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Abstract. Although the use of computer vision to analyse images from
smartphones is in its infancy, the opportunity to exploit these devices
for various assistive applications is beginning to emerge. In this paper,
we consider two potential applications of computer vision in the assistive
context for blind and partially sighted users. These two applications are
intended to help provide answers to the questions of “Where am I?” and
“What am I holding?”.

First, we suggest how to go about providing estimates of the indoor
location of a user through queries submitted by a smartphone camera
against a database of visual paths – descriptions of the visual appearance
of common journeys that might be taken. Our proposal is that such
journeys could be harvested from, for example, sighted volunteers. Initial
tests using bootstrap statistics do indeed suggest that there is sufficient
information within such visual path data to provide indications of: a)
along which of several routes a user might be navigating; b) where along
a particular path they might be.

We will also discuss a pilot benchmarking database and test set for
answering the second question of “What am I holding?”. We evaluated
the role of video sequences, rather than individual images, in such a query
context, and suggest how the extra information provided by temporal
structure could significantly improve the reliability of search results, an
important consideration for assistive applications.

Keywords: Image-based localisation, path-planning, mobile assistive
devices, object categorisation, mobile computer vision.

1 Introduction

Low vision brings many challenges to an individual, including reduced indepen-
dence and social exclusion. The World Health Organisation estimates (2012)
that more than 285 million people worldwide suffer from low vision or blindness.
Due to changing demographics and greater incidence of disease – e.g. diabetes
– blindness and failing sight are increasing in prevalence. The cost to society
includes direct health care expenditure, care-giver time and lost productivity.
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Enabling people with visual impairment to increase participation will help ad-
dress social exclusion and improve self-esteem and psychological well-being.
There is the potential of near-commodity smartphones, backed by appropriate
computer vision algorithms and supporting processes, to address this need.

1.1 A Solution in Waiting?

The growth in availability of camera-equipped smartphones, networks, methods
of social networking and crowdsourcing of data offers new solutions to develop
assistive systems that could be scaled in performance and capability[5,11]. The
services/capabilities that could be offered include:

Navigation: GPS does not offer sufficient precision or reliability for indoor
manoeuvring. A combination of visual cues, translated into speech or tactile
information, is desirable.

Shopping: Other challenges include shopping and product recognition, both
in shops and at home. The technology for visual object recognition from mobile
devices has arrived for sighted users: the challenges to deployment for visually-
impaired users includes a) the existence of accessible label databases, that are
free from commercial bias; b) changing retrieval algorithms and systems to place
more emphasis on strong match confidence; c) techniques for conveying infor-
mation readily to blind and partially-sighted users.

Personal Safety : As a partially sighted user, one is faced with a number of
hurdles when undertaking journeys away from a familiar environment, and lack
of confidence about the “unseen” can be a significant contributing factor to
reduced mobility. Where does the pavement end? Where is the entrance to the
bus, and are there stairs? Are there obstructions at head-height?

In summary, the overarching need is to increase the possibility for indepen-
dent living; in a hugely visually-oriented built environment, sighted users rely on
visual cues, signage, and recognition of structures such as doorways. Can these
cues be reliably translated into semantically appropriate information using com-
puter vision? Therefore we focus on the feasibility of answering two questions
with existing technology from visual cues: “Where am I?” and “What am I
holding?”.

2 Where Am I?

Techniques for WiFi localisation are entering mainstream use through, at one
level, estimates obtained from the physical locations of WiFi access points, simple
measures of signal strength or approaches such as “Walkie-Markie” [8], which
use multiple signatures to infer location. These technologies hold great potential.
However, accurate localisation still relies strongly on reasonable accurate motion
models, and the collection of other cues, such as accelerometry or gyroscopes [10].

Indeed, no matter how good other sources of information are, few can replace
the contextual information of visual inference. During navigation, using natural
vision, sighted individuals are able to from one consistent information source:
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a) recognise their location relative to previous journeys; b) locate entrances and
exits; c) detect obstructions; d) recognise people; e) assess human intent; f)
identify objects or activities of personal interest.

Invoking computer vision to simultaneously solve all of these tasks is a cur-
rent challenge. Our purpose is to assess the feasibility and accuracy of existing
computer vision techniques to meet some of these needs. The primary question
we address in this section relates to the first topic in the list above: can we use
computer vision to recognise location against previous journeys.

2.1 Related Approaches

Several methods of indoor localisation using smartphone-relevant technology
have been described, including RSSI, dead-reckoning, and combinations for tech-
niques that harvest environmental cues [10], [8].

Related approaches to this problem involve the use of techniques such as
SLAM [1] and PTAM [3]. These methods are near state-of-the-art for monocular
robot navigation, allowing geometry of a space to be mapped out dynamically at
the same time that self-localisation is achieved. Indeed, Pradeep and colleagues
successfully applied this to a demonstration for indoor navigation in an assistive
device [6].

2.2 Visual Paths

Methods such as SLAM and PTAM attempt to simultaneously map world ge-
ometry and localise a camera within that geometry. Our question is slightly
different: we seek to identify where we might be relative to previous journeys
taken along the same route, either by ourselves or other people. Thus, we intro-
duce the idea of the visual path, a stream of descriptions captured from visual
information as we traverse from location A to location B, or from location C to
D. Such streams could be captured from the cameras of other users moving in
the same physical space.

We can split the path localisation problem into two distinct tasks. The first is
to determine which of P possible paths one is navigating along, and the second is
to determine where along a particular visual path one is located. In the context of
computer vision, a key question concerns the distinctiveness of information along
paths, either as indicators of a particular journey or as indicators of location
along a known journey. Note that we do not explicitly attempt to localise with
respect to a map – our suggestion is to localise with respect to a journey. In
the context of many users, this would appear to be a sensible way to harvest
information about locations that might be frequently reconfigured in a manner
that would reduce dependence on an explicit mapping processes.

Though SLAM and PTAM are strong candidates for assistive techniques, there
is also the need to combine mapping with object detection. Putting these systems
in the category of mapping and localisation, we explore the possibility that rather
than mapping out a space, a user might be more interested in merely following
a path that has been traversed by others. It is in this long-term, collaborative
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context that the visual path concept would sit: we wish to allow users to compare
their journeys against those of others through these visual paths.

In tracing along different paths, we might ask how distinctive the visual con-
tent is along one path relative to the appearance along another. We used a stan-
dard keypoint and descriptor type approaches to describe visual paths captured
by users as they walked along indoor environments.

We first studied the distribution of a similarity metric, γ, based on a modi-
fication of Lowe’s ratio test for discriminating descriptors [4]. The modification
takes the form of an L∞-type normalisation on the distribution of squared Eu-
clidean distances between distinctive descriptors that are close matches between
database images along a set of P possible paths Cp, p = 1, 2, . . . , P .

2.3 Visual Path Descriptions

First, consider a number M
(i)
p of descriptor vectors, v

(i)
m ,m = 1, 2, . . . ,M (i)

produced from an image, I
(i)
p , with each vector being of dimension L× 1. These

descriptors are stacked into the rows of an M (i) × L descriptor matrix, V
(i)
p

associated with image I
(i)
p . A set of images, {I(i)p }i=1,2,...Np is now collected

for path Cp, and for each of these, a descriptor matrix is produced. A visual
path Cp is then encoded by the set of matrices of descriptors, denoted Mp =

{V(i)
p }i=1,2,...,Np generated from the set of images taken along that path.

Query images, J(j), j = 1, 2, . . . , Nq are now acquired, separately. A particular
query image is also mapped to matrix of descriptors Q(j). We wish to know
which of the P paths the query image J(j) has been taken on; this is answered
by comparing the query descriptor matrix against the set of path descriptors for
all paths, {Mp}p=1,2,...,P .

2.4 Pairwise Descriptor Comparisons

Let us first consider the comparison of individual query descriptors, v
(j)
n , n =

1, 2, . . . , N (j) arising from a single query image. The Euclidean distance metric in
L-dimensional space is widely used in assessing descriptor distances in computer
vision. Let D(i|n) be the M (i) × L matrix defined by

D(i|n)
p = 1M(i)×1 ⊗ v(j)

n −V(i)
p (1)

where 1 is a vector of ones, and ⊗ denotes the Kronecker product. Then the
elements along the diagonal of

D(i|n)
p [D(i|n)

p ]T (2)

are collated into a vector, d
(i|n)
p ∈ [0,R+]M

(i)

of squared Euclidean distances
between the nth descriptor from a query image and each of the M (i) descriptors
derived from the ith image along the path Cp.
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Fig. 1. Diagram illustrating the nature of visual paths and queries. There are different
paths recorded in the databases. The statistical tests reported in this paper compare the
within-path queries and between-path queries, as well as within-path, between-location
scores based on image comparisons.

2.5 Query Descriptor Rejection

Many descriptors in the query image will not be sufficiently distinct to be useful

in matching. The distribution of distances contained in vector d
(i|n)
p is used in

a first stage filtering for distinctiveness by order-statistic filtering. A query de-

scriptor v
(j)
n is considered suitable for use in assessing similarity between a pair

of images only if d
(i|n)
[1] < α · d(i|n)[2] where d

(i|n)
[1] , d

(i|n)
[2] , . . . denotes the sorted ele-

ments of the vector d
(i|n)
p in increasing order (the path subscript p is temporarily

suppressed to include the order-statistic of elements). 0 < α < 1 is set to around
0.7, and any query descriptors that do not satisfy this condition are discarded.
All image query vectors are subjected to the same test. Those that pass the test
allow an “average” distance based on best matching descriptors to be used to
determine how close a single query image is to a single database image. That is,
for a single image query we calculate

μ(i,j)
p =

1

|D|
∑

n∈D
d
(i|n)
[1] (3)

where D is the set of query descriptors that pass the distinctiveness test, as
described here. Again, note that path subscript p has been omitted from the
right-hand side of this expression to represent the sorted distances.

2.6 The γ Score

We calculated μ
(i,j)
p across all query images J(j), j = 1, 2, . . . , Nq and all path

images {{I(i)p }i=1,2,...,Np}p=1,2,...P . A γ score is then defined to produce a score,
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Fig. 2. Tests of visual distinctiveness along paths. (a) path level queries, capturing
the behaviour of the γ metric for inter- and intra-path distributions and (b) locations
within a path, illustrating the distribution trends of the ρ-metric, all within a single
80m path, but at different distances either within or outside 50cm from known query
submissions.

γ(i,j), as a measure of similarity between image pairs (i, j) relative to path p
such that 0 < γ ≤ 1.

γ(i,j) =
||μ(i,j)

p ||∞ − μ
(i,j)
p

||μ(i,j)
p ||∞

(4)

The γ measure is applied between pairs of query and database images, and
one may identify two types of categories that these query comparisons fall into.
In the first case, the images come from the same path (although query and
visual path database are, of course, distinct). In the other case, queries come
from different paths. The results are shown in Fig. 2(a).

A second type of score, ρ, was created with a slightly different normalisation
criterion based on observing the maximum within-path distance distributions,
i.e. for a given path index, p. The behaviour of this score was studied using query
images as taken with ground-truth locations, measured with a surveyor’s wheel;
again, probability density estimates of scores are estimated from hundreds of
thousands of descriptor comparisons.

3 What Am I Holding?

An increasing use for smartphones involves using visual search in which a pho-
tograph taken with the phone is used as a query into a catalogue of database
items. Common items include paperbacks (books), compact-disc packaging and,
increasingly, art. A closely related approach is the use of barcodes on items to
look up both price information and more detailed product information.

For the visually impaired, barcodes may be difficult to locate, and one would
wish to allow recognition on objects and products from different points of view.
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The quality of a query image might also be below that of a sighted user. For
this reason, it is appropriate to assess the ability of visual search algorithms,
designed for large-scale categorisation, to perform when the image queries are of
low quality, as might occur in poor or variable lighting conditions.

The SHORT database [7] provides such a dataset; and though it lacks the
category-level complexity of real-world product databases, it is compliant with
other datasets used in computer vision, such as the Pascal VOC database [2].
SHORT includes data acquired from 20 different smartphone cameras, with vary-
ing degrees of resolution and image quality. An example of typical queries is
shown in Fig. 3 below.

Fig. 3. The SHORT database contains thousands of query images that form a rep-
resentative set of examples of smartphone queries containing everyday household or
packaged food products

The dataset contains a mixture of stills and video clips, including more than
55,000 video frames and more than 1,900 still images. Image sizes range from
under 100,000 pixels to over 6 megapixels.

3.1 Evaluation of Sequential Video Frames

In this section we analyse how we can use sequential frames from a video of
an object in order to improve classification accuracy. First, multiple sequential
images from a video were queried, and each image was matched to one of the
thirty categories of the SHORT-30 database using the descriptor matching as
described in Sections 2.4 and 2.5. A histogram of the matches was computed
for several videos of the same object, as shown in Fig. 4(a). Even though the
total number of incorrect matches increases as we query more video frames, they
are distributed across a range of object categories in the database. As shown,
the correct object often has a higher number of hits than the incorrect ones.
Therefore we propose to use the “individual voting” as a metric to classify an
object based on querying sequential images from a video of a hand-held object.
Further analysis was undertaken in order to determine the number of video
frames that are required for the total number of correct matches to exceed the
number of individual total incorrect matches. Preliminary results, Figure 4(b),
shows that the number of total incorrect matches to individual objects rises
slowly while the number of total matches to the correct object increases rapidly.
The above analyses were undertaken for several videos and object categories
under the SHORT-30 dataset. Classification accuracy using different numbers of
query frames and the above metric is presented in Section 4.2.
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Fig. 4. Evaluation of sequential video frames. (a) Distribution of matches across dif-
ferent categories of SHORT-30 dataset for four videos of the same query object. (b)
Fraction of correctly matched queries to incorrect matches for videoframe sequences.
Note that there is a distribution of incorrect matches across multiple categories as the
number of sequential query frames increases.

4 Experimental Results

4.1 Navigation

We acquired a number of visual paths with a mobile phone (Nexus 4). These
simply take the form of video acquisitions, captured with the phone pointing in
the direction of motion, and recording at 30fps at 1920 × 1080 resolution. The
images were then downsampled to a resolution of 192 × 108 pixels. The number
of images captured along the paths raises the complexity of the image matching
problem task: there are typically 2000 images per path.

For the analysis of the distribution of the metrics γ and ρ, as shown in Fig. 2,
we have used VLFEAT’s [9] implementation of SIFT [4] descriptors.
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Fig. 5. Fraction of values of ρ exceeding a threshold T in k consecutive database frames

The use of bootstrap statistics was appropriate for this study because, for
example, in the navigational context, it allows sampling distributions of distances
across the whole image database of around 400,000 possible pairings of visual
path images.

In the case of the ρ metric, these bootstrapped measurements have revealed
the existence of visual distinctiveness between positions that are “close” or “far”
along a path from a given query. In Fig. 2(b) we have double-filtered the dis-
tribution of the ρ values with a one-point moving average. This clearly shows
that values of ρ closer to one are useful for discriminating positions belonging
to a specific visual path. These results have motivated the search for a thresh-
old on the values of ρ and the use of consecutive database frames to maximise
discriminability, as illustrated in Fig. 5.

4.2 Classification Accuracy Based on Sequential Video Frames

Classification accuracy using the individual voting metric (Section 3.1) was com-
puted for six categories of SHORT-30 dataset (Table 1). A video Q, compris-
ing of query frames Qi, i = 1, 2, ..., N , is classified as the k-th category, Ck, to
which the majority of query frames, Qi, were matched to. The accuracy was
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calculated for classifying twelve videos of each object based on different limits
for the number of queries allowed, N .

Table 1 shows that the classification accuracy increases as we increase the
limit of query frames, except for occasional dips which occur due to instability
as a person rotates the object in their hand. In comparison to the classification
accuracy of individual queries, classification based on sequential video frame
queries gives a much higher accuracy.

Table 1. Classification accuracy of different objects for different number of sequential
query frames. Accuracy is defined as the number of videos correctly classified divided
by the total number of videos queried.

ID Single frame 10 frames 30 frames 50 frames 70 frames 90 frames
Acc (%) Acc Std Acc Std Acc Std Acc Std Acc Std

prd001 37.89 85.71 34.99 85.71 34.99 85.71 34.99 92.86 25.75 92.86 25.75
prd002 55.56 75.00 43.30 75.00 43.30 66.67 47.14 75.00 43.30 91.67 27.64
prd003 40.87 73.33 44.22 73.33 44.22 80.00 40.00 80.00 40.00 80.00 40.00
prd005 43.14 62.50 48.41 62.50 48.41 62.50 48.41 87.50 33.07 87.50 33.07
prd006 80.61 92.31 26.65 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
prd007 46.15 78.57 41.03 78.57 41.03 92.86 25.75 92.86 25.75 92.86 25.75

5 Discussion and Conclusions

There are several conclusions to the pilot work that we have reported here.
First, in the navigation context, there is an opportunity to use information from
visual paths to provide an indication of which path a user might be on relative
to previous journeys. Although this study is at quite an early stage, it does
indeed indicate that distinctive information can be harvested from visual paths
with great ease. For example, the resolutions of the images used in Section 2
contained only 1% of the pixels in the captured images! Yet, decisions on γ do
seem to allow reasonably accurate estimates of where one is likely to be along a
path, subject to appropriate verification being performed, perhaps using higher
resolution images. With extra processing to perform geometric verification of
match locations along the path, the idea of mapping images to a location looks
quite feasible.

In the navigational context, the possibility of obscured views has not been
considered, either during path collection or query collection. However, the den-
sity of our queries is also low relative to the number of queries we would normally
take. For example, at a normal walking rate, one could easily collect more than
10 frames within 1 metre. Such an image sampling rate would give more oppor-
tunity to capture unobscured visual patches along a path. The caveat is that
one would have to include modules for recognising obstructions or moving ob-
jects, such as people, within the frame, and remove query descriptors at spatial
scales that would include such regions. Since one of the key roles for incorporat-
ing computer vision into navigational aids would be to detect path obstructions
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and hazards, this does not seem to be out of the realms of possible system-level
scenarios.

In the context of hand-held objects from the SHORT-30 database, a real ap-
plication would be expected to have thousands of products. Our current size is
more appropriate to home use by a single user. The retrieval mechanisms de-
scribed here are not scalable: we did not use visual words in this study, although
our tests are indicative of what one might apply in a post bag of visual words
(BOVW) verification of rankings based on descriptor distances.

Perhaps the most surprising factor of both of the feasibility studies reported
here – hand-held object recognition and the visual paths, is that the features
used for both cases rely on the same set of tools: image descriptors that can be
computed very quickly. This is the subject for ongoing research in this area.
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