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Abstract. Genomic clustering of functionally interrelated genes is not
unusual in eukaryotes. In such clusters, co-localized genes are co-
regulated and often belong to the same pathway. However, biochemical
details are still unknown in many cases, hence computational prediction
of clusters’ structures is beneficial for understanding their functions. Yet,
in silico detection of eukaryotic gene clusters (eGCs) remains a chal-
lenging task. We suggest a novel method for eGC detection based on
consideration of cluster-specific regulatory patterns. The basic idea is to
differentiate cluster from non-cluster genes by regulatory elements within
their promoter sequences using the density of cluster-specific motifs’ oc-
currences (which is higher within the cluster region) as an additional dis-
tinguishing feature. The effectiveness of the method was demonstrated
by successful re-identification of functionally characterized clusters. It
is also applicable to the detection of yet unknown eGCs. Additionally,
the method provides valuable information about the binding sites for
cluster-specific regulators.

Keywords: eukaryotic gene clusters, transcription regulation, sec-
ondary metabolites, transcription factor binding sites.

1 Introduction

Genomic clustering (co-localization) of functionally interrelated genes in con-
junction with co-regulation, although less present than in prokaryotes, has been
found in a great variety of eukaryotic species, from yeast to vertebrates [II2].

The term “gene cluster” can imply various interpretations. In this work, we
consider as clusters the sets of co-localized and co-regulated genes, the prod-
ucts of which are presumably functionally connected (e.g., they can belong to
the same biochemical or signaling pathway). Thus, the co-localization and co-
regulation are the main characteristics of such eGCs and they form the basis of
our approach.
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Clusters of co-expressed genes have been found in higher eukaryotes, such as
drosophila and human [3/4]. It has been shown that genes belonging to the same
metabolic pathways are localized significantly closer to each other than it can be
expected by chance [2]. This was demonstrated for diverse metabolic pathways
from the KEGG database. A relatively well investigated class of eGCs represent
the clusters of secondary metabolite genes, which are found in fungi, plants, and
protists [5]. Secondary metabolites (SMs) are pharmaceutically important sub-
stances (e.g., antibiotics, antimycotics, toxins). The genes responsible for their
synthesis, modifications, transport, etc., are often organized in clusters [6]. These
clusters are characterized by modest sizes (normally not more than 20 genes) and
tight co-localization: the genes are immediately adjacent to each other, although
the insertions of non-cluster genes are also possible. The expression of SM clus-
ters is often governed by specific regulators [7] and in many cases the specific tran-
scription factor (TF) is embedded in the cluster [8]. Moreover, non-cluster specific
(broad) TFs are also involved in the regulation of SM clusters [9] (Fig. ).

- motifs for the csTH
¢ Cluster > © - motifs for the bfTF

Fig. 1. Regulation of a gene cluster by cluster specific and broad function transcription
factors (csTF and bfTF, correspondingly)

There are several ways to predict eGCs genome-wide. One of the first methods
was suggested by Lee and Sonnhammer [2] who linked the gene annotations
from KEGG with the localization information. The same approach was used in
some follow-up works, e.g., in [I0], where the authors suggested a method to
identify all possible clusters of genes annotated to the same GO term. These
methods predict any clusters regardless to their functions and specific features.
In the particular cases, like SM clusters, such approaches will give imprecise
predictions, mostly because the assignments of genes to pathways are partly or
completely unknown.

Another group of cluster-detection methods relies on expression data (mi-
croarrays, etc.) [II]. These methods are reliable as long as the data is good, as
they provide relatively solid evidence for co-regulation. However, many eGCs,
for instance, in fungal genomes are silent under laboratory conditions [6] and it is
challenging to experimentally determine the conditions for the cluster induction.
Thus, the application of such methods to cryptic clusters is limited.

Some methods have been developed specifically for particular cluster types,
e.g., for the SM clusters. Most of the methods developed so far for the detec-
tion of SM clusters are similarity based [I2JI3II4]. Due to the limited number
of known clusters that can serve as a template, and also to the possible incor-
rect assignments of genes to clusters, similarity based methods are error-prone
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and tend to overestimate the clusters’ lengths. Additionally, these methods do
not differentiate closely located (adjacent) eGCs, interpreting them as a single
cluster.

These limitations could be circumvented by consideration of sequence charac-
teristics of the cluster regions: GC content and averaged DNA curvative profile
[15]. However, not all clusters are characterized by a conserved curvative pattern,
which means that a substantial part of them would be skipped by the method
if applied to a genome-wide search.

We suggest a novel approach to predict gene clusters based on the density
of transcription factor binding site (TFBS) occurrences. In contrast to related
tools, our method is not similarity-based. The main idea is that the cluster-
specific TFBSs should be enriched in the cluster in comparison to other parts
of the genome. Yet, their occurrence outside the cluster is not excluded. We
characterize promoters by cluster-specific motif occurrences and consider the
density of the motifs as the main feature of the cluster region. The method is
applicable to any clusters of co-regulated genes. We demonstrate its usefulness
on the example of SM clusters.

2 Results

The presumable co-regulation of the cluster genes presupposes that their pro-
moters share at least one common motif to bind the regulating TF. Ideally, this
common motif should be specific to the cluster but not to the surrounding genes
(since they are not co-regulated). As the cluster-specific TF (csTF) is assumed
not to have ubiquitous functions, its TFBSs should not be widely distributed
across the genome. On the other hand, the cluster genes are not necessarily
adjacent; “alien” genes inside the cluster may occur (e.g., in [II]). Thus, our re-
quirements for the cluster genes are the following: (i) genes are co-localized; (ii)
promoters share at least one common motif; (iii) there can be “gap” genes that
do not share the common motif with the rest of the cluster. These requirements
allow us to formulate the algorithm to find clusters in a genomic sequence. We
call our approach the motif density method (MDM).

2.1 Motif Density Method

The basic idea of the method is that the binding sites for csTFs are enriched in
the region of the cluster. Note that we do not exclude their occurrence outside
the cluster. Most important, the cluster-specific motifs should be observed in
consecutive promoters.

To start the cluster predictions, we need to specify the so-called “anchor”
genes. These can be the genes that are already assigned to the pathway in
question. In the case of the SM clusters, polyketide synthases (PKSs) or non-
ribosomal peptide synthetases (NRPSs) can serve as the anchor genes. PKSs
and NRPSs are characterized by a specific set of domains and large size, which
makes them relatively easy to detect in genomes.
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Step 1: Motif Search. On the first step, all anchor genes are searched and
marked in the genomes. Next, an interim set of genes around the anchor gene of
interest is selected. Since we do not know how the anchor gene is located relative
to the presumable cluster (in the middle or on the edge), we consider several
gene sets around the anchor gene not to miss the correct motif: 4/6/8 genes
upstream, 4/6/8 genes downstream, and 2 genes up- and downstream the anchor
gene. The common motifs are predicted by MEME [I6] in the corresponding
promoter sequences (—1000/+50bp around the transcription start site or the
whole intergenic region if it is shorter than 1000 bp). Occurrence in the anchor
gene promoter is the prerequisite for the further consideration. The best-scoring
motif (the one with the lowest score as defined by MEME) out of all considered
promoter sets is then searched in all promoter sequences genome-wide.

Step 2: Transforming the Genomic Sequence into the Sequence of
Promoters. Counting Occurrences in Frames. On this step, we switch to
consideration of promoters as units characterized by the number of occurrences
of a particular motif. The order of units follows the order of the corresponding
promoters in the genomic sequence. Now instead of the real genomic sequence
we consider a string of numbers, which represent the motifs’ occurrences in a
unit. For instance, if 1 motif was found in the first promoter, 2 motifs in the
second, and 0 in the third and fourth promoters, the string will be 1-2-0-0. This
number string is scanned by a sliding window (frame) with the step of one unit
counting the cumulative number of found motifs per frame. The highest number
of occurrences per frame should be obtained for the window coinciding with the
cluster. Consideration of different frame lengths allows us to determine the real
cluster length.

Step 3: Scoring. To select the optimal frame we apply a scoring system. As the
“gap” genes are allowed in the cluster, we allow gaps (“empty” promoters) in the
frames but introduce a gap penalty. In this way, we do not forbid the occurrence
of small gaps, which are indeed common in clusters, but larger gaps are scored
with a penalty that is growing depending on the gap length. The promoters
with motifs, on the contrary, add a positive value to the score depending on the
number of motifs found.

Let us consider a frame with the length [. In this frame, each promoter 4
is characterized by the number of found motifs m;. The consecutive promoters
without motifs (m; = 0) form a gap, which is characterized by its length d, the
number of gaps in the frame being n.

Then the score S of a frame is calculated as:

l n
S=Y mi-> P4, (1)
i=1 j=1

where P is the gap penalty and is an adjustable parameter.
The scores are calculated for different frame lengths (normally from 3 to 30,
because this is the usual size of the known clusters).
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Step 4: Visualization and Selection of the Optimal Frame. The frames
are characterized by their score, position, and length. To visualize all character-
istics at once, we apply the heat maps (Fig. ).

2.2 Effectiveness of the Approach

To demonstrate the effectiveness of MDM, we applied it to the re-identification of
several functionally characterized SM clusters with known borders. We selected
two clusters with characterized regulatory patterns (TFBSs) in order to see if our
motif predictions match the real motifs. These chosen examples are the aflatoxin
cluster in Aspergillus flavus and violaceol cluster in Aspergillus nidulans. The
latter was also of special interest because it is located in close vicinity to another
eGC (orsellinic acid cluster). It was tempting to see if our method is able to
separate the two clusters.

The other examples are clusters with characterized products and different
patterns of regulation. For instance, the asperfuranone is subject to inter-cluster
cross-talk (see Discussion for more details). For all clusters, we compared the
predictions of MDM to those of the SMURF tool (Table [[). The gap penalty
was set to 1.3 for all examples.

Aflatoxin Cluster in A. flavus. Aflatoxin is produced by different Aspergilli
[17] and its production is regulated by the csTF AfIR, along with several broad
function TFs (depending on conditions). The binding sites for AflR have the
consensus sequence TCG(N5)CGA. In A. flavus, the cluster spans 21 genes with
15 promoters (AFL2G 07210 to AFL2G _07230). The analysis was run on the
genomic sequence from the Broad Institute website [18§].

The motif search was performed from scratch in order to confirm the abil-
ity of the algorithm to re-identify the real (known) motif. Seven interim sets of
promoters around the anchor gene ALF2G 07228 pksA (in different arrange-
ments) were submitted to MEME for motif prediction. For each set we could get
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Fig. 2. Heat map for the re-identified aflatoxin cluster (right) and the sub-cluster (left),
both on contig 7
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common motifs. The motif in the set “8 promoters upstream pksA” scored the
best and thus was submitted to the genome-wide search. Remarkably, this motif
coincided with the AflIR TFBS. The AflR motif correctly identified the cluster
region with high precision: from AFL2G 07211 to AFL2G 07230 (Fig.[2]). The
predictions made by the other (non-AflR-like) motifs were much more noisy and
failed to detect the cluster.

Violaceol Cluster in A. nidulans. The violaceol cluster was described re-
cently [I9] and its regulation is yet not well investigated. However, the potential
binding sites for the cluster specific regulator were proposed in [I9]. MDM was
applied to the re-identification of this cluster in the same way as to the aflatoxin
cluster, starting with the motif prediction from scratch. The genomic sequence
was downloaded from Aspergillus genome database [20]. MDM successfully de-
tected the correct motif (CYCGGAGWWWC) and the correct cluster location
(Fig. B). The length of the cluster is two genes longer than the reported one due
to the high number of the ¢csTFBSs in the promoters (Fig. B]). We return to this
in the Discussion section. As expected, the orsellinic acid cluster, which is lo-
cated only five genes apart from the violaceol cluster and which is not regulated
by the violaceol csTF, was not detected. In this way, we show the specificity of
MDM and its ability to separate closely located clusters.

Violaceol cluster Orsellinic acid cluster,
O O BN o g (e
Motifs 430 3 4 1 2 0 0002 01 0
MDM AN7893L 1AN7903
SMURF AN7898L 100AN7923

Fig. 3. Re-identification of the violaceol cluster with MDM and SMURF. Coordinates
of the real cluster: AN7896 to AN7903.

Asperfuranone Cluster in A. nidulans. The regulation of the asperfuranone
cluster is a particular case, because the asperfuranone c¢sTF (AfoA) is subject
to the regulation by ScpR, the regulator of the NRPS-containing gene cluster
inp. Under inducing conditions, ScpR triggers AfoA, which in turn induces the
expression of the asperfuranone cluster genes (except for AN1031 afoB) [21].
Therefore, the afoA promoter contains the motif for the ScpR binding [21],
whereas the other cluster genes should contain another, not yet described TFBS
for AfoA. By the application of MDM we re-identified the cluster nearly perfectly,
with expected missing of the afoA and afoB genes (see also in Discussion).

Aspyridon Cluster in A. nidulans, Gliotoxin Cluster in A. fumigatus,
and WYK-1 cluster in A. oryzae. We applied MDM to the re-identification
of three more clusters. In all three cases we detected the clusters, although
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Table 1. Comparision of SM gene cluster predictions beetween SMURF and MDM

Method Cluster Reference
Start End
Aflatoxin (Aspergillus flavus)
Experimental AFL2G_ 07210 AFL2G_ 07230 [17]
MDM AFL2G_07211 AFL2G_ 07230
SMURF AFL2G_ 07219 AFL2G_ 07248
Asperfuranone (Aspergillus nidulans)
Experimental AN1029 AN1036 [21]
MDM AN1032 AN1036
SMURF AN1029 AN11288!
Aspyridon (Aspergillus nidulans)
Experimental AN8408 ANB8415 [22]
MDM AN8401 AN8421
SMURF AN8415 AN9243
Gliotoxin (Aspergillus fumigatus)
Experimental AFU6G 09630 AFU6G_ 09745 [23]
MDM AFU6G_ 09630 AFUG6G _ 09785
SMURF AFU6G_ 09580 AFU6G_ 09740
Violaceol (Aspergillus nidulans)
Experimental ANT896 ANT7903 [19]
MDM ANT7893 ANT7903
SMURF ANT898 ANT923
WYK-1 (Aspergillus oryzae)
Experimental A 0090001000009 A0O090001000019 [24]
MDM A 0090001000009 A0O090001000018
SMURF A 0090001000009 A 0090001000031

not ideally. The results are presented in Table 1 and discussed in detail in the
Discussion section.

3 Discussion

Computational prediction of eukaryotic clusters is especially important when
precise information about the corresponding pathways is missing. In such cases,
the predicted cluster’s structure can point at the involvement of particular en-
zymes in the pathway and thus be beneficial for the understanding of the path-
way’s functioning.

Neither of the so far published tools has used the promoter information for
the cluster prediction. Since the co-regulation is the basic idea of the cluster

1 AN11288 is located 2 genes upstream AN1036.
2 AFU6G 09785 is located 4 genes upstream AFU6G  09745.
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definition, we consider the neglect of the promoter information as an oversight.
We developed an approach that not only allows to reliably predict the eGCs
but also provides information about the potential regulators of the cluster (by
description of their TFBSs).

We compared the performance of our method with that of SMURF, the most
prominent similarity based approach to SM cluster predictions. SMURF fails
to detect the correct borders for most of the clusters and mixes the violaceol
cluster with the orsellinic acid cluster reporting them as a single eGC (Fig. [3).
MDM gives better or comparable predictions for all examined eGCs and solves
the problem of the two adjacent clusters. In the aflatoxin cluster prediction, only
one gene of 21 (AFL2G_07210) is missing because the bidirectional promoter
between AFL2G 07210 and AFL2G_ 07209 does not contain the AlR TFBS.
This may be reasonable, as AFL2G 07209 does not belong to the cluster and
AFL2G_ 07210 has no assigned cluster function [I7]. In the violaceol cluster,
two promoters upstream the cluster also shared the specific motif. This does
not contradict the experimental data, as the corresponding genes show slight
expression under cluster-inducing conditions [19]. In fact, their involvement in
the cluster under some specific conditions is not excluded and the function of
the csTFBSs deserves additional examination. It remains problematic how to
predict clusters with such mosaic regulation. We aim to address this problem in
the next versions of MDM.

As mentioned above, the asperfuranone cluster is an interesting case, because
its regulator AfoA is induced by a csTF of another cluster. AfoA is shown to
induce all cluster genes except for afoB [2I]. Our findings confirm this experi-
mental result, since the promoter of afoB apparently does not contain the AfoA
binding motif.

The prediction of the aspyridon cluster by MDM is not perfect, however, it
covers the whole cluster, although adding several extra genes up- and down-
stream of it. Given that SMURF does not find the cluster at all, we consider
this result rather good. For the gliotoxin cluster, the left border is found perfectly
but on the right side MDM predicts four more genes as cluster members. In such
cases (when the promoters have a potential TFBS for a cluster-specific regula-
tor) we cannot exclude a possibility that the cluster is actually longer and those
genes can be expressed under some specific conditions. This could be a subject of
further experimental investigation. The MDM prediction of the WYK-1 cluster
is missing one gene. However, compared to the SMURF result (12 genes more)
the prediction of the MDM is closer to the real cluster borders.

The results of the re-identification of the known clusters show that there is
space for the improvement of our approach. In many cases, MDM predictions
are not perfect. Yet, in the great majority they are better than those made
by the similarity-based method, which underscores the higher potential of the
motif-based approach.

The genome-wide detection of the csTFBSs can help to discover other genes
and even additional clusters regulated by the csTF. Regulatory cross-talk be-
tween the clusters has already been described in fungi [2I]. In our examples, we
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could detect a second peak on the heat map for the AflIR motif (Fig. ). The
peak corresponds to a frame in a distant location on the same contig. There is
no SM synthase gene in this cluster-like stretch, however, the genes are typical
for SM clusters (monooxygenases, methyltransferase, MFS transporters, etc.).
There can be two explanations for that: either this is a sub-cluster that is in
some way involved in the aflatoxin biosynthetic pathway, or these are the re-
mainings of a damaged cluster that has lost the synthase. In any case, this
intriguing sub-cluster deserves further investigation.

To our knowledge, MDM is the first attempt to consider the promoter infor-
mation in the eGC prediction. We show the high potential of this approach on
the examples of the SM clusters, however, the method can be applied to the
detection of any eGCs analogous to the SM clusters.
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