

A. Tatnall, T. Blyth, and R. Johnson (Eds.): HC 2013, IFIP AICT 416, pp. 173–195, 2013.
© IFIP International Federation for Information Processing 2013

Telling the Long and Beautiful (Hi)Story of Automation!

Marie d’Udekem-Gevers

University of Namur, Faculté d’informatique, Namur, Belgique
marie.gevers@unamur.be

Abstract. The purpose of this paper is to suggest and justify a framework for
the history of computing that interests a wide public. The aim is to set the
history of computing in the much broader context of automation, while also
addressing the evolution of ideas. It suggests first a new detailed classification
of programs (in the broad sense). Then it tries in particular to sketch out a
“phylogenesis” of automation from the 12th to 19th centuries in Europe. It
discusses various automatic devices: particularly, clocks and their annexes, but
also organs, games, looms and early computers. Finally, it addresses the stored-
program computer and high-level languages.

Keywords: Automation, Blaise Pascal, Charles Babbage, clocks and their
annexes, conditional branching, languages, programming, regulation, relevance
to the general public, sequence, stored-program computer.

1 Introduction

According to French historian Fernand Braudel [5],
“History occurs at different levels […]. On the surface, the history of
events works itself out in the short term: it is a sort of microhistory.
Halfway down, a history of conjunctures follows a broader, slower rhythm.
[…] And over and above this ‘recitatif’ of conjuncture, structural history,
or the history of the longue durée, inquires into whole centuries at a time. It
functions along the border between the moving and the immobile, and
because of the long-standing stability of its values, it appears unchanging
compared with all the histories which flow and work themselves out more
swiftly, and which in the final analysis gravitate around it. […] In any case,
it is in relation to these expanses of slow-moving history that the whole of
history is to be rethought, as if on the basis of an infrastructure. All the
stages, all the thousands of stages, all the thousand explosions of historical
time can be understood on the basis of these depths”.

To make the history of computing attractive, I would like, following Braudel, to

suggest that we examine, in a general manner, the long-term, multidimensional
history. In particular, I propose to focus on the history of automation from Antiquity
to the ‘stored program computer’, while also addressing the related mental evolution
and highlighting the dematerialization that occurs on the technical level at the same
time as the increased autonomy of the machine.

174 M. d’Udekem-Gevers

For the past 10 years, I have had the experience each year of giving lectures
(lasting 30 minutes to 30 hours) to students at the University of Namur (Belgium) or
on a more sporadic basis during speeches given to a wider public. In my experience,
this approach generates a great deal of interest on the part of students. It could, I
believe, also be used in a museum setting. In this article, I therefore propose to
explain and justify the main thread of my approach.

Long histories, tracing the full evolution of a specific object from its origins, are
rare in the field of science and technology. Those relating to automation are
particularly infrequent, since they involve a wide range of applications and call on
specialists in very diverse disciplines. We can cite two such studies, both published
after 1960: the paper by Jean Sablière [49] which at one time was a primary reference
in the field, and the more recent article by Brian Randell [44]. The latter is a major
contribution to this subject and is essential reading. Randell analyses the origins of
computer programming, focusing on the concept of sequence control. To do this, he
reviews early automatic devices (pointing out the “pegged cylinder” as a
programming medium), Vaucanson’s and Jacquard’s contributions (underlining that
punched media are “clearly separate”), Babbage’s contributions, the contributions of
some of his direct successors and, finally, the stored-program concept (taking into
account, moreover, the ability of the machine to calculate the addresses of the
variables, but not envisaging high-level languages).

The current paper revisits Randell’s analysis and generalizes it, while
supplementing it with additional information. It proposes a broader conception of the
notion of a program1 and provides a detailed typology of this concept. Furthermore, it
integrates that concept into the much broader one of automation. The frame of
reference that I propose is both generalized and inclusive: it is aimed not only at
providing a rigorous definition of any automaton, but also coherently describing the
evolution of automation, leading to the development of stored-program computers
equipped with software enabling programming in high-level languages. Two
comments need to be made at this point. First, it should be stressed that this
framework was designed in the spirit of texts written by specialists in computer
organization and design, in particular J. P. Meinadier [39] as well as D. A. Patterson
and J. L. Hennessy [41]. Second, it should be noted that application of this frame of
reference to the history of automation should, in the end, be a tool to help non-
computer scientists understand what a computer that enables programming in high-
level languages is.

Furthermore, in his introduction, Randell [44] states the following about his own
choice of historic milestones:

“It is important to realize that many of these particular developments have
been selected more because I personally find them interesting than because
of any contemporary importance (…)”

Like Randell, I have selected2 stages in history that are interesting in order to
illustrate the analytical perspective that I have adopted. However, our perspectives do
not completely overlap, and the milestones I have chosen differ slightly from

1 The definition proposed here is also broader than that of A. G. Bromley [9] who in analyzing

Babbage’s machines, reserves the word program for a “user-level application”.
2 Steps not addressed here may, in particular, be found in an article by Randell [43].

 Telling the Long and Beautiful (Hi)Story of Automation! 175

Randell’s. In contrast with Randell, for example, I have examined in greater depth the
history of mechanical clocks and their annexes, highlighting the passage from the
wheel (not discussed by Randell) to the cylinder as well as the transition, which from
my point of view is fundamental, from stationary pegs to moving ones (which Randell
mentions only in passing).

Now that this brief, annotated review of the literature on the long-term history of
automation has been completed, we should address the history of different fields that
over the centuries were affected by automation. It should be noted that, in general,
these fields do not intersect, are unfamiliar with each other and use different
vocabularies. Furthermore, these specialized literatures often omit to give pertinent
details for those who are interested in automation, since they generally have other
preoccupations. For example, a specialist in the history of carillons is interested in the
complexity of the melodies played via automation, but not in the programming of
those melodies. Overall, the literature pertaining to automata reveal, when compared
side by side, many points of confusion, gaps and inconsistencies. It is therefore
particularly important to start by providing some definitions. Examples and
illustrations will come later. First, let us recall that the word “automaton” comes from
the Greek “automatos” and thus means etymologically “that which moves by itself.”
According to Devaux [15], “automation” denotes a mechanism by which the more or
less complex sequence of operations takes place spontaneously each time it is
triggered. I suggest that an automaton3 be defined as a machine incorporating
automation. Following Sablière [49], Jacomy [29] and Gille [21], let us consider that
two principles allow automation to function: regulation (which implies simultaneity in
relation to the process being regulated) and programming (which implies precedence
in relation to the process being programmed). Let us also note that the two principles
are not incompatible. Regulation is synonymous with feedback in a broad sense. As
defined by Wikipedia, “feedback describes the situation when output from a
phenomenon in the past will influence an occurrence or occurrences of the same
phenomenon (or the continuation / development of the original phenomenon) in the
present or future”. As to programming (in a broad sense4), it can be defined as
determining in advance the sequence of operations (or actions or motions) that have to
be performed by a machine and then recording this sequence on a medium that serves
as a memory.5 It is useful to emphasize that all programming therefore implies, by
definition even, the existence of a memory.6 A program (in a broad sense) is an
ordered set of operations (or actions or motions) performed by an automatic system. I
would like to explicitly mention an elucidating distinction between the program as it
is conceived by humans and the program as it is ‘understood’ (i.e. read) by the
machine.

Starting from the understanding of Meinadier [39] that there are three major
categories of programs which have succeeded each other over time, and adopting his

3 This concept is not taken into account by J. Lafitte [31].
4 As concerns the semantics of the word “program”, my attitude is therefore opposed to that

of A. Brennecke [7] which considerably limits the meaning of this word.
5 Definition adapted from J. Marguin [38].
6 A so-called “stored program” used by the stored-program computer is thus only a special

case.

176 M. d’Udekem-Gevers

vocabulary, I would also like to propose a new (more detailed) classification of
programs (as they are understood by the machine). According to Meinadier’s
typology [39] (see Table 1), a program is said to be internal (to the machine) if it is
fixed. Furthermore, a program is termed “external”7 by Meinadier if, like Jacquard’s
loom, it is not unchangeable but rather is (manually) interchangeable. Personally, I
will explain this concept later but, as B. Randell [45] suggested to me, I propose to
consider the category of external programs as containing two sub-categories, which
are above all relevant for comparing calculating machines8: the sub-category of
exchangeable programs (taken into account by Meinadier) but also the more primitive
sub-category of programs that are manually modifiable in situ9. In any case, such
programs are accessible to the user. Finally, a program is defined as a “stored
program” in the last possible case. Meinadier does not note that this last type of
program is fully ‘manageable’ automatically, (as we will describe at length below) i.e.
by the machine itself. However, as we are going to see, this point is fundamental.

Table 1. Suggested classification (and evolution) of programs (as understood by the machine)

Programs (as understood by the machine)
Classes Feature

1. ‘Internal’ Fixed
2. ‘External’

 2.1. In situ Modifiable manually

 2.2. Logically separate from the
 programmed device

Replaceable
manually

3. ‘Stored program’ Fully manageable
automatically

We still have to state a basic detail that is rarely addressed in the literature: a
machine can have several levels of programming (possibly of the same class). This
configuration is quite frequent and applies to most of the automata that will be
discussed in the text.

2 Automata Prior to Stored Program Computers

We should begin by stressing the importance of the Mechanicians’ School of
Alexandria [18] (3rd century BCE - 1st century CE) as pioneers in the history of

7 D. A. Grier [23] stresses that the expression “external programming” was employed for the

first time in 1951. This was in a “paper by IBM researchers which attacked the concept [of
stored-program computer]. This paper described the IBM card programmed calculator,
which was an accounting machine connected to an electronic arithmetic unit” [23].

8 This distinction is not however very useful for analyzing the history of pegged cylinders
used in musical automata: these cylinders either have mobile pegs (e.g. in carillons) or
exchangeable ones (e.g., in organs), essentially as a function of their size.

9 I would, however, like to stress that there are intermediate cases.

 Telling the Long and Beautiful (Hi)Story of Automation! 177

automation. These early mechanicians, using, on the one hand, pegged10 wheels and,
on the other hand, levers, ropes, cylinders,11 pulleys, etc., were able to build automata,
notably in the fields, closely related at the time, of religion and theatre. It is certain
that they used the principle of programming. However, in contrast with what certain
authors have stated, it seems that they did not use any regulation [25] [26].

We can now move on to the successors of the Alexandrians as concerns automata:
the Byzantines12 and the Arabs. The latter collected the manuscripts of Alexandria
and translated them into Arabic. They also refined some of the techniques: we can see
that they used the principle of regulation in addition to programming in order to build
automata.13 Furthermore, it has been proven that the oldest description of a “pegged
cylinder” used to automate the playing of a musical instrument is the work of the
Musa brothers, in 9th century Bagdad [32] [34]. The “flute player” automaton that
they described was very sophisticated and based on water power. To produce the
desired music automatically, a wooden programming cylinder had to be made, with
pegs of the proper dimensions and in the right places, and this cylinder had to be
rotated at the proper speed. The Musa brothers provide a great volume of technical
details: for example, they state that several melodies can be memorized on a single
cylinder. They also explain that if one wanted to have several melodies for the
mechanism, it was better to build a wide cylinder (rather than one with a large
diameter) [32]. However, it seems that they did not raise the possibility of modifying
a cylinder or replacing it, once the automated musical instrument had been made. The
program can therefore be described as internal, according to the classification
proposed above.

The knowledge of the Arab world was transmitted to the West, in particular by
means of translation into Latin, starting in the 12th century, in Muslim-occupied
Spain. Let’s now turn to Europe.

2.1 Programmed Automata not Used for Calculation in Europe

According to Dohrn-van Rossum [16], from the 12th century, technical innovations
were made in Europe to wake the monks: the direct coupling of one or several bells

10 According to their actual shape, the pegs (or teeth or cams) offer, as a general rule, the

possibility of producing different movements (from all or nothing [binary effect], all the
way to very progressive movement [“continuous” effect]). At the time of the ancient
Greeks, it seems that each peg was an equilateral triangle [17].

11 As underlined by B. Randell [44], Heron of Alexandria did not use ‘pegged cylinders’ as
such but rather their forerunners implying ropes. “The rope contained eyelets which fitted
over pegs protruding from the cylinder, and was fixed to the cylinder with wax. Thus as it
was slowly pulled off the cylinder, the cylinder rotated first one way, then another, at
various speeds [44]”. I would like to add that this technique is primitive to the extent that it
does not involve any long-term memorization of the sequence of the desired movements:
when the rope is unwound, it must be rewound properly around the cylinder and refastened
before the process is started again.

12 See, for example, the water-clock from Gaza (Palestine) circa 530 (see G. Dohrn-van
Rossum [16]).

13 Via conical valves (cf. Hill [25] [26]).

178 M. d’Udekem-Gevers

and a water-clock as well as the automation of the repeated striking of one bell
(ringing) or of several bells (tune). This automation is based on an internal program.

One of the very rare accounts of this type of programming can be found in the
rather rough representation on the reverse of the last folio of a manuscript dating from
the reign of James II of Catalonia (1291-1327)14: it shows a mechanism consisting of
a water-clock (on the bottom), and a set of bells (on top) that the clock would ring at a
given interval. According to Farré-Olivé [20]: “This could be used as an alarm, or as
a diversion for a party of assembled guests, or at some gathering of people.” On the
drawing, a set of bells can be seen (only five are shown), above which is a pegged
wheel. This pegged wheel can definitely be considered a program: we can imagine
that the pegged wheel would rotate and strike the bells, creating a sequence of sounds
represented on a musical score, drawn in the top left part of the original document.
This program can be characterized as internal. It should be noted that it is more
rudimentary than the mechanism proposed by the Musa brothers: a wheel can be seen
as a cylinder with a single track... It should also be stressed that the drawing does not
give any indication “of how the pins actuate the hammers placed by the bells below”
[20]. As Farré-Olivé [20] mentions: “we are presented with a structure conveying the
main ideas, without practical details.”

The next stage in the history of automation is a major event of the Middle Ages,
even though it seemed to have passed virtually unnoticed at the time: the invention of
mechanical clocks. This probably occurred in the 13th century simultaneously at
several European monasteries. It apparently predates the representation of the Catalan
clepsydra, but as Farré-Olivé [20] explains:

“The old water-clocks and the new weight clocks could well have existed
side-by-side for a period of time… because the water-clock time measurer
would be far less costly to construct than any type of early weight clock.”

For purely technical reasons, the invention of mechanical clocks led to the passage
from unequal hours15 (as measured by water-clocks) to equal hours16. In addition, as
Dohrn-van Rossum [16] notes:

“Mechanical clocks offered the possibility of animating large, heavy
automata and of keeping them running more reliably than could be done
until then with hydraulic movements.”

It therefore became possible to build mechanisms known as “monumental
astronomical clocks”, which were used for entertainment purposes. This involved
hoisting the clock and its annexes into a tower (initially a church tower) in order to
make them more visible and more audible. According to the classification proposed
by Lehr [32], the annexes of mechanical clocks implemented from the 14th century
onwards in Europe can be divided into three groups: astronomical and time
measurement instruments (astrolabes, dials with representation of astral movements,
calendars, etc.), musical instruments (automated mechanical organs, carillons, etc.)

14 The drawing may be a later addition. According to the analysis by Farré-Olivé (p. 374), it

was undoubtedly made between 1291 and 1430.
15 By convention, the period of daylight was always 12 hours in winter and in summer: it was

therefore the duration of an hour that varied by the seasons and by the latitudes.
16 Equal hours imply that the duration of one hour is set as 1/24th of one day.

 T

and devices for the theatre
the Magi, etc.).

The hypothesis explaini
J.D. Robertson and reiterat
progressed from a bell-ri
controlled by a foliot (see
these two mechanisms: a
internal program), a verge
and a weight. The differenc
mechanism, it is the repea
escapement mechanism, lin
of the foliot and its weights
of units. From this point
continuous flow of liquid, a
of units [6]. We should also
it sets the duration17 of the p
rest [40]. A mechanical clo
here, as a programmed and

Fig. 1. Diagram of a mechan

Hourly bell-ringing invo
of the mechanical clock an
only in the early 14th centu

17 This length of time may be

Telling the Long and Beautiful (Hi)Story of Automation!

(automata representing, for example, angelic musicians

ing the invention of mechanical clocks, as formulated
ted by Dohrn-van Rossum [16], is as follows: technolo
inging mechanism to a clock escapement mechan

e Figure 1). We should identify the basic components
(vertical) crown wheel (which can be considered as
with two blades (engaging alternatively the wheel tee

ce lies in the results obtained. In the case of the bell-ring
ated beating of a clapper on a bell. In contrast, the cl
nked to the weight, will drive a back-and-forth movem
s: the effect is to divide the flow of time into a success
on, time measurement no longer had to be based o

as was the case with the clepsydra, but rather on a count
o note that the weighted foliot is a regulator of escapeme
periods of crown wheel movement, separated by period
ock can therefore be described, in the vocabulary adop
regulated automaton.

nical clock with both escapement and bell-ringing mechanism

olves a much more complex mechanism than the movem
nd, according to Dohrn-van Rossum [16], it was inven
ury, probably in the city-states of Italy. Bell-ringing re

e modified by the displacement of two weights.

179

s or

d by
ogy

nism
s of
s an
eth)
ging
lock

ment
sion

on a
ting
ent:
s of

pted

ms

ment
nted
elies

180 M. d’Udekem-Gevers

on the production of a toothed wheel, or “count wheel”: the breadth of the bump
determines the number of times the bell rings. This is manifestly a case of automation
based once again on a centralized, internal program. And this time the invention,
though it may appear relatively commonplace to us, was considered very significant
at the time. It was only by being combined with hourly bells that mechanical clocks
would become widespread, first in the cities and later in the countryside. This led to a
secularization of time (public clocks) [16].

A manuscript18 dating from the mid-14th century shows an improvement in a
variant19 of the programming technique for carillons or organs: the melody to be
played was still short and simple, but now it could be modified thanks to the
possibility of moving the programming pegs20. Of course, there is no proof that the
described innovation was ever actually implemented. And while this new feature may
seem of little importance from a musical point of view, it is fundamental from the
perspective of the present article. Could this not be seen as the first mention of an
external program (modifiable in situ) in the history of European, and most likely
world, technology?

The next step in perfecting automated carillons led, in the late 15th century, to a
greater number of bells and to increased length and complexity of the melodies. For
programming, this involved the use of several toothed wheels, arranged in parallel,
thus forming a sort of cylinder with fixed pegs [34] (see Figure 2), equivalent to the
cylinder drawn by the Musa brothers in the 9th century. Then, around 1530 according
to Lehr [33]21, automated carillons were built with moveable cylinder pegs (see
Figure 3): this made it possible to change the tunes, now potentially quite
sophisticated, that the carillon could play [34].22 It is therefore certain that by the early
16th century in Europe, mechanicians had built automata with external programs.

18 Kraków, Universytet Jagielloński, Biblioteka Jagiellońska, ms. 551, fol. 47 rev. – 49 rev.

(cited by A. Lehr [32]).
19 The pegs are not located around the circumference of the wheel, but rather on several radii

of the programming wheel.
20 On this subject, see A. Lehr [32] and A. Lehr et al. [34].
21 This innovation is sometimes attributed to a certain Barthélémy Coecke or de Koecke, also

known as the “Buffoon of Aalst.” However, such an attribution seems to be pure fancy, in
light of the results of in-depth studies on this subject by A. Lehr. According to Lehr ([33]
and [34]), the “Zot van Aalst” only became known as “Barthélémy Coecke” in the 19th
century, and his role in the improvement, in the 15th century, did not involve the
programming cylinder, but rather the technique enabling manual playing of the carillon.
Furthermore, the text written by a monk from Saint Michael’s Abbey in Old Flemish,
mentioning “eenen sot van aelst” and giving rise to far-fetched interpretations, has been
commented by L. Rombouts [46].

22 “A regular grid of holes on the cylinder made it possible to move the cleats and thus modify
the piece of music, particularly as a function of the religious calendar. However, these
changes were rarely made more than four times each year […]” (Buchner and Rouillé [11]).
See also: http://whc.unesco.org/en/list/943/video

 T

Fig. 2. Diagram of the oldest
15th century)

This brings us to the aut
clocks. We should note fir
cylinder for a musical aut
obtain the desired melody.
tapes to simplify the nota
punching was performed fl
glued on the cylinder [14].

We now move on to the
categories must be distingu
more precisely, automated
category, let’s consider th
mechanician Pierre Jaquet-D
maximum of 40 letters. Th
contains two levels. It is, in

“A stack of rotating c
to move. One lever c
movements, and the th
formation of each lette

It also contains an exter

wheel “raises all of the ca
bring the cams for the diffe
automata were built in the
moved from making enter
looms.

Telling the Long and Beautiful (Hi)Story of Automation!

programming cylinder (with several wheels) for a carillon (

tomata developed after the Middle Ages, independently
rst of all that it was difficult to “notate” a programm
omaton, i.e. to place the pegs in the proper locations
In the 17th century, the idea was developed of using pa

ation of the cylinders for mechanical organs. First,
lat on sheets of paper, and then these punched sheets w

e 18th century, known as the golden age of automata. T
uished: entertaining or educational automata, and looms
machines for the weaving of designs. To illustrate the f

he “Writer” [57] made in 1770 by the clockmaker
Droz. This automaton is capable of writing any text wit
his is a very interesting example, since its programm

n fact, equipped with an internal program:
cams, causing three levers linked to the writer’s hand
ontrols right-left movements, another back-and-forth
hird vertical movements. There are three cams for the
er” (Devaux [15]).

rnal program: a wheel with 40 interchangeable pegs. T
ams, sliding on its [vertical] axis, in order to successiv
erent letters to the levers” [15]. Other famous entertain
e 18th century, notably by Jacques Vaucanson. The la
rtaining or educational automata to producing automa

181

(late

y of
ming
s to
aper

the
were

Two
s, or
first
and
th a

ming

This
vely
ning
atter
ated

182 M. d’Udekem-Gever

Fig. 3. Staf Nees (1901-1965)
Belgium), programming a cyli

This leads us quite natu
automata. Looms that repro
In 1725, Basile Bouchon a
and used a medium with pu
replaced. Along with Daum
was inspired by the process
could say that he simply e
external program. As Rouil

“The concepts of zero
was not generalized i
the 17th century, with
we really became awa
vacuum. Therefore, it
18th century for peop
machine not with pegs
Bouchon’s loom, with
less space and whose

23 “(…) the arrangement of t

one wanted to reproduce o

rs

), Director of the Royal Carillon School “Jef Denyn” (Meche
nder with moveable pegs for a carillon

urally to address this type of non-entertaining, utilitar
oduce designs were the focus of a remarkable innovati
abandoned raised media for the memorizing of a progr
unch holes23, i.e. a punched paper strip, that can easily
mas [14], we can formulate the hypothesis that Bouch
s used to mark pegged cylinders since the 17th century.
eliminated one step in the manufacturing process for
lé [47] notes:
o and vacuum are not natural ones. The use of zero
in the West until the Middle Ages, and it was only in
Toricelli’s experiments on atmospheric pressure that
are of what the total absence of elements meant – a
t is not surprising that we had to wait until the early
ple to envisage control of the repetitive actions of a
s on a rotating shaft (…) but rather, as in the case of

h punch holes on a paper strip, a medium that took up
length was no longer limited.”

the punch holes was established as a function of the design

on the cloth” (P. Rouillé [47]).

elen,

rian
ion.
ram
y be
hon
We

r an

that

 Telling the Long and Beautiful (Hi)Story of Automation! 183

After Bouchon, Jean-Philippe Falcon and then Jacques Vaucanson developed
automated machines for the weaving of designs, using external programs on a
punched medium. Then in the early 19th century, Joseph-Marie Jacquard further
perfected the automated loom and made its use in an industrial setting. As we will see,
these looms would also have an influence on calculating machines.

2.2 Calculating Machines

Calculating machines are automata that are quite different from those envisaged up
till now in this contribution: in effect, they have the specificity of manipulating
symbols. As such, it is relevant to make the distinction between the two varieties of
memorized information: first, the data (which can be apprehended at different levels)
and, second, the operations (more or less complex and whose sequencing constitutes a
program) to be performed on those data.

How do we define a basic calculating machine? Marguin [38] provides the
following definition: such a machine “includes an automatic mechanism to carry
tens”. Let’s adopt this definition, while still noting that it is focused on the automation
of the rules used for mental calculation, involving position numbering (regardless of
the base used). We propose here that each basic24 mechanism for adding numbers
should be considered a form of programming (in the broad sense), since it
incorporates calculation rules and is based on a given algorithm to process the various
digits that make up the numbers to be added, this algorithm being more or less
complex depending on the machine in question. The mechanism for carrying tens is
particularly crucial in a mechanical machine that uses toothed gears to represent the
digits. As Babbage [3] explains:

“The process of addition requires for its completion that an apparatus
should be attached to the wheels on which the sum is placed for the purpose
of carrying any tens that may occur to the next highest digit. This
mechanism may be constructed upon three different principles. It may be:

• Successive in its operation
• It may postpone its operations
• It may anticipate operations”.

One of the first and most famous calculating machines was invented in 1642 by
Blaise Pascal. As Marguin [37] states:

“It is surprising that automation of the carry operation was invented so
late, at a time when machines in general and clock mechanisms in
particular had reached a remarkable degree of perfection.”

24 This is not the case for the other basic mechanisms (as listed by Bromley [9]) of non-

rudimentary calculating machines: the basic apparatus for storing and transferring numbers.

184 M. d’Udekem-Gevers

But we have to understand the mindset of the time:
“Daring to invent a machine with the ability to automatically perform an
operation that until then was strictly intellectual was akin to denying the
divine nature of man.” [38]

Fig. 4. Diagram of the carry mechanism, the basis for the Pascaline

The “Pascaline” [19] is a simple adding machine. We consider here that it is based
on an internal program that automates the carrying of digits, thanks to a series of carry
mechanisms, each located between two toothed wheels. The central part in Figure 4 is
the carry mechanism. It “is gradually lifted by the B wheel for the units. When it
passes 10, it is suddenly released and falls (under its own weight), pushing the A
wheel for the tens forward one position.” In the Pascaline, tens are carried
successively. Furthermore, it should be noted that in this machine, the storing and
computing functions are not separate.

The next important steps in the history of calculating machines occurred in the 19th
century and were the work of Charles Babbage. His “Difference Engine”25, aimed at
generating accurate and precise numerical tables, was “designed to calculate using
repeated addition as in the method of finite difference.”26 There was not yet a
separation of the memory and calculation functions. However, it did have two levels
of programming: in addition to the internal program (analogous to the Pascaline
program, but refined) for carrying the tens27, it also included a higher level internal

25 Babbage worked on his “Difference Engine No. 1, from 1822 until 1833” (Bromley [9]). In

1846, he “worked on another machine which he called Difference Engine No. 2” (Bromley
[9]).

26 R. Horton [28] explains: “When calculating a polynomial using the method of finite
differences and after the initial starting values have been calculated by hand, it is possible
by using the method of differences to generate the rest of the required table using repeated
addition.”

27 “In Difference Engine No. 1, that carry propagation was a sequential process” (Bromley
[9]).

 ‘Reporteur’
 to carry tens

 T

program (in the form of a
given sequence of additions

In 1834 [42], Babbage b
the “Analytical Engine” (s
“memoir” of 1842, later tra

“Mr Babbage has dev
He proposed to hims
capable of executing
those of analysis, if the

Fig. 5. Definition

The aim of this engine
operations (set out in writi
this same text by Menabrea
contribution, the “Analytica
was based on an external p
inspired by those that Jac
implemented by an inter

28 “The highest level is a des

What Babbage thought cou
in order to carry out user-o
working out terms in recurr

29 “All the movements of the c
addressing” (Bromley [9]).

Telling the Long and Beautiful (Hi)Story of Automation!

a “cam stack” [51]), which dictated the execution of
s, which always remains the same.
began to work on plans for another machine that he cal
see Figure 5). As L. F. Menabrea stresses in his fam
nslated into English and annotated by Ada Lovelace [36
voted some years to the realization of a gigantic idea.
self nothing less than the construction of a machine

not merely arithmetical calculations, but even all
eir laws are known.”

n of the automation of Babbage’s Analytical Engine

e was thus to perform automatically any sequencing
ing in a kind of table, examples of which are provided
a). According to the classification proposed in the pres
al Engine” had three levels of programming. Its automat
program28 (in the form of a sequence of punched card
cquard used in his automated looms), which itself w
nal program (a sort of micro-program, as it is n

scription of the user-level programs that exist for the mach
uld be done – exploiting the basic micro-programmed operat
oriented tasks such as solving sets of simultaneous equations
rence relations” (Bromley [9]).
cards are relative to the present position, and there is no abso

185

one

lled
med
6]:

g of
d in
sent
tion
ds29
was
now

hine.
tions
s, or

olute

186 M. d’Udekem-Gevers

understood, in the form of a set of pegged cylinders30), which in turn controlled
notably the sequencing of carry operations, performed by another internal program.
We should note that Babbage equipped his Analytical Engine with sophisticated
“anticipating”31 carry mechanisms, located on three “carriage axes” (“with their
peculiar apparatus”32).

Moreover, the Analytical Engine had to be capable of making a decision on the
basis of a result that it had obtained. In other words, it had to enable what is currently
called “conditional branching”33, which is another way of saying it had to be
“regulated” (as defined above)34. We must also note another significant detail. Another
innovation was needed in the Analytical Engine: the splitting of the functions into two
organs, the “Mill” (or central processing unit) and the “Store” (with storage registers or
cylinders)35. However, as A. G. Bromley [8] notes, “Babbage’s store has no structure
accessible to the programmer”. Furthermore, this first “memory” was designed by
Babbage for data only: the user’s program always remains on punched cards.

Babbage’s ingenious inventions were largely forgotten, and they are generally (see
[50] and [10]) considered as having had practically no impact on the subsequent
history of technology.

Let’s now move on to the next steps in the history of calculating machines, by
looking at those machines that use electrical circuits. In this article, I will not examine
the “Tabulating Machines,”36 patented by Hermann Hollerith in 1884 and which also
involve punched cards (but only to memorize data)37. These machines only performed
a simple mechanization of counting38.

30 Babbage calls such a pegged cylinder a “barrel” with “studs”. As noted by Bromley [8],

“The barrel may be thought of as a microprogram store and a single vertical row of studs as
a word of that store. […] In general, the barrel orders its own advance via several of the
control levers. […] The barrel can […] order a transfer to another vertical up to seven
positions either forward or backward relative to present one.”

31 According to the terms used by Babbage himself [4].
32 According to the terms used by Babbage himself [3].
33 “The idea of conditional control, which had been a convenient feature in Difference Engine

No. 1, starts to look like an essential part of the design of the Analytical Engine because of
division” (A. G. Bromley [9]).

34 We should note that as far back as 1914 Torres y Quevedo [52] used the term ‘regulation’ to
describe the action that today is called ‘conditional branching’.

35 This separation was a consequence of the increase in the size of the machinery, which is
itself related to Babbage’s determined and successful research in order to minimize the time
needed for carry operations (see D. Swade [50] and A. G. Bromley [10]).

36 On the subject of these machines and their inventor: see, for example, R. Ligonnière [35].
37 These cards are not the medium for a program, but they do contain qualitative data.
38 The carry operation was limited here to its simplest expression and was done using base

100. Hollerith himself [27] made the following description: “A number of mechanical
counters are arranged in a suitable frame […] The face of each counter is […] provided
with a dial divided into 100 parts and two hands, one counting units the other hundreds.
[…] A suitable carrying device is arranged so that at each complete revolution of the unit
hand the hundred hand registers one …”

 Telling the Long and Beautiful (Hi)Story of Automation! 187

We will therefore move on to the large numerical calculating machines of the
1940s. They contained at least two levels of programs. Above the internal program
(responsible for carry operations and using electro-mechanical or electronic switches)
was another program that dictated the sequencing of arithmetic operations. This latter
program was either internal (and definitely fixed) (e.g. G. Stibitz’s BTL Model 1) or
external. As explained by W. Aspray [1], on the basis of an unpublished text written
by J. H. H. Goldstine and J. von Neumann [22], there were then two possible ways of
making an [external39] program:

“Either all of the connections are made prior to the computation, as in the
ENIAC, where one first sets switches and plug cables, which effectively
hard wires the instructions into the machine prior to the computation, or
connections are established at the moment in the computation, when they
are needed, as in the Harvard Mark I and the Bell Labs relay calculator, in
which instructions are fed in as needed from an external paper tape. The
advantage of the first approach is that, once entered, all of the instructions
can be executed at electronic speed; the second approach permits
indefinitely long strings of instructions, does not require as much time in
problem setup, and can be implemented with less hardware”40.

The first approach is, according to the vocabulary used in the present contribution,
that of a manually modifiable program in situ, whereas the second is that of a program
logically separate from the programmed device and which therefore can be changed
manually.

3 Stored-Program Computers

At the end of World War II, the idea for a new design41 emerged: the computer “that
incorporated the best features of each approach, based on storing instructions as
numbers in the computer’s internal electronic memory [1].”42 This idea was present in
the draft written by von Neumann on June 30, 1945 [56] and it is unanimously
considered fundamental. It implies that written numerical codes (also later called
“machine language”43) are now needed to communicate with the calculating
machine44. The practical consequence of this is that it enables the machine to modify
its own programs.

39 This term is not used by W. Aspray [1].
40 The bold characters have been added by me.
41 I am deliberately not entering here into the debate concerning the precise paternity and

dating of this idea. See W. Aspray [2].
42 The first computers still used punched strips (or cards), but the program was in the central

memory during its execution.
43 Such a language is defined by D. E. Knuth [30] as follows: ”a language which directly

governs a computer’s actions, as it is interpreted by a computer’s circuitry”.
44 M. Campbell-Kelly [12] underlines that « A small-scale experimental computer known as

the miniature or baby machine first operated successfully on June 21 1948, and was the first
EVAC-type electronic stored-program computer to be completed. […] Binary programs
were put, bit by bit, into the store using manual keys and a ‘typewrite’ of 32 pushbuttons,
each button corresponding to one bit of the store line. »

188 M. d’Udekem-Gevers

However, in the opinion of many commentators, this idea is insufficient to fully
define the concept currently identified by the term “stored program computer”. To do
this, according to B. Randell [45], two other crucial characteristics also have to be
taken into account: “the ability of a program-controlled device to identify some
information as a program and to switch to executing that program45” and “the fact
that it is possible to calculate addresses, and so make dynamic decisions as to which
data to use, or which instruction to obey”. These two characteristics were absent from
the above-mentioned text by von Neumann [56], but the seeds were already present in
a slightly earlier text by Turing [54]. As B. E. Carpenter and R. W. Doran [13]
explain:

“The difference in attitude between von Neumann and Turing is evident in
how their central processors deal with instructions. Early calculators had
programs on punched tapes through which they stepped, executing each
instruction as it turned up. Von Neumann retained this attitude in his 1945
report, for he thought of the processor as receiving a stream of orders from
consecutive memory locations. He never explicitly mentions an instruction
address register – this was unnecessary, for the next instruction comes from
the current position in the memory tape. Turing did have an instruction
address register explicitly containing the instruction number IN, i.e. the
position of the next instruction. […] Turing’s, concept of memory was much
closer than von Neumann’s to a random access addressable46 device”.

B. Randell [44] pursues this on the subject of these two drafts from 1945:

“In both cases, however, what now seem very awkward techniques of
program self-modification were needed to make the machine calculate the
addresses of variables – since neither the idea of index registers (B-lines as
they were to be called at Manchester, where invented [and operational by
April 1949] 47) nor of indirection had yet arisen. However, once all these
aspects of the stored-program concept had been provided, […] machine-
level programming essentially as we know it now had arrived.”

Furthermore, one of the applications of the possibility of modifying the program as

described above, was not exploited before the 1950s. It is “the ability of one program
to process another, treating it as data” [13]. However this “aspect” of modification is
extremely important from a practical point of view: thanks to this, a programmed

45 B. Randell [44] notes that “the connotation of the computer being able to […] execute its

own programs” is “surpassing the notion that Babbage had arrived at over a century
earlier”.

46 A sufficiently large random addressable access store can therefore be considered a practical
concretization of the Turing machine’s infinite tape (see Turing [53]).

47 See M. Campbell-Kelly [12].

 T

automaton can help peopl
Then, it is possible to i
languages and then, ope
eventually to know nothing
being used when writing a p

Fig. 6. Definitio

The concept of “softwa
“hardware”. As a consequ
fundamental advance for t
builder: “Treating instructi
memory hardware and the s
beneficial for the compu
instantaneously [41]. “The

48 “In the early day of autom

art… With the advent of fa
soon became a nightmare
immediate action in order
computers themselves: if c
which before had taken yea
programs. Indeed they cou
notation somewhere ‘betw
was then translated into c
special translation program

49 The strict definition of a p
computational method [i.e.

Telling the Long and Beautiful (Hi)Story of Automation!

e not only calculate, but also write its own program
invent and use higher-level languages (first, assem
erational algorithmic or programming languages)
g of the specific equipment characteristics of the compu
program49.

on of the automation of a stored-program computer

are” emerged and was clearly differentiated from that
uence of storing the program in central memory,
the programmer is combined with increased ease for
ions in the same way as data greatly simplifies both
software of computer systems” [41]. Obviously, this is a

uter user, who can go from one program to anot
e commercial implication is that computers can inh

matic computing, programming was considered as some kind
faster computers, however, the need for writing a program v
e and left no room for artistic feelings. The situation requ
r to reduce the terrible burden. The relief came through
computers were able to carry such a heavy load of comput
ars on a desk calculator, they certainly could also assist in wri
uld; it turned out that it was possible to write programs i
een’ machine code and standard mathematical notation, wh
correct machine code by the computer itself with the aid o
m” (H. Rutishauser [48]).
program for a computer scientist is therefore “an expression

algorithm] in a computer language” (D. E. Knuth [30]).

189

ms.48
mbly

and
uter

t of
this
the
the

also
ther

herit

d of
very

uired
the

ting,
iting
in a
hich
of a

of a

190 M. d’Udekem-Gevers

ready-made software provided they are compatible with an existing instruction set”
[41]. In the end, we can conclude, along with Patterson and Hennessy [41], that the
invention of the stored-program concept “let the computing genie out of its bottle.”

And to close out this long history of automation, I find it enlightening to stress that
the stored program computer (see Figure 6) still, from a logical50 point of view, takes
into account both programming and regulation, identical to Babbage’s Analytical
Engine (see Figure 5), except for the fact that the highest-level program is, during its
execution, stored in the central memory, instead of being external to the machine (on
punched cards).

4 Comments

Since Antiquity, humans have realized their ancestral dreams51 of manufacturing
automata. An overview of the long history of automation up to the stored program
computer leads us to a few general thoughts that are essentially related not only to
programming, but also to regulation.

We have seen that the programs as designed by humans involve a very precise
sequencing that they have in mind. It should be stressed that this sequencing may
consist either in a simple repetition or in a potentially more complex sequence. We
have already mentioned the cases of simple repetition, for example, of a sound (alarm
bell) or a unit of time (mechanical clock). We have also talked about various complex
programmed sequences: for sounds (e.g. carillon melodies), movements (e.g.
automata for astronomical clocks, such as bell strikers), letters (texts by Jaquet-Droz’s
Writer automaton), designs (weaving patterns) and, finally (when people dared at last
to put intelligence into a machine), calculations (Formula of Babbage’s Analytical
Machine or, more generally, algorithms).

Furthermore, we have illustrated the fact that, to ensure that the machine executes
their planned design, people first made fixed programs, then manually modifiable or
replaceable ones and finally those that are ‘fully’ manageable (i.e. which can not only
be replaced but also be written and then executed) by the machine itself (see 2nd
column of Table 2). These three milestones (respectively called ‘internal’, ‘external’
and ‘stored program computer’ by Meinadier [39] (see 1st column of Table 2) have
been shown to be fundamental, and their importance must be stressed. It should be
added that, in parallel with this evolution towards greater flexibility and increased
autonomy of the machine, we can observe, over time, an increasing dematerialization
of the program support (possibly of the highest level), in other words, of the interface
enabling humans to communicate with the machine. The major steps in this history
involve the passage from raised supports to punched ones (which would seemingly go
hand in hand with a mental evolution), then the passage to electrical circuits and
finally the use of machine language (see 3rd column of Table 2). It is evident that the
fundamental change, from the point of view of the history of the program’s support, is

50 From a physical point of view, we should note that the carry operation is performed in

binary mode, which is technically quite easy.
51 For example, Book V 749 of the Iliad contains the following fragment “The gates of

Olympus which open self-bidden [αυτομαται]… ”

 Telling the Long and Beautiful (Hi)Story of Automation! 191

the one that accompanies the passage to the so-called ‘stored program’: since we
move from a support enabling a read-only machine with sequential access (or more
generally, access relative to the current position52) to a support enabling writing and
direct access to dynamically calculated53 addresses (see 4th and 5th columns of
Table 2). In the history of books, we can see an analogous evolution from the point of
view of access: from the ancient roll of papyrus (which must be read as it is unrolled),
we moved to books with pages (invented in the 1st century of the current era). It is
striking to note that Turing [24]54 explicitly compared the central (magnetic) memory
of Mark II to a book with pages:

“It is as if information in the magnetic store were written in a book. In
order to find any required piece of information it is necessary to open the
book at the required page.”

Table 2. Suggested classification (and evolution) of programs (such as they are understood by
the machine) and corresponding medium type

Programs (as understood by the
machine)

Corresponding Medium type

Classes Practical feature Human/machine
communication

Practical
feature from
machine’s
point of view

Machine access
characteristics

1. ‘Internal’ Fixed Using pegs /

electrical circuits

Read-only Sequential access

2. ‘External’

2.1. In situ

Modifiable
manually

Using pegs /

electrical circuits

Read-only

Sequential access

2.2. Logically
separate from
programmed
device

Replaceable

manually

Using pegs / holes

Read-only Sequential access

3. ‘Stored
program’

Fully
manageable
automatically

Using symbols (a
‘machine language’)

Writable Random access
(and calculated
addresses)

52 A. G. Bromley ([8] and [9]) uses the term ‘relative addressing’ in this instance.
53 It is only with addressable memory that the notion of an address for an instruction takes on

its full meaning. The predecessors of stored program computers which were controlled by,
for example punched tape, “could largely get by without addresses because of the fact that
they could control the moving of the tape (q. v. Turing machines)” (B. Randell [45]).

54 Cited by M. Campbell-Kelly [12].

192 M. d’Udekem-Gevers

The concept of regulation has been addressed only briefly in this contribution.
However, let’s note that, when assimilated with conditional branching, it helps to
increase the autonomy of a calculating machine, by enabling it to make decisions
when the program is being run.

The brief and recent history of computing has now been placed within the longer
history of automation. This has revealed deep-seated trends in the evolution of
technology. I believe that this is likely to be of interest to a broad public.

Acknowledgements. I would like to thank Professors Brian Randell and Pascal
Verroust (members of IFIP WG 9.7) and Luc de Brabandère (mathematician and
philosopher) for reading the original manuscript and for helpful criticism and
suggestions. I am also indebted to Professor Rita de Caluwe (Universiteit Gent) as
well as to Philippe Slégers (member of the Association Campanaire Wallonne) and
Serge Joris (administrator of the World Carillon Federation) for providing
information about carillons. I would also like to acknowledge Richard Horton
(Conservator Engineering & Metals, Babbage Project Engineer, Science Museum,
London) and three professors at the University of Namur: Dr. Vincent Englebert, Dr.
Ir. Laurent Schumacher and Dr. Wim Vanhoof for their help. Finally, I would like to
thank Virtual Words Translations, which translated the original French text into
English.

A preliminary, less detailed version of the present article was the subject of two
presentations in 2011: one in French at Collège Belgique (slides are available on the
website) and the other in English at the international conference “History and
Philosphy of Computing” in Ghent (Belgium).

Figure 1: Basic drawing by G. Oestmann (with permission of the author) in G.
Dohrn-van Rossum, p. 109, annotated M. d’Udekem-Gevers.

Figure 2: From A. Lehr et al. 1991, p. 89 (with the permission of M. Lehr).
Figure 3: From the Royal Carillon School “Jef Denyn” Mechelen (with the

permission of K. Cosaert, director of the Royal Carillon School).
Figure 4: Drawing by Serge Picard, from Musée des arts et métiers (Paris), “Blaise

Pascal”, Les carnets, with the permission of Anne Chanteux (Head of the Multimedia
Centre and of the network of technical museums and collections); annotation by M.
d’Udekem-Gevers.

References

1. Aspray, W.: John von Neumann and the origins of modern computing. The MIT Press,
Cambridge (1990)

2. Aspray, W.: The stored program concept. IEEE Spectrum, 51 (September 1990)
3. Babbage, C.: On the Mathematical Powers of the Calculating Engine. Unpublished

Manuscript (1837), reprinted in: Randell, B. (ed.): The Origins of Digital Computers:
Selected Papers, 3rd edn., pp. 19–54. Springer, Heidelberg (1982)

4. Babbage, C.: Passages From the Life of a Philosopher, ch. VIII. Longman, Green,
Longman & Roberts, London (1864),
http://www.fourmilab.ch/babbage/lpae.html

 Telling the Long and Beautiful (Hi)Story of Automation! 193

5. Braudel, F.: On History. University of Chicago Press, Chicago (1982)
6. Braunstein, P.: Préface. In: Dohrn-van Rossum, G. (ed.) L’histoire de l’heure –

L’horlogerie et l’organisation moderne du temps, pp. IX–XVII. Editions de la Maison des
sciences de l’homme, Paris (1997)

7. Brennecke, A.: A Classification scheme for Program Controlled Calculators. In: Rojas, R.,
Hashagen, U. (eds.) The First Computers: History and Architecture, pp. 53–68. MIT Press,
Cambridge (2000)

8. Bromley, A.G.: Charles Babbage’s Analytical Engine, 1838. Annals of the History of
Computing 4(3), 196–217 (1982)

9. Bromley, A.G.: The Evolution of Babbage’s Calculating Engines. Annals of the History of
Computing 9(2), 113–136 (1987)

10. Bromley, A.G.: Difference and Analytical Engines. In: Aspray, W. (ed.) Computing
Before Computers, pp. 59–98. Iowa State University Press, Ames (1990)

11. Buchner, A., Rouillé, P.: Les instruments de musique mécanique. Gründ, Paris (1992)
12. Campbell-Kelly, M.: Programming the Mark I: Early Programming Activity of the

University of Manchester. Annals of the History of Computing 2(2), 130–168 (1980)
13. Carpenter, B.E., Doran, R.W.: The other Turing machine. Comp. J. 20(3), 269–279 (1977)
14. Daumas, M.: La petite mécanique et les origines de l’automatisme. In: Daumas, M. (dir.)

Histoire Générale des Techniques, vol. 3, pp. 172–195. Presses universitaires de France,
Paris (1969)

15. Devaux, P.: Automates et automatismes. Que sais-je? Presses universitaires de France,
Paris (1942)

16. Dohrn-van Rossum, G.: L’histoire de l’heure – L’horlogerie et l’organisation moderne du
temps. Editions de la Maison des sciences de l’homme, Paris (1997)

17. Drachmann, A.G.: The Mechanical Technology of Greek and Roman Antiquity.
Munksgaard, Copenhagen (1963)

18. Drye, E.: Alexandrie, la naissance de la mécanique. La Revue 20, 28–34 (1997)
19. Ellenberger, M., Collin, M.M.: La machine à calculer de Blaise Pascal. Nathan, Paris

(1993)
20. Farré-Olivé, E.: A Medieval Catalan Clepsydra and Carillon. Antiquarian Horology 4(18),

371–380 (1989)
21. Gille, B.: Les mécaniciens grecs: la naissance de la technologie. Seuil, Paris, Collection

Science ouverte (1980)
22. Goldstine, H.H., von Neumann, J.: On the principles of large scale computing machines.

Unpublished text, reprinted In: Taub, A.H. (ed.) John von Neumann Collected Works,
vol. V, pp. 1–32. Pergamon Press, New York (1961)

23. Grier, D.A.: The ENIAC, the Verb ‘to Program’ and the Emergence of Digital Computers.
IEEE Annals of the History of Computing 18(1), 51–55 (1996)

24. HB1, Programmers’ Handbook for Manchester Electronic Computer Mark II (Turing,
A.M. ed.) (March 1951); Errata March 13 (1951)

25. Hill, D.R.: Arabic Water-Clocks. Sources & Studies in the History of Arabic-Islamic
Science, History of Technology Series 4. University of Aleppo, Aleppo (1981)

26. Hill, D.R.: Technologie. In: Rashed, R. (ed.) Histoire des Sciences Arabes. Le Seuil, Paris
(1997)

27. Hollerith, H.: An Electric Tabulating System. Reprinted in: Randell, B. (ed.) The Origins
of Digital Computers, Selected Papers, 3rd edn., pp. 133–143. Springer, Heidelberg (1982)

28. Horton, R.: E-mail to the author (January 20, 2012)
29. Jacomy, B.: Une histoire des techniques. Seuil, Paris (1990)

194 M. d’Udekem-Gevers

30. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Fundamental Algorithms,
vol. 1. Addison-Wesley, Boston (1975)

31. Lafitte, J.: Réflexion sur la science des machines. Cahiers de la nouvelle journée 21,
Librairie Bloud & Gay, Paris (1937)

32. Lehr, A.: De geschiedenis van het astronomisch kunstuurwerk. Zijn techniek en muziek.
Nijhoff, Den Haag (1981)

33. Lehr, A.: Van Paardebel tot Speelklok (2e herziene druk). Europese Bibliotheek,
Zaltbommel (1981)

34. Lehr, A., Truyen, W., Huybens, B.: Beiaardkunst in de Lage Landen. Drukkerij Lannoo,
Tielt (1991)

35. Ligonnière, R.: Préhistoire et histoire des ordinateurs. Robert Laffont, Paris (1987)
36. Lovelace, A.A.: Sketch of the Analytical Engine invented by Charles Babbage, by L.F.

Menabrea, from the Bibliothèque Universelle de Genève, 1842, No. 82, with notes upon
the Memoir by the Translator (October 1843),
http://www.fourmilab.ch/babbage/sketch.html#NoteB

37. Marguin, J.: Le reporteur et la naissance du calcul mécanique. La revue 2, 26–32 (1993)
38. Marguin, J.: Histoire des instruments et machines à calculer. Hermann, Paris (1994)
39. Meinadier, J.P.: Structure et fonctionnement des ordinateurs. Larousse, Paris (1971)
40. Mesnage, P.: La construction horlogère. In: Daumas, M. (dir.) Histoire Générale des

Techniques, vol. 2, pp. 289–310. Presses universitaires de France, Paris (1965)
41. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design (3rd ed.). Elsevier

(2005)
42. Randell, B.: The Origins of Digital Computers: Selected Papers, 3rd edn. Springer,

Heidelberg (1982)
43. Randell, B.: From Analytic Engine to Electronic Digital Computer: The Contributions of

Ludgate, Torres, and Bush. Annals of the History of Computing 4(4), 327–341 (1982)
44. Randell, B.: The Origins of Computer Programming. IEEE Annals of the History of

Computing 16(4), 6–14 (1994)
45. Randell, B.: Comments to the author (June 12, 2012)
46. Rombouts, L.: Zingend brons – 500 jaar beiaardmuziek in de lage landen en de Niewe

wereld. Davidsfonds, Leuven (2010)
47. Rouillé, P.: Trous de mémoire. La revue 2, 34–41 (1993)
48. Rutishauser, R.: Handbook for Automatic Computation. In: Bauer, F.L., et al. (eds.) Part a,

Description of ALGOL 60, vol. 1, Springer, Heidelberg (1967)
49. Sablière, J.: De l’automate à l’automatisation. Gauthier Villars, Paris (1966)
50. Swade, D.D.: The Difference Engine: Charles Babbage and the Quest to Build the First

Computer. Viking, New York (2001)
51. Swade, D.D.: Automatic Computation: Charles Babbage and Computational Method. The

Rutherford Journal 3 (2010),
http://www.rutherfordjournal.org/article030106.html

52. Torres y Quevedo, L.: Essais sur l’Automatique. Sa définition. Étendue théorique de ses
applications, Revue de l’Académie des sciences de Madrid (1914), reprinted In: Randell,
B. (ed.) The Origins of Digital Computers, Selected Papers, 3rd edn., pp. 89–107.
Springer, Heidelberg (1982)

53. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. 42(2), 230–265 (1936),
http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

 Telling the Long and Beautiful (Hi)Story of Automation! 195

54. Turing, A.M.: Proposals for Development in the Mathematics Division of an Automatic
Computing Engine (ACE), Report E882, Executive Committee, NPL (1945), reprinted
with foreword by Davies, D.W. as NPL report. Com. Sci. 57 (April 1972)

55. Unesco, http://whc.unesco.org/en/list/943/video
56. von Neumann, J.: First Draft of a Report on the EDVAC. Contract no. w-670-ord-4926.

Techn. Rep., Moore School of Electrical Engineering, University of Pennsylvania,
Philadelphia, PA (1945),
http://www.virtualtravelog.net/entries/2003-08-
TheFirstDraft.pdf

57. Youtube,
http://www.youtube.com/watch?v=Pd_21_pfSRo&feature=related

	Telling the Long and Beautiful (Hi)Story of Automation!
	1 Introduction
	2 Automata Prior to Stored Program Computers
	2.1 Programmed Automata not Used for Calculation in Europe
	2.2 Calculating Machines

	3 Stored-Program Computers
	4 Comments
	References

