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Abstract. In this paper we propose an extension to the KinectFusion approach
which enables both SLAM-graph optimization, usually required on large loop-
ing routes, as well as discovery of semantic information in the form of object
detection and localization. Global optimization is achieved by incorporating the
notion of keyframe into a KinectFusion-style approach, thus providing the system
with the ability to explore large environments and maintain a globally consistent
map. Moreover, we integrate into the system our recent object detection approach
based on a new Semantic Bundle Adjustment paradigm, thereby achieving joint
detection, tracking and mapping. Although our current implementation is not op-
timized for real-time operation, the principles and ideas set forth in this paper can
be considered a relevant contribution towards a Semantic KinectFusion system.

Keywords: KinectFusion, semantic SLAM, semantic bundle adjustment, object
detection.

1 Introduction

In the last decade SLAM (Simultaneous Localization and Mapping) has witnessed im-
pressive progresses [7,14,18,24]. Feature-based approaches [7,14] have been deeply
explored, so as to attain both accurate maps and real-time operation. 3D reconstruc-
tion, though, turns out typically quite sparse and hence often unsuited to robotic tasks
such as motion planning and obstacle avoidance. Recently, novel dense approaches us-
ing all image pixels to infer a 3D model of the environment from the video sequence
have been proposed [22,17]. Depth cameras, such as the Microsoft Kinect, have then
brought in new sensing modalities providing 3D measurements at 30Hz, thus paving
the way for a brand-new RGBD-SLAM research topic. RGB-D Mapping, proposed by
Henry et al. [12], was one of the first RGBD-SLAM frameworks whereby both color
and depth information are deployed for tracking. The system also includes loop clo-
sure detection and a 3D surface reconstruction engine. Later, Newcombe et al. [18]
introduced KinectFusion, a real-time tracking algorithm capable of unrivaled accuracy.
KinectFusion constantly updates a volumetric representation of the scene consisting of
a Truncated Signed Distance Function (TSDF) [6] and tracks incoming frames based
on the current 3D reconstruction, achieving real-time operation through efficient GPU
implementation. As the main limitation of KinectFusion is the bounded mapped scene
volume, Whelan et al. [24] proposed to shift the TSDF cube according to camera move-
ments throughout the environment. While the camera moves, the voxels exiting the
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current volume are triangulated so that a highly detailed 3D reconstruction of large en-
vironments can be obtained. However, even though KinectFusion is a low-drift tracking
system, mapping large areas is inherently prone to propagation and amplification of
pose errors which, afterward, may lead to a poor-quality reconstruction. As highlighted
by the authors, possible solutions to address this issue might be reintegration into the
moving volume of previously extracted surfaces, as well as handling loop closure to
carry out a global optimization.

In this paper we propose first a novel extension to KinectFusion-style system which
uses a TSDF volume to build a keyframe representation of the environment. This
approach allows for seamless reintegration of already mapped areas and global bundle-
adjustment optimization. Moreover, as a second contribution, we enrich the 3D recon-
struction with semantic information by means of Semantic Bundle Adjustment [10]:
while the camera moves object instances are detected leveraging SLAM and their poses
estimated altogether with camera poses. Though other systems allows for semantic
SLAM [5,8] or semantic SFM [2], [10] casts the problem as a bundle adjustment style
optimization, enabling a fully integrated pipeline. As a result, our system can close
seamlessly medium-size loops, delivers accurate 3D reconstructions and peculiarly pro-
vides semantic knowledge concerning the mapped environment.

Next section discusses our novel KinectFusion extension, while in Sec. 3 we will
show how to integrate the semantic bundle adjustment framework [10] into the pro-
posed KinectFusion extension. Sec. 4 reports both quantitative and qualitative results,
in particular by comparing our methods to RGB-D Mapping. Finally, in Sec. 5 some
concluding remarks are drawn.

2 Bundle Adjustment by the TSDF

The TSDF representation of a 3D volume consists of a voxel data structure with each
element storing the signed distance to the nearest surface. According to Curless et al.
[6], a depth image is merged into the current volume by back-projection of voxels onto
the image plane; then, the resulting pixel gives the position of the surface and the re-
quired distance can be computed. Denoted as [Fk−1 (p) ,Wk−1 (p)], respectively, the
signed distance value and a corresponding weight at the 3D location p at time k − 1,
a new measurement [F (p) ,W(p)], coming from the projection of p onto the image
plane is integrated as:

Fk (p) =
Wk−1 (p) Fk−1 (p) +W(p) F (p)

Wk−1 (p) +W(p)
(1)

Wk (p) = Wk−1 (p) +W(p) (2)

If the signed distance appears to be over a threshold µ from the surface, it must be
truncated, as discussed in [6]. In the following, we will refer to the voxels having a
non-truncated function value as surface voxels.

Recently, the KinectFusion system by Newcombe et al. [18] showed how to exploit
the TSDF representation not only to achieve detailed surface reconstruction, but also
during the camera tracking process. First, a synthetic depth map is rendered by ray-
casting each image pixel according to the known camera intrinsic parameters and fol-
lowing the ray to the intersection with the surface. As described in [6,18], this process
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is sped up by the TSDF, as the surface is implicitly represented by the zero-crossings
of the function. Then, each incoming frame is registered to this virtual depth image
through an ICP-like scheme [4,3] and the final aligned frame merged with the surface
according to the estimated pose.

The continuous process of TSDF ray-casting and updating makes the system robust
and produces low-drift mapping, especially for very loopy trajectories. However, the
extent of the mappable volume is bounded by the initial TSDF volume so that it is
not possible to reconstruct larger environments. While Whelan et al. [24] proposed to
simply move the TSDF volume, we think that this strategy is inherently unable to main-
tain a globally consistent map, since it is not clear how previously mapped locations
can be taken into account for global error minimization, e.g. how to achieve consistent
mapping across large looping routes.

Following a strategy common to many successful SLAM algorithms [12,9], we in-
troduce the notion of keyframe as a spatial sampling of camera trajectory and globally
optimize keyframe poses for consistent mapping. However, unlike previous proposals,
keyframe selection and constraining is performed through the TSDF representation of
the environment. To achieve this, we add a new field to each TSDF voxel to keep track
of a list of keyframes. Then, when a new frame promoted to keyframe is merged into
the volume, it is also added to the keyframe list of all its surface voxels, i.e. those voxels
to whom a non-truncated distance value has been assigned. Accordingly, on one hand
for every point close to the estimated surface we always know which keyframes it was
captured in. On the other hand, surface voxels with no associated keyframes clearly
represent non-mapped space. Therefore, at the end of the merging phase, we can mark
a frame as a keyframe if the ratio between non-mapped surface voxels and total number
of surface voxels in the TSDF is above a threshold, i.e. the frame describes a volume of
the explored environment only partially overlapped with the current map.

Every time a new keyframe is detected and merged, a new optimization step is carried
out to ensure consistency over long trajectories. Purposely, a pose graph is created and
a suitable cost function defined over this graph structure is minimized by the G2O
optimizer [15]. For each unknown keyframe pose we add a vertex to the graph and link
it to the other vertex poses with edges representing constraints in the form of non-linear
least-squares terms:

eab =
∥
∥pa − T−1

a Tbpb

∥
∥
2

(3)

with pa,pb ∈ R
3 representing two corresponding 3D points from keyframe a and

b, Ta,Tb the unknown poses of those frames. Although data association may be per-
formed densely, for the sake of computational efficiency we overlay a regular grid onto
the image and match only such sampled points [11]. Fig. 1 visually summarizes our
novel matching scheme; in particular, for each sampled point we:

1. find its corresponding surface voxel by back-projection;
2. get the keyframe list of that voxel and project the 3D point onto all those image

planes;
3. perform a local 2D search and select the nearest 3D point under some conditions.

It is noteworthy to point out that the keyframe list stored in every surface voxel allows
for searching only in a well-defined subset of possible keyframes, thus achieving both
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Fig. 1. For each point sampled on keyframes Ta, Tb, Tc we found its matches by projection onto
all image planes relative to the keyframe list of the corresponding surface voxel

higher matching quality as well as faster speed. Moreover, the local search in the prox-
imity of the projection ensures to find the nearest 3D point, possibly fulfilling also other
requirements, such as e.g. alignment of surface normals [19]. The resulting set of vertex
poses and constraints is finally optimized so as to achieve global error minimization.

Once keyframe poses have been jointly optimized, the TSDF no longer represents
the mapped environment and it must therefore be recreated to reflect the new estimate
of the trajectory. To allow for unbounded camera movements, the new reconstruction
is centered at the last keyframe’s camera pose. Though definitely more expensive, we
claim that such volume shifting strategy is more effective than the proposal in [24]
because:

– we do not re-center the active volume only looking at the translation part of the last
estimated pose, but quantitatively evaluating the novelty of the brought information;

– we ensure consistent mapping by detecting keyframes to be optimized.

Finally, to reduce the computational effort, the optimization is usually limited to those
keyframes having their camera reference frame inside the active volume. This approach
was inspired by the Relative Bundle Adjustment framework [21].

3 Semantic KinectFusion

A standard SLAM approach would not deploy any kind of semantic information, such
as e.g. the presence of known objects within the explored environment (see Fig. 2a), al-
though this may set forth useful constraints concerning camera poses. Likewise, a major
nuisance hindering standard object detection approaches in cluttered scenes deals with
having to establish upon objects’ presence and pose based on a single possibly unfa-
vorable viewpoint, whereas a SLAM framework would in principle enable continuous
incremental discovery from several known viewpoints (see Fig. 2b). In essence, unlike
the state-of-the-art paradigms in both fields, we envision SLAM and object detection as
tightly connected and synergistic rather than disjoint processes. Accordingly, we have
recently proposed a novel Semantic Bundle Adjustment framework [10], whereby un-
known object poses are explicitly included into the graph as pose vertexes constrained
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Fig. 2. A standard pose graph (a) ignores any semantic information. Instead, we include into the
optimization object matches (b) as graph edges and the object pose as a vertex (c) so as to achieve
object detection and improve SLAM.

to frames by a set of verified hypotheses (see Fig. 2c). Our proposal uniquely attain
semantically constrained SLAM together with multi-view object detection and 6DOF
localization.

When a frame is promoted to keyframe, 3D features, e.g. [13,23], are extracted and
matched against those stored into a database of object models. Then, a set of candidate
hypotheses on objects’ presence and poses is drawn by RANSAC-based 6DOF pose
estimation [1] and a validation graph is created to verify the consistency of each of
such hypotheses with respect to the current 3D reconstruction. As detailed in [10], each
validation graph is populated with all the vertex poses featuring object matches, their
edges, a new vertex pose for the unknown object location and an edge for each matching
feature:

enfk = snfk

∥
∥
∥pf − T−1

f Tkp
n
k

∥
∥
∥

2

(4)

pn
k being the nth 3D point feature on object k, pf the matching 3D point feature on

frame f , snfk the matching score, Tf and Tk the unknown frame and object poses.
Moreover, virtual edges are created when different camera frames match the same ob-
ject feature [10]. Let pf0 ∈ f0 and pf1 ∈ f1 be two matches for object feature pn

k , then,
under certain assumptions [10], we can add to the graph the virtual constraint:

enfo = snf0ks
n
f1k

∥
∥
∥pf0 − T−1

f0
Tf1pf0

∥
∥
∥

2

(5)

The validation graph is optimized and a cleaning procedure is performed to detect
wrong hypotheses (see [10] for more details). Finally, if the detection is confirmed, all
the constraints are included into the global graph (see Sec. 2) and a global semantic
optimization is performed.

Fig. 3 summarizes our overall proposal. Each incoming frame is fed to the tracking
module (left box), which merges the new measurements with the current TSDF volume
and checks the size of the non-mapped area to detect keyframes. If a new keyframe is
spawned, 3D features are extracted and matched against models’ features (right box),
thus yielding hypotheses which have to be verified by the semantic bundle adjustment
process. Finally, detected objects and keyframes are jointly optimized (bottom box) and
the TSDF volume is updated.
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Fig. 3. A simplified view of our system

4 Results

The proposed approach has been extensively tested, both quantitatively as well as quali-
tatively. As for quantitative experiments, to the best of our knowledge available RGB-D
datasets, proposed either for SLAM or 3D object detection, cannot be used to assess
joint SLAM and 3D object detection, as the ground truth concerns camera trajectory
only (in SLAM datasets) or, alternatively, object identities and poses only (in object de-
tection datasets). Therefore, as proposed in [10], we rely here on a semi-synthetic setup:
3D object models scanned by a Kinect are rendered by ray-casting into SLAM datasets
according to ground-truth camera poses. Although object detection turns out easier than
in a real environment, we found such semi-synthetic datasets to deliver valuable insights
and feedbacks concerning behavior and accuracy of the proposed method.

Hence, we took the video sequences from the RGB-D SLAM dataset [9], using the
provided ground truth trajectory for precise model placement and ray-casting. Then, we
also captured sequences by a Kinect camera featuring known objects in real environ-
ments, so as to provide also qualitative results on truly real data. As for the feature match-
ing step underlying object detection, in all experiments we used the SIFT3D keypoint
detector [16,20] and the Color-SHOT feature descriptor [23], using for both algorithms
the implementations publicly available in the open-source Point Cloud Library [20].

Tab. 1 and 2 report the results obtained, respectively, with our implementation of
RGB-D Mapping and with the extension to KinectFusion described in Sec. 2. As both
such systems do not incorporate semantic information into the SLAM process, for
their quantitative evaluation we can use the original RGB-D SLAM sequences [9].
As vouched by the Tables, we usually perform better, especially when considering the
whole trajectory (All Frs column). Indeed, when the sensor comes back to an already
mapped place, previous keyframes correctly enters the active TSDF volume thanks to
the small drift and we can start tracking with respect to the known map. Instead, RGB-
D Mapping looks for loop closure every time a new keyframe is detected, with no limit
to their proliferation. Such effect is particularly evident in Fig. 4, which comes from
the dataset used for qualitative evaluation (i.e. our own dataset without ground-truth
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Table 1. Quantitative results with RGB-D Mapping (translation error wrt ground-truth camera
poses). Kfs denotes the error at keyframes only, All Frs the error for all estimated camera poses.

RGB-D Mapping

Mean Err. (m) Max Err. (m) RMSE (m)

Sequence Kfs All Frs Kfs All Frs Kfs All Frs

FR1 Floor 0.056 0.093 0.1 0.244 0.06 0.104

FR1 360 0.089 0.197 0.211 0.4 0.099 0.208

FR1 Desk 0.069 0.074 0.163 0.181 0.076 0.081

FR1 Desk2 0.111 0.085 0.219 0.262 0.121 0.097

Table 2. Quantitative results with our extension to KinectFusion (translation error wrt ground-
truth camera poses). Kfs denotes the error at keyframes only, All Frs the error for all estimated
camera poses.

Our Extension to KinectFusion

Mean Err. (m) Max Err. (m) RMSE (m)

Sequence Kfs All Frs Kfs All Frs Kfs All Frs

FR1 Floor 0.056 0.054 0.093 0.13 0.062 0.058

FR1 360 0.083 0.183 0.159 0.324 0.091 0.192

FR1 Desk 0.04 0.055 0.131 0.167 0.047 0.058

FR1 Desk2 0.096 0.083 0.135 0.210 0.098 0.09

Table 3. Quantitative results with our Semantic KinectFusion (translation error wrt ground-truth
camera poses). Kfs denotes the error at keyframes only, All Frs the error for all estimated camera
poses.

Our Semantic KinectFusion

Mean Err. (m) Max Err. (m) RMSE (m)

Sequence Kfs All Frs Kfs All Frs Kfs All Frs

FR1 Floor 0.054 0.05 0.092 0.106 0.059 0.055

FR1 360 0.066 0.144 0.167 0.249 0.073 0.152

FR1 Desk 0.044 0.069 0.092 0.169 0.048 0.076

FR1 Desk2 0.042 0.085 0.088 0.132 0.046 0.088

information). Here camera motion follows a circular trajectory performing several loops
around the room: at the end of the first loop, our technique hangs on to the known map,
reducing the localization error and thus not affecting the reconstruction due to no new
keyframe being spawned.

As for our proposed Semantic KinectFusion approach, Tab. 3 shows no reduction
of accuracy, and often some improvements due to semantic information effectively
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(a) RGB-D Mapping: final reconstruc-
tion (left) and a detail (right)

(b) Our extension to KinectFusion: final re-
construction (left) and a detail (right)

Fig. 4. We moved the camera on a circular trajectory and repeatedly acquired the same loop. Our
proposal always tracks against the map, RGB-D mapping eventually drifts away.

(a) FR1 Floor sequence (b) FR1 360 sequence (c) FR1 Desk sequence

Fig. 5. Semi-synthetic RGB-D SLAM dataset: the semantic framework achieves high quality
reconstruction and accurate object detection and localization.

constraining camera poses across many views. Moreover, beside a high quality re-
construction, the semantic framework can precisely localize the objects looked for, as
shown in Fig. 5. Finally, as object detection is easier with the semi-synthetic setup than
in real settings, we show also qualitative experiments on real data acquired by a Kinect
camera in indoor environments. Fig. 6 reports the results obtained adding physically an
object belonging to the model database into the same room as in Fig. 4. From one hand,
our novel TSDF-enabled optimization (Sec. 2) achieves high mapping accuracy and
low drift even on multiple loops; on the other hand, the Semantic Bundle Adjustment
framework (Sec. 3) detects and localizes the object in the scene, thereby providing also
semantic constraints which help improving the overall global alignment.

Fig. 6. We moved the camera on a circular trajectory and repeatedly acquired the same loop.
TSDF-enabled optimization yields very low drift tracking, while semantic bundle adjustment
detects and localizes objects (see the red boxes).
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5 Concluding Remarks

A novel TSDF-based technique for bundle adjustment style optimization has been pre-
sented. Constraints across views are obtained by means of the TSDF representation of
the environment and keyframes, alike, are selected with respect to such a representation.
Then, we integrated a state-of-the-art Semantic Bundle Adjustment framework into the
system, thus achieving effective joint detection, tracking and mapping, as vouched by
both quantitative and qualitative experiments.

Future works will definitely concern real-time implementation on a modern GPU ar-
chitecture, so as to extend the successful KinectFusion framework with global bundle
adjustment and seamless object detection and localization. We also plan to investigate
on whether and how effective features for object detection may be extracted directly
from the TSDF reconstruction, which holds the potential to provide a more comprehen-
sive and robust description than a single camera frame, as well as on how the TSDF-
enabled BA could be extended to objects too. Finally, in this work we chose keyframes
among camera frames; however, an interesting alternative we wish to explore deals with
raycasting of the scene to get dense, low noise, virtual keyframes.
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