the Analytical Engine: the splitting of the functions into two 
organs, the “Mill” (or central processing unit) and the “Store” (with storage registers or 
cylinders)35. However, as A. G. Bromley [8] notes, “Babbage’s store has no structure 
accessible to the programmer”. Furthermore, this first “memory” was designed by 
Babbage for data only: the user’s program always remains on punched cards.  

Babbage’s ingenious inventions were largely forgotten, and they are generally (see 
[50] and [10]) considered as having had practically no impact on the subsequent 
history of technology.  

Let’s now move on to the next steps in the history of calculating machines, by 
looking at those machines that use electrical circuits. In this article, I will not examine 
the “Tabulating Machines,”36 patented by Hermann Hollerith in 1884 and which also 
involve punched cards (but only to memorize data)37. These machines only performed 
a simple mechanization of counting38.  

                                                           
30  Babbage calls such a pegged cylinder a “barrel” with “studs”. As noted by Bromley [8], 

“The barrel may be thought of as a microprogram store and a single vertical row of studs as 
a word of that store. […] In general, the barrel orders its own advance via several of the 
control levers. […] The barrel can […] order a transfer to another vertical up to seven 
positions either forward or backward relative to present one.” 

31  According to the terms used by Babbage himself [4]. 
32  According to the terms used by Babbage himself [3]. 
33  “The idea of conditional control, which had been a convenient feature in Difference Engine 

No. 1, starts to look like an essential part of the design of the Analytical Engine because of 
division” (A. G. Bromley [9]). 

34  We should note that as far back as 1914 Torres y Quevedo [52] used the term ‘regulation’ to 
describe the action that today is called ‘conditional branching’. 

35  This separation was a consequence of the increase in the size of the machinery, which is 
itself related to Babbage’s determined and successful research in order to minimize the time 
needed for carry operations (see D. Swade [50] and A. G. Bromley [10]). 

36  On the subject of these machines and their inventor: see, for example, R. Ligonnière [35]. 
37  These cards are not the medium for a program, but they do contain qualitative data.  
38  The carry operation was limited here to its simplest expression and was done using base 

100. Hollerith himself [27] made the following description: “A number of mechanical 
counters are arranged in a suitable frame […] The face of each counter is […] provided 
with a dial divided into 100 parts and two hands, one counting units the other hundreds. 
[…] A suitable carrying device is arranged so that at each complete revolution of the unit 
hand the hundred hand registers one …”  
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We will therefore move on to the large numerical calculating machines of the 
1940s. They contained at least two levels of programs. Above the internal program 
(responsible for carry operations and using electro-mechanical or electronic switches) 
was another program that dictated the sequencing of arithmetic operations. This latter 
program was either internal (and definitely fixed) (e.g. G. Stibitz’s BTL Model 1) or 
external. As explained by W. Aspray [1], on the basis of an unpublished text written 
by J. H. H. Goldstine and J. von Neumann [22], there were then two possible ways of 
making an [external39] program:  

“Either all of the connections are made prior to the computation, as in the 
ENIAC, where one first sets switches and plug cables, which effectively 
hard wires the instructions into the machine prior to the computation, or 
connections are established at the moment in the computation, when they 
are needed, as in the Harvard Mark I and the Bell Labs relay calculator, in 
which instructions are fed in as needed from an external paper tape. The 
advantage of the first approach is that, once entered, all of the instructions 
can be executed at electronic speed; the second approach permits 
indefinitely long strings of instructions, does not require as much time in 
problem setup, and can be implemented with less hardware”40. 

 

The first approach is, according to the vocabulary used in the present contribution, 
that of a manually modifiable program in situ, whereas the second is that of a program 
logically separate from the programmed device and which therefore can be changed 
manually.  

3 Stored-Program Computers 

At the end of World War II, the idea for a new design41 emerged: the computer “that 
incorporated the best features of each approach, based on storing instructions as 
numbers in the computer’s internal electronic memory [1].”42 This idea was present in 
the draft written by von Neumann on June 30, 1945 [56] and it is unanimously 
considered fundamental. It implies that written numerical codes (also later called 
“machine language”43) are now needed to communicate with the calculating 
machine44. The practical consequence of this is that it enables the machine to modify 
its own programs.  
                                                           
39  This term is not used by W. Aspray [1]. 
40  The bold characters have been added by me. 
41  I am deliberately not entering here into the debate concerning the precise paternity and 

dating of this idea. See W. Aspray [2]. 
42  The first computers still used punched strips (or cards), but the program was in the central 

memory during its execution.  
43  Such a language is defined by D. E. Knuth [30] as follows: ”a language which directly 

governs a computer’s actions, as it is interpreted by a computer’s circuitry”. 
44  M. Campbell-Kelly [12] underlines that « A small-scale experimental computer known as 

the miniature or baby machine first operated successfully on June 21 1948, and was the first 
EVAC-type electronic stored-program computer to be completed. […] Binary programs 
were put, bit by bit, into the store using manual keys and a ‘typewrite’ of 32 pushbuttons, 
each button corresponding to one bit of the store line. »  
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However, in the opinion of many commentators, this idea is insufficient to fully 
define the concept currently identified by the term “stored program computer”. To do 
this, according to B. Randell [45], two other crucial characteristics also have to be 
taken into account: “the ability of a program-controlled device to identify some 
information as a program and to switch to executing that program45” and “the fact 
that it is possible to calculate addresses, and so make dynamic decisions as to which 
data to use, or which instruction to obey”. These two characteristics were absent from 
the above-mentioned text by von Neumann [56], but the seeds were already present in 
a slightly earlier text by Turing [54]. As B. E. Carpenter and R. W. Doran [13] 
explain:  

“The difference in attitude between von Neumann and Turing is evident in 
how their central processors deal with instructions. Early calculators had 
programs on punched tapes through which they stepped, executing each 
instruction as it turned up. Von Neumann retained this attitude in his 1945 
report, for he thought of the processor as receiving a stream of orders from 
consecutive memory locations. He never explicitly mentions an instruction 
address register – this was unnecessary, for the next instruction comes from 
the current position in the memory tape. Turing did have an instruction 
address register explicitly containing the instruction number IN, i.e. the 
position of the next instruction. […] Turing’s, concept of memory was much 
closer than von Neumann’s to a random access addressable46 device”. 

 
B. Randell [44] pursues this on the subject of these two drafts from 1945: 

“In both cases, however, what now seem very awkward techniques of 
program self-modification were needed to make the machine calculate the 
addresses of variables – since neither the idea of index registers (B-lines as 
they were to be called at Manchester, where invented [and operational by 
April 1949] 47) nor of indirection had yet arisen. However, once all these 
aspects of the stored-program concept had been provided, […] machine-
level programming essentially as we know it now had arrived.” 

 
Furthermore, one of the applications of the possibility of modifying the program as 

described above, was not exploited before the 1950s. It is “the ability of one program 
to process another, treating it as data” [13]. However this “aspect” of modification is 
extremely important from a practical point of view: thanks to this, a programmed  
 

                                                           
45  B. Randell [44] notes that “the connotation of the computer being able to […] execute its 

own programs” is “surpassing the notion that Babbage had arrived at over a century 
earlier”. 

46  A sufficiently large random addressable access store can therefore be considered a practical 
concretization of the Turing machine’s infinite tape (see Turing [53]).  

47  See M. Campbell-Kelly [12]. 
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ready-made software provided they are compatible with an existing instruction set” 
[41]. In the end, we can conclude, along with Patterson and Hennessy [41], that the 
invention of the stored-program concept “let the computing genie out of its bottle.” 

And to close out this long history of automation, I find it enlightening to stress that 
the stored program computer (see Figure 6) still, from a logical50 point of view, takes 
into account both programming and regulation, identical to Babbage’s Analytical 
Engine (see Figure 5), except for the fact that the highest-level program is, during its 
execution, stored in the central memory, instead of being external to the machine (on 
punched cards).  

4 Comments 

Since Antiquity, humans have realized their ancestral dreams51 of manufacturing 
automata. An overview of the long history of automation up to the stored program 
computer leads us to a few general thoughts that are essentially related not only to 
programming, but also to regulation.  

We have seen that the programs as designed by humans involve a very precise 
sequencing that they have in mind. It should be stressed that this sequencing may 
consist either in a simple repetition or in a potentially more complex sequence. We 
have already mentioned the cases of simple repetition, for example, of a sound (alarm 
bell) or a unit of time (mechanical clock). We have also talked about various complex 
programmed sequences: for sounds (e.g. carillon melodies), movements (e.g. 
automata for astronomical clocks, such as bell strikers), letters (texts by Jaquet-Droz’s 
Writer automaton), designs (weaving patterns) and, finally (when people dared at last 
to put intelligence into a machine), calculations (Formula of Babbage’s Analytical 
Machine or, more generally, algorithms).  

Furthermore, we have illustrated the fact that, to ensure that the machine executes 
their planned design, people first made fixed programs, then manually modifiable or 
replaceable ones and finally those that are ‘fully’ manageable (i.e. which can not only 
be replaced but also be written and then executed) by the machine itself (see 2nd 
column of Table 2). These three milestones (respectively called ‘internal’, ‘external’ 
and ‘stored program computer’ by Meinadier [39] (see 1st column of Table 2) have 
been shown to be fundamental, and their importance must be stressed. It should be 
added that, in parallel with this evolution towards greater flexibility and increased 
autonomy of the machine, we can observe, over time, an increasing dematerialization 
of the program support (possibly of the highest level), in other words, of the interface 
enabling humans to communicate with the machine. The major steps in this history 
involve the passage from raised supports to punched ones (which would seemingly go 
hand in hand with a mental evolution), then the passage to electrical circuits and 
finally the use of machine language (see 3rd column of Table 2). It is evident that the 
fundamental change, from the point of view of the history of the program’s support, is 

                                                           
50  From a physical point of view, we should note that the carry operation is performed in 

binary mode, which is technically quite easy. 
51  For example, Book V 749 of the Iliad contains the following fragment “The gates of 

Olympus which open self-bidden [αυτομαται]… ” 
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the one that accompanies the passage to the so-called ‘stored program’: since we 
move from a support enabling a read-only machine with sequential access (or more 
generally, access relative to the current position52) to a support enabling writing and 
direct access to dynamically calculated53 addresses (see 4th and 5th columns of 
Table 2). In the history of books, we can see an analogous evolution from the point of 
view of access: from the ancient roll of papyrus (which must be read as it is unrolled), 
we moved to books with pages (invented in the 1st century of the current era). It is 
striking to note that Turing [24]54 explicitly compared the central (magnetic) memory 
of Mark II to a book with pages: 

“It is as if information in the magnetic store were written in a book. In 
order to find any required piece of information it is necessary to open the 
book at the required page.” 

Table 2. Suggested classification (and evolution) of programs (such as they are understood by 
the machine) and corresponding medium type 

Programs (as understood by the 
machine) 

Corresponding Medium type  

Classes Practical feature Human/machine 
communication 

Practical 
feature from 
machine’s 
point of view 

Machine access 
characteristics 

1. ‘Internal’  Fixed Using pegs / 

electrical circuits 

Read-only  Sequential access 

2. ‘External’ 

 

2.1. In situ 

 

 

 

Modifiable 
manually 

 

 

Using pegs / 

electrical circuits 

 

 

Read-only  

 

 

Sequential access 

 

2.2. Logically 
separate from 
programmed 
device 

Replaceable 

manually 

Using pegs / holes  

 

Read-only  Sequential access 

 

3. ‘Stored 
program’  

Fully 
manageable 
automatically 

Using symbols (a 
‘machine language’)

Writable  Random access 
(and calculated 
addresses) 

 

                                                           
52  A. G. Bromley ([8] and [9]) uses the term ‘relative addressing’ in this instance. 
53  It is only with addressable memory that the notion of an address for an instruction takes on 

its full meaning. The predecessors of stored program computers which were controlled by, 
for example punched tape, “could largely get by without addresses because of the fact that 
they could control the moving of the tape (q. v. Turing machines)” (B. Randell [45]). 

54  Cited by M. Campbell-Kelly [12]. 



192 M. d’Udekem-Gevers 

 

The concept of regulation has been addressed only briefly in this contribution. 
However, let’s note that, when assimilated with conditional branching, it helps to 
increase the autonomy of a calculating machine, by enabling it to make decisions 
when the program is being run.  

The brief and recent history of computing has now been placed within the longer 
history of automation. This has revealed deep-seated trends in the evolution of 
technology. I believe that this is likely to be of interest to a broad public.  
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