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Abstract. Ontology alignment is an important part of enabling the se-
mantic web to reach its full potential. The vast majority of ontology
alignment systems use one or more string similarity metrics, but often
the choice of which metrics to use is not given much attention. In this
work we evaluate a wide range of such metrics, along with string pre-
processing strategies such as removing stop words and considering syn-
onyms, on different types of ontologies. We also present a set of guidelines
on when to use which metric. We furthermore show that if optimal string
similarity metrics are chosen, those alone can produce alignments that
are competitive with the state of the art in ontology alignment systems.
Finally, we examine the improvements possible to an existing ontology
alignment system using an automated string metric selection strategy
based upon the characteristics of the ontologies to be aligned.

1 Introduction

An ontology is a representation of the concepts in a domain and how they relate
to one another. Engineering new ontologies is not a deterministic process — many
design decisions must be made, and the designers’ backgrounds and the target
application will influence their decisions in different ways. The end result is that
two ontologies that represent the same domain will not be the same. The goal
of ontology alignment is to determine when an entity in one ontology is seman-
tically related to an entity in another ontology (for a comprehensive discussion
of ontology alignment, including a formal definition, see [9]).

Dozens of ontology alignment systems have been developed over the last
decade, and nearly all of them use of a string similarity metric. But despite their
ubiquity, there has been little systematic analysis on which metrics perform well
when applied to ontology alignment. This paper fills that gap by analyzing such
metrics in this domain, as well as the utility of string pre-processing approaches
such as tokenization, translation, synonym lookup, and others. In particular, we
seek to answer the following questions in this paper:

— What is the most effective string similarity metric for ontology alignment if
the primary concern is precision? recall? f-measure?

— Does the best metric vary w.r.t. the nature of the ontologies being aligned?

— Does the performance of the metrics vary between classes and properties?

— Do string pre-processing strategies such as tokenization, synonym lookup,
translations, normalization, etc improve ontology alignment results?
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— What is the best we can do on the ontology alignment task using only string
pre-processing and string similarity metrics?

— When faced with the task of aligning two ontologies, how can we automati-
cally select which string similarity metrics and pre-processing strategies are
best, without any training data available?

— How much does using optimized string similarity metrics improve an existing
ontology alignment system?

Recent work by Ngo and his colleagues has analyzed the performance of some
string metrics for ontology alignment and their interaction with structural and
semantic metrics [I5]. There has also been some prior analysis of string similarity
metrics in the context of ontology alignment as part of the development of a
new string similarity metric designed specifically for this domain done by Stoilos
and his colleagues [16]. They compared the performance of a variety of string
metrics on a subset of the Ontology Alignment Evaluation Initiative (OAEI
benchmark test set and determined that the performance among metrics varied
considerably. Another piece of work done in this area is a report produced by the
Knowledge Web Consortium in 2004 that contained a description of a variety
string (terminological) metrics and string normalization and stemming applied
to the problem of ontology alignment [10].

When the area of interest is expanded to include string similarity metric
studies for other domains, we find some more interesting surveys. For instance,
Branting looked at string similarity metrics as applied to name matching in
legal case files [4]. He evaluated the performance of various combinations of
normalization, indexing (determining which names would be compared to one
another) and similarity metrics. In addition, Cohen et al. did a very thorough
analysis of string similarity metrics as applied to name matching tasks [7].

There has also been some (unsystematic) analysis of string similarity metric
performance in the course of developing ontology alignment systems [3IRI11].

While string similarity metrics are certainly not a new area of research, it re-
mains unclear which string metrics are best for ontology alignment. Since nearly
all alignment algorithms use a string similarity metric, more clarity in this area
would be of benefit to many researchers. The work presented here expands on
the previous efforts discussed above by considering a wider variety of string met-
rics, string pre-processing strategies, and ontology types. It also takes the work
further by placing the string metrics into a complete ontology alignment system
and comparing the results of that system to the current state of the art.

The rest of the paper is structured as follows. In section 2] we give an overview
of existing string similarity metrics and pre-processing strategies. In section [3]
we describe our experimental setup, followed by the results of the experiments
in section @ We conclude in section Bl A more in-depth version of this paper
that includes implementation details sufficient to reproduce these results can be
found in a technical report [6].

!http://oaei.ontologymatching.org/


http://oaei.ontologymatching.org/

296 M. Cheatham and P. Hitzler

2 String Similarity Metrics and Pre-processing Strategies

The OAEI has become the primary venue for work in ontology alignment. Since
2006, participants in the OAEI competition have been required to submit a
short paper describing their approach and results. We surveyed all of these pa-
pers to determine what lexical metrics were employed and what pre-processing
steps were used (or proposed for use). In cases where the paper was not explicit
about the string similarity metric used, the code for the alignment algorithm
was downloaded and examined when possible.

We can group string metrics along three major axes: global versus local, set
versus whole string, and perfect-sequence versus imperfect-sequence. Global ver-
sus local refers to the amount of information the metric needs in order to classify
a pair of strings as a match or a non-match. Global metrics must compute some
information over all of the strings in one or both ontologies before it can match
any strings whereas for local metrics the pair of strings currently being con-
sidered is all the input that is required. Global metrics can be more tuned to
the particular ontology pair being matched, but that comes at the price of in-
creased time complexity. Perfect-sequence metrics require characters to occur in
the same position in both strings in order to be considered a match. Imperfect-
sequence metrics equate matching characters as long as their positions in the
strings differ by less than some threshold. In some metrics, this threshold is the
entire length of the string. Imperfect-sequence metrics are thought to perform
better when the word ordering of labels might differ but may result in more
false positives. A set-based string metric works by finding the degree of overlap
between the words contained in two strings. The set-based metric must still use
a basic string metric to establish if the individual tokens are equal. Word-based
set metrics are generally thought to perform well on long strings.

The list below contains all metrics found in the review of OAEI participants
and categorizes them based on the classifications described above. For set-based
metrics, the underlying base metric used is given in parentheses. A subset of
these metrics (shown in bold) has been chosen for analysis related to various
aspects of the ontology alignment problem. These metrics were chosen to reflect
those most commonly used in existing alignment systems as well as to cover as
fully as possible all combinations of the classification system provided.

— Set, Global, Perfect-sequence

e Evidence Content (with exact) — Similar to Jaccard mentioned below,
but words are weighted based on their evidence content (a function of
their frequency in the ontology)

e TF-IDF (with exact match) — Term Frequency / Inverse Document
Frequency; the idea is that two entities are more similar if they share a
word that is rare in the ontologies

— Set, Global, Imperfect-sequence

e Soft TF-IDF (with Jaro Winkler) — A variant of TF-IDF that con-
siders words equal based on Jaro Winkler (mentioned below) rather than
exact match
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— Set, Local, Perfect-sequence
e Jaccard (with exact match) — The number of words two strings have
in common divided by the total number of unique words
e Overlap Coefficient (with exact) — The number of words two strings have
in common divided by the number of words in the smaller string
— Set, Local, Imperfect-sequence
e RWSA — Redundant, Word-by-word, Symmetrical, Approximate; strings
are indexed by their Soundex representation and are a match if each word
in the smaller string has a weighted edit distance less than a threshold
for a word in the longer string [4]
e Soft Jaccard (with Levenstein) — Levenstein is run on all pairs of
words in both strings and the number less than the threshold is counted
and divided by the number of words in the longer string

Non-set, Global, Perfect-sequence
e None

Non-set, Global, Imperfect-sequence

e COCLU — Compression-based Clustering; a Huffman tree is used to clus-
ter the strings based on a metric called the Cluster Code Difference, and
strings in the same cluster are considered equivalent [17]

— Non-set, Local, Perfect-sequence
e Exact Match — Checks for string equality
e Longest Common Substring — The length of the largest substring
common to both strings, normalized by the length of the strings
e Prefix — Checks if the first string is a prefix of the second
Substring Inclusion — Whether the first string is contained in the second
e Suffix — Whether the first string is a suffix of the second
Non-set, Local, Imperfect-sequence

e Jaro — Based on the number of matching and transposed characters,
where characters match if they are within a window based on the lengths
of the strings and are transposed if they match but are in reverse order

e Jaro Winkler — Variation of the Jaro metric that gives a preference to
strings that share a common prefix

e Levenstein — The number of insertions, deletions, and substitutions
required to transform one string to another; also called edit distance

e Lin — Based on the idea that similarity between two strings can be deter-
mined by taking a measure of what they have in common and dividing
by a measure of the information it takes to describe them [12]

e Monge Elkan — A variant of Smith Waterman (see below) with non-
linear gap penalties, approximate character matching, and particular
parameter values [14]

e N-gram — Converts strings into sets of n-grams (we use n=3); the re-
sulting sets are compared using a set similarity metric such as cosine
similarity or Dice’s coefficient

e Normalized Hamming Distance — The number of substitutions required
to transform one string into another, divided by the length of the string
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Smith Waterman — Uses dynamic programming over a matrix describing
the matches, insertions, and deletions between two strings

Smith Waterman Gotoh — A variant of the Smith-Waterman metric that
has affine gap penalties

Stoilos — Specifically developed for ontology alignment, this metric ex-
plicitly considers both the commonalities and the differences of the strings
being compared [16]

String Matching (SM) — A variant of Levenstein in which the difference
between the length of the shorter string and the edit distance is divided
by the length of the shorter string [13]

Often alignment algorithms modify the strings before computing their simi-
larity. All of the pre-processing approaches that were either tried or proposed
by OAEI participants are listed here. The approaches mentioned by more than
two participants are shown in bold — these will be examined in detail.

Thes

e approaches can be divided into two major categories: syntactic and

semantic. Syntactic pre-processing methods are based on the characters in the

strings

or the rules of the language in which the strings are written. They can

generally be applied quickly and without reference to an outside data store.

Semant
involve

ic methods relate to the meanings of the strings. These methods generally
using a dictionary, thesaurus, or translation service to retrieve more

information about a word or phrase.

— Syntactic

tokenization — Splitting strings into their component words based on
delimiters and camelCase

e split compound words

normalization — Elimination of stylistic differences due to capitaliza-
tion, punctuation, word order, and characters not in the Latin alphabet
stemming/lemmatization — Elimination of grammatical differences
due to verb tense, plurals, etc. We use the Porter stemming algorithm
stop word removal — Removal of very common words. The Glasgow
stop word list is used in this wor

consider part-of-speech — “Functional” words such as articles, conjunc-
tions, and prepositions are weighted less (or removed completely)

— Semantic

2 http:

synonyms — Strings are supplemented with their synonyms

antonyms — Used with metrics considering differences and commonalities
categorization — An external source containing a category hierarchy is
used. Strings falling into the same category are considered more similar.
language tag — Leverage language tags contained in some ontologies to
avoid comparing labels in different languages or as an aid for translation
translations — Strings are translated before they are compared. We
have used Google Translate.

expand abbreviations and acronyms — There have been several attempts
to do such expansions into long form, by either looking them up in ex-
ternal knowledge sources or using language production rules

//ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
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3 Experimental Setup

In this section we describe the experimental framework. More detail about the
implementation can be found in the technical report at [6]. In addition, the
source code for these experiments can be downloaded from http://www.pascal-
hitzler.de/pub/StringMetricTester.jar.

The OAEI conference track consists of finding equivalence relations among 16
relatively small real-world ontologies describing the same domain — conference
organization. The multifarm track consists of the ontologies from the conference
track translated by native speakers into eight different languages. The goal is to
align all combinations of languages. Finally, the anatomy track consists of two
ontologies from the biomedical domain: one describing the anatomy of a mouse
and the other the anatomy of a human. As is common for biomedical ontologies,
these are significantly larger than those found in the conference track, with each
containing around 3000 classes.

In order to get a sense of whether the results on the OAEI test sets generalize
to similar cases, we have also run our tests on other ontology pairs of the same
type. As an analog to the conference test set, we have used two BizTalk files
representing the domain of purchase orders: CIDX and Excelf In addition, native
speakers have assisted us in translating these schemas into German, Portuguese,
Finish, and Norwegian so that we also have an analog for the OAEI multifarm
track. Finally, we have attempted to match the Gene Ontolong to the multifun
schemaE both of which cover topics from biomedicine (the Gene Ontology covers
the general domain of genetics, while the multifun schema is a description of cell
function). The reference alignment for this test set was generated by domain
expertsld The GO ontology and associated schema mappings are made possible
by the work of the Gene Ontology Consortium [2].

Our test framework takes the two ontologies to be aligned and compares the
label of every entity in the first ontology to every entity in the second. For each
pair of labels, the “metric” being tested is computed for both permutations of
the pair. (The measurements are asymmetric, so are technically not metrics.)
These results are put into two separate two dimensional arrays. Then the stable
marriage algorithm is run on these two arrays to determine the best matches. Fi-
nally, any mappings for which the minimum of metric.compute(labelA, labelB)
and metric.compute(labelB, labelA) is less than one threshold or the maximum
of those two values is less than a second threshold are thrown out. Due to the
nature of the test framework, each metric requires at least two parameters: the
thresholds for the similarities between the two strings (in both directions). In ad-
dition, the soft set metrics (soft Jaccard and soft TF-IDF) require an additional
parameter — the threshold for the base similarity metric. These parameters were
systematically modified in increments of 0.1 to reasonably thoroughly cover the
search space while optimizing f-measure.

3http://disi.unitn.it/~accord/Experimentaldesign.html
*http://wuw.geneontology.org/G0.database.shtml

® http://genprotec.mbl.edu/files/MultiFun.html
Shttp://www.geneontology.org/G0.indices.shtml
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Fig. 1. String metric precision (top) and recall (bottom) using the best-performing
pre-processing strategies

4 Results

String Metrics and Pre-processing Strategies. Figure [Il shows the perfor-
mance of each string similarity metric with respect to both precision and recall.
The best-performing string pre-processing strategy was used for each test set
when collecting this data.

The conference and CIDX-to-Excel datasets do not reveal much disparity
among the string similarity metrics. Also, the optimal thresholds indicate that
the best approach is to look for matches that are as exact as possible.

The multifarm test set is much more challenging than the conference domain
in terms of both precision and recall. The multilingual version of the CIDX-to-
Excel dataset is less troublesome, most likely because the English-only version
of that test set is also straightforward. Both multilingual test sets reveal a much
wider disparity among string similarity metrics than the English-only versions,
making the selection of an appropriate string similarity metric more important.
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Fig. 2. Impact of pre-processing strategies on precision (top) and recall (bottom) using
the best-performing metric

The difference between the best- and worst-performing metrics is even larger
for the biomedical test sets. Recall is also significantly higher for the anatomy
test set than any of the others. This is expected because biomedical datasets
usually deal with a smaller, more regular vocabulary. There is often a small set
of nouns with associated modifiers. The effect is not as pronounced for the Genes
dataset. These test sets are also interesting in that there is a more clear choice
to be made between metrics that have good precision verus good recall.

Another area of interest is the correlation of the performance on the analogous
datasets. Variations in the absolute heights of the bars between analogous data
sets are to be expected because the overall difficulty of matching a particular
ontology pair may vary considerably — what we are looking for is the same gen-
eral shape of the bars for the adjacent sets. A word of caution is in order here:
the OAEI datasets have become the de facto standard for ontology alignment
evaluation for a reason. It is very difficult to find quality datasets and reference
alignments of the same scale elsewhere. In particular, the CIDX-to-Excel dataset
is a single pair of schemas, while the conference set is made up of 16 ontologies.
Also, the Genes test set is matching two biomedical schemas that have much
less conceptual overlap than the Anatomy ontologies, so the number of correct
matches is much smaller. The result in both cases is that smaller variations in
performance are magnified for these analogous cases. Despite these limitations,
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Fig. 3. F-measures of all metrics on the classes and properties in the conference dataset
using string tokenization (top) and in the multifarm dataset using string tokenization
and translation (bottom).

we can see from the results that choosing a string similarity metric is less im-
portant for “standard” ontologies (i.e. English ontologies covering non-technical
domains) because performance varies little among metrics. This is not the case
for the multilingual and biomedical ontologies. In addition, we see that choosing
a string similarity metric based on its performance on the OAEI test sets leads
to good relative performance on analogous ontology matching problems.

Next we consider the effect of the different string pre-processing strategies
on precision and recall for all of the test sets when the best-performing metric
is used. Figure 2 shows this information. For the synonyms/translations set,
synonyms were used for the test sets in which both ontologies were in English,
while translations were used for the multilingual test sets. For a more detailed
description of the results of each pre-processing strategy on every metric, please
see the technical report [6].

In general pre-processing strategies do not have a strong impact on perfor-
mance. The most notable exception is translation, which drastically improves
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both precision and recall on test sets involving different languages. Normaliza-
tion helps in these cases as well, albeit to a lesser extent. This is primarily due to
transliteration of languages involving a non-Latin alphabet, such as Russian. In
addition, tokenization is somewhat valuable, particularly if the ontologies to be
matched use different naming conventions, such as underscores versus camelCase
to delineate words. Finally, considering synonyms aids recall by a small but no-
ticeable amount for biomedical ontologies. For the most part the pre-processing
strategies exhibit similar behavior on the analogous data sets.

Classes vs. Properties. Others have found that human experts have a more
difficult time agreeing on when properties match than on classes [I3].
We seek here to determine if
string similarity metrics also

have particular difficulty with | o0.18
properties by looking at the | o016
. | |
performance of the metrics | 0.14 None
on classes versus properties | 012 Tokenization
for the Conference and Mul- 0.1 1 H Stemming
; 0.08 — —
tifarm data sets. There are voc | Stopwords
no matching properties in the : o
0.04 A — — Normalization
other test sets.
. . . 0.02 - — —
While this experiment sh- Synonyms
. 0 - T
ould be performed on a wider Monge Elkan TEADF

variety of data sets for con-
firmation, the results shown
in figure Bl support the theory
that string similarity metrics
perform much worse on prop-
erties than on classes. This
suggests that more work should be done in this area in the future. It appears
from an empirical analysis of our results that properties are particularly chal-
lenging for ontology alignment systems for several reasons. Properties frequently
involve verbs, which can appear in a wider variety of forms than nouns (i.e.
in addition to plurality/conjugation, verbs vary by tense). There are also often
more functional words, such as articles and prepositions, in property names.
Also, there are generally more common synonyms available for the (often very
generic) verbs in property names than the (often more specific) nouns in class
names. We therefore thought that stemming, stop word removal, or synonym
lookup might be effective when matching properties. However, that turned out
not to be the case. Figure @ shows the effect of various pre-processing strategies
in combination with the two metrics that performed the best on properties for
the conference test set: Monge Elkan and TF-IDF. Tokenization is required for
the TF-IDF metric to work because it is a global set metric. Normalization im-
proved the performance of Monge Elkan somewhat. It seems that putting the

Fig. 4. F-measures of Monge Elkan and TF-IDF on
properties in the conference dataset for all of the
string pre-processing strategies.
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words into alphabetical order reduces the number of gap penalties for matching
properties in Monge Elkan. This had no effect for TF-IDF because set metrics
are not sensitive to word order.

It is curious that properties are more easily matched on the mulitfarm data
set. This data set consists of exactly the same ontologies as the conference set,
just translated into a variety of languages. More analysis, possibly with the help
of native speakers, is needed to determine the cause.

The above results were collected using the best thresholds found by optimizing
the f-measure on the overall alignment problem (both classes and properties).
In addition, we wanted to determine whether it was helpful to choose different
thresholds for classes and properties. Figure[B shows the best results achieved for
property matching on the conference dataset when the thresholds were optimized
based solely on the f-measure for properties. The precision, recall, and f-measure
when the thresholds were optimized for overall f-measure are reproduced here for
ease of comparison. The results for Monge Elkan and TF-IDF remain the same
with either approach, but the results for several other metrics are improved
significantly, indicating that for this dataset there is value in selecting different
similarity metric thresholds for class and property comparisons.

Recommendations. The results of the different metrics on the test sets reveal
a potential trap for developers of ontology alignment systems. Results on the
conference test set, which is representative of many real-world ontologies, do not
show much difference in the performance of the metrics in terms of f~-measure.
However, the other test sets reveal that all string metrics are not created equal
— performance of different metrics on the multi-lingual and biomedical test sets
varied considerably. Choosing a string metric for use on these alignment tasks

0.35
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0.25 ™ Jaro Winkler
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0.2 .
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Fig. 5. F-measures of all metrics using tokenization on the conference dataset when
the thresholds were optimized once for classes and properties together (joint) versus
separately for classes and properties (separate).
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involves a significant impact on precision and recall. The moral of the story is that
when choosing a string metric for use in an ontology alignment algorithm, one
should consider the characteristics of the ontologies being aligned and whether
precision or recall is more important for the algorithm. Below are some general
guidelines which are suggested by our expriments:

— Standard ontology (English, non-technical)

e Precision: All but Monge Elkan
e Recall: TF-IDF
e F-measure: All but Monge Elkan and LCS

— Multilingual

e Precision: Soft Jaccard, Jaccard
e Recall: Soft TF-IDF
e F-measure: Soft TF-IDF

— Biomedical

e Precision: Levenstein
e Recall: Jaccard, Soft Jaccard, Soft TF-IDF
e F-measure: Soft TF-IDF, Jaccard, Soft Jaccard

Of the pre-processing strategies analyzed, few were beneficial. Tokenization is
useful if the naming conventions differ between the ontologies (camelCase versus
underscores to separate words, for example). Translation is very helpful when
ontologies involve multiple languages. If translation is not available, normal-
ization can be useful for multilingual ontology pairs, particularly if one of the
languages uses a non-Latin alphabet and can be transliterated. Synonyms can
be useful (particularly with respect to recall) for biomedical ontologies, where
the synonyms are often embedded in the ontologies themselves.

Class labels are significantly easier for string metrics to match than are prop-
erty labels. Performance can be improved by using different thresholds for classes
and properties. It would be helpful to look into this further by examining what
enables some metrics to do better than others and potentially develop a new
metric that emphasizes these strengths further regarding property labels.

String-Centric Ontology Alignment

We now turn to the question of how much we can accomplish using only string
metrics. To answer this we first align the ontologies using the optimal string
metrics and pre-processing strategies for each test set. The algorithm works
in the same way as our test framework — comparing every label in the first
ontology to every label in the second and using the stable marriage algorithm
to find the best mappings. The difference is that here we run the algorithm
repeatedly: first with a high-precision metric and then with a high-recall metric.
Because string metrics were found to perform extremely poorly on properties,
this approach does not attempt to match those (i.e. any property matches in
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Table 1. Results of strings only approaches and the competitors from the OAEI 2012
competition on the conference data set (left) and the anatomy data set (right)

Metric Prec. Recall F-meas. Metric Prec. Recall F-meas.
YAM++ 0.81 0.69 0.75 GOMMA-bk 0.92 0.93 0.92
LogMap 0.82 0.58 0.68 YAM-++ 0.94 0.86 0.90
StringsOpt 0.85 0.55 0.67 CODI 0.97 0.83 0.89
StringsAuto 0.79 0.57 0.66 StringsOpt 0.88 0.87 0.88
Optima 0.62 0.68 0.65 LogMap 0.92 0.85 0.88
CODI 0.74 0.57 0.64 GOMMA 0.96 0.80 0.87
GOMMA 0.85 0.47 0.61 StringsAuto 0.86 0.84 0.85
Wmatch 0.74 0.50 0.60 MapSSS 0.94 0.75 0.83
WeSeE 0.76  0.49 0.60 WeSeE 091 0.76 0.83
Hertuda 0.74 0.50 0.60 LogMapLt 0.96 0.73 0.83
MaasMatch 0.63 0.57 0.60 TOAST* 0.85 0.76 0.80
LogMapLt 0.73 0.50 0.59 ServOMap 1.00 0.64 0.78
HotMatch 0.71 0.51 0.59 ServOMapLt 0.99 0.64 0.78
Baseline 2 0.79 0.47 0.59 HotMatch 0.98 0.64 0.77
ServOMap 0.73 0.46 0.56 AROMA 0.87 0.69 0.77
Baseline 1 0.80 0.43 0.56 StringEquiv 1.00 0.62 0.77
ServOMapLt 0.88 0.40 0.55 Wmatch 0.86 0.68 0.76
MEDLEY 0.54 0.50 0.52 Optima 0.85 0.58 0.69
ASE 0.63 0.43 0.51 Hertuda 0.69 0.67 0.68
MapSSS 0.50 0.51 0.50 MaasMatch++ 0.43 0.78 0.56
AUTOMSv2 0.67 0.36 0.47

AROMA 0.33 0.48 0.39

the reference alignment are automatically false negatives). For this proof-of-
concept, the algorithm is hardcoded with the optimal metrics and thresholds for
the particular test set under consideration.

The results are shown in tables [l and Pl under the heading StringsOpt, along
with the results of the OAEI 2012 competitors [1]. Of particular note are Baseline
1 and Baseline 2, which are unrefined string similarity approaches. Baseline 1
uses string equality and Baseline 2 is the same but with dashes, underscores and
the word “has” removed from strings prior to comparison.

It is evident that StringsOpt compares very well with state-of-the-art ontology
alignment systems, but this is not an apples-to-apples comparison because it is
not generic (due to the hard-coded metrics based on the test set). The next step
is to add some means of selecting the appropriate string metrics and thresholds
at runtime, with the goal of developing a method that is fully autonomous and
does not rely on any training data. As a first attempt, we have developed an
analysis module that runs before our main alignment algorithm to select the
string metrics. This analysis module examines an ontology to find the answers to
three simple questions: Is the ontology in English? What is the average number of
words per entity label (after tokenization)? Does the ontology contain embedded
synonyms?
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Based on the results of the analysis module and whether precision or recall is
currently of interest in the alignment process, a string metric and thresholds are
chosen. This is currently done using the hard-coded set of rules shown below,
but more research remains to be done in this area. Note that these rules do
not break cleanly among the different test sets — they are based on underlying
features of the ontologies to be matched.

— Precision
e Less than two words per label: Jaro-Winkler 1, 1
e Two or more words per label
x Synonyms: Soft Jaccard .2, .5 with Levenstein .9 base metric
* No synonyms: Soft Jaccard 1, 1 with Levenstein .8 base metric
— Recall

e Less than two words per label: TF-IDF .8, .8
e Two or more words per label
x Synonyms: Soft TF-IDF .5, .8 with Jaro-Winkler .8 base met-
ric
x Different Languages: Soft TF-IDF 0, .7 with Jaro-Winkler .9
base metric
x Other: Soft TF-IDF .8, .8 with Jaro-Winkler .8 base metric

We have added this automatic metric selection step to our approach. The
results for this are shown in tables [l and 2l under StringsAuto. We have also
added it to MapSSS, an existing ontology alignment system [5]. The results for
the version of MapSSS using these optimized metrics and string pre-processing
strategies are compared with the results of the original system in Table [l The
deeper insight into string labels has significantly improved the performance of
MapSSS on the conference test set and marginally improved it on the anatomy
test set. The extremely large gains on the multifarm test set are due to the
inclusion of translation as a string pre-processing strategy.

Table 2. Results of the strings only approaches together with the competitors from
the OAEI 2012 competition on the multifarm data set (“same” are alignments of the
same ontologies in different languages and “diff” are alignments of different ontologies
in different languages)

Metric Prec (diff) F-ms (diff) Rec (diff) Prec (same) F-ms (same) Rec (same)
AUTOMSv2 0.49 0.17 0.10 0.69 0.11 0.06
GOMMA 0.29 0.32 0.36 0.63 0.40 0.29
MEDLEY 0.16 0.10 0.07 0.34 0.14 0.09
WeSeE 0.61 0.42 0.32 0.90 0.42 0.27
Wmatch 0.22 0.22 0.22 0.43 0.18 0.11
YAM++ 0.50 0.42 0.36 0.91 0.64 0.49
StringsOpt 0.58 0.40 0.31 0.90 0.38 0.24

StringsAuto 0.64 0.39 0.28 0.93 0.26 0.15
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Table 3. Results of the original and improved MapSSS alignment algorithm on the
OAEI 2012 data sets

Test Set  Measure Original Improved Improvement OAEI 2012 Placement
Conference Precision 0.50 0.73 46% Tied 11th
Recall 0.51 0.57 12% Tied 4th
F-measure 0.50 0.64 28% Tied 4th
Anatomy Precision 0.94 0.86 -8% Tied 14th
Recall 0.75 0.84 12% 4th
F-measure 0.83 0.85 2% 6th
Multifarm Precision diff 0.08 0.45 463% 4th
Recall diff 0.04 0.28 600% 4th
F-measure diff 0.05 0.35 547% 3rd
Precision same 0.97 0.96 -1% 1st
Recall same 0.50 0.25 -50% 4th
F-measure same 0.66 0.40 -40% Tied 3rd

5 Conclusions and Future Work

For some types of ontologies, the performance of different string similarity met-
rics varies greatly in terms of both precision and recall. It is important to be
cognizant of this when selecting a string metric for a particular use. This pa-
per has established guidelines to assist researchers in making this selection. In
addition, we have found that many string pre-processing strategies commonly
used, such as stop word removal and word stemming, are in many cases un-
helpful and in some cases counter-productive. We have presented data on which
pre-processing strategies are useful in particular situations. In addition, we have
developed a basic system to automatically select an appropriate string similar-
ity metric for a given pair of ontologies at runtime. Finally, we have applied
this technique to an existing ontology alignment algorithm and quantified the
improvement in performance.

There are several paths for future work based on the idea of pushing string
similarity metrics as far as they can go in terms of ontology alignment. A first
step is to develop a string similarity metric that performs better on properties.
Another possibility is to create a string-based structural metric by considering
the similarity between the labels of all of an entity’s neighbors with those of
another entity. This idea is similar to current “semantic flooding” approaches in
that it takes advantage of the principle of locality, but is entirely lexically based.
For biomedical ontologies, it might also be possible to use string metrics to find
subsumption relations in addition to equivalences since many labels in these
ontologies are of the form noun and modifiers+noun (e.g. vein and pulmonary
vein). In terms of the work presented in this paper, the results should be validated
for more pairs of ontologies. Also, the analysis module for metric selection can
be made more flexible.
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