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Abstract. Most of the behaviors people exhibit while being part of a
crowd are social processes that tend to emerge among groups and as a
consequence, detecting groups in crowds is becoming an important issue
in modern behavior analysis. We propose a supervised correlation clus-
tering technique that employs Structural SVM and a proxemic based
feature to learn how to partition people trajectories in groups, by inject-
ing in the model socially plausible shape configurations. By taking into
account social groups patterns, the system is able to outperform state of
the art methods on two publicly available benchmark sets of videos.
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1 Introduction

Group detection in video surveillance systems is profoundly motivated by behav-
ior analysis and security issues in enhancing scene understanding, as the truth
is that many interesting behaviors don’t occur at an individual level but are
the results of complex interactions between individuals in specific subsets of the
crowd, namely groups. It is known, in fact, that the existence of groups highly
influences the behavior of the individuals as it is at this level that people start
to experiment structured interactions [1]. While there isn’t a general solution
to the problem of locating groups, data driven approaches have recently been
obtaining interesting results, mainly motivated by the improvements in track-
ing performance that can be achieved when considering groups as structured
entities of the scene [2]. Group tracking can be partitioned according to the
availability of tracklets. In group-based approaches [3][4][5] groups are seen as
the atomic entities to look for, with the major drawback of creating models that
are too simplistic and cannot be used to further infer on groups behavior. On the
other hand, individual-based tracking algorithms [6][7][8] focus on single pedes-
trians trajectories, which are the most informative features we can extract from
a crowded scene. This latter approach has been gaining momentum only lately
as tracking even in dense crowds is becoming everyday a more feasible task [9].

The common drawback of all these approaches lays in their scarce considera-
tion of decades of sociological theories which can though provide many brilliant
insights. Methods that rely exclusively on data assume to have at disposal a
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Fig. 1. Example of small groups in crowd

highly descriptive and complete dataset, which is quite an unrealistic assump-
tion to state when considering dynamic concepts as groups and crowds are. As
opposite, we believe social dynamics can help to deeply understand the group
formation phenomenon. In particular, despite the well-assessed theory about
collective crowd will, new results are underlining that people in groups tend to
produce predefined shapes while maintaining their identity and goals [1], as can
be observed in Fig. 1b. Ge et al. [8] actually present a statistical shape analysis
method to analyze the spatial position of all group members jointly and estimate
the typical group formations of walking pedestrians; but then they don’t take
advantage of these configurations to improve their group detection method.

Given the aforementioned sociological breakthrough we devise a new algo-
rithm for group detection based on structured learning, which let us incorporate
shapes structure evaluation in the optimization process yielding to more soci-
ologically plausible predictions. We propose to train a supervised hierarchical
bottom-up correlation clustering when trajectories of pedestrians are available.
As we want to focus on the sociological side of the problem, we employ a feature
founded on Hall’s proxemic distance theory [10] and through Structural SVM we
decide, based on previously annotated scenes, how this feature can be significant
in explaining the concept of groups in any given scenario.

2 Structured Output Learning for Group Detection

Pedestrian trajectories encode many sociological and physical information about
the way people interact. If two pedestrians have diverging trajectories it’s very
unlikely that they were on the scene together and, at the same time, in a group
of friends everyone will likely have very similar and compact trajectories over a
generic period of observation. Starting from this consideration we reformulate
the problem of finding groups in the scene as the one of clustering trajectories, or
partitioning the set of those. The solution of a clustering algorithm is a collection
of members’ assignments, thus conventional classifiers aren’t suitable to deal with
the combinatorial size of this problem output space. Building up on the work
of Finley and Joachims [11], we propose a structured supervised algorithm able
to learn how to partition crowds using sociologically founded features between
pairs of trajectories. The method is summarized in the scheme of Fig. 2.
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Fig. 2. Block diagram illustrating our group detection algorithm

2.1 Hall’s Proxemic Distance: A Sociological Feature

An important relation between space and social interaction has been first for-
mulated in Hall’s proxemic theory and has already been applied to people tra-
jectories in order to better understand diadic interactions [12]. Proxemic theory
states that the social distance between people is reliably correlated with their
physical distance, and more important it tells us that this relation is not linear.
Intuitively, the theory defines circles around every individual and the interaction
between pairs of individuals is classified according to which circle they mutually
reside in, as depicted in Fig. 2b. The result is a non linear quantization of their
distance in intimate, personal, social and public space. We generalize the original
quantization by approximating it with an exponential term. The proxemic score
of any two trajectories r and t is computed as

fprox
rt =

1

max{|r|, |t|}
∑

i∈It,r
e−

√
(t

(i)
x −r(i)x )2+(t

(i)
y −r(i)y )2 , (1)

where It,r is the subset of time instances which restricts the summation to tem-
poral intersection only and the coefficient outside the sum is needed in order for
fprox
rt to be normalized.

2.2 Supervised Correlation Clustering through Structural SVM

While Hall’s proxemic theory is a valuable instrument which can be exploited
in order to better understand group dynamics, it is not sufficient to solve the
problem of their detection. It is possible to grasp the complexity of the task by
considering a highly crowded scene where all the pedestrians are touching each
others, here distance is much less discriminant. Other than crowd density, also
the environment conformation, the local culture and other factors that cannot
be modeled explicitly make groups a challenging concept to define. For this
reason we adopt a supervised clustering approach in order to learn how proxemic
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distance can be significant to describe groups in different scenarios. In [13] we
prove our framework is also able to balance the contributions of multiple features
useful to describe crowded scenarios, while here we only employ Hall’s distance
as we rather investigate the importance of group patterns in the detection task.

Since information about groups doesn’t reside in the trajectories, but in the
spatiotemporal relationships they are engaged in, we can’t apply standard clus-
tering techniques. Correlation clustering [14] operates exactly in this scope,
where we don’t want to describe the elements themselves but rather their pair-
wise relationships, computed as in Eq. 1 for the special case of Hall’s prox-
emic distance. Formally, correlation clustering takes as input an affinity matrix
W = {Wrt}rt where for Wrt > 0 we say that elements r and t are similar with
certainty |Wrt|, and for Wrt < 0 we say elements r and t belong to different clus-
ters with certainty |Wrt|. Our model aims to parametrize Wrt = wTφrt in w so
that we can fix the feature but still be able to adjust its importance for as much
discriminative information it can provide on the current scenario. By defining
our feature vector to be φrt = [fprox

rt , 1− fprox
rt ]T we can create negative entries

in Wrt representing unlikely pairs of individuals. The correlation clustering ȳ of
a set of trajectories x is the configuration that maximizes the sum of affinities
for item pairs in the same cluster:

ȳ = argmax
y

∑

y∈y

∑

r �=t∈y
Wrt = argmax

y

∑

y∈y

∑

r �=t∈y
wTφrt (2)

Given the parametric model of the correlation clustering, the weight vectorw can
be learned using structured learning. Structural SVMs [15] offer a generalized
framework to model and solve structured output problems by learning a mapping
f : X → Y between input space X and structured output space Y given a
sample of input-output pairs S = {(x1,y1), . . . , (xn,yn)}. Recall xi is a set
of trajectories and yi is a clustering solution for xi. In contrast to standard
multiclass classification, where a different prediction function for each class is
learned independently, we define a discriminant function F : X × Y → � over
the joint input-output space where F (x,y) can be interpreted as a compatibility
measure between x and y. We remark that F (x,y) cannot be defined out of the
context of the problem, as it is the problem itself that specifies what kind of
solution we want given a particular input. As a matter of fact, the parametric
formulation of correlation clustering presented in Eq. 2, implicitly defines the
compatibility of an input-output pair. We can thus restrict the space of F to
linear functions over some combined feature representation Ψ(x,y), yielding to
F (x,y;w) = wTΨ(x,y). From Eq. 2 it follows

Ψ(x,y) =
∑

y∈y

∑

r �=t∈y
φrt. (3)

Given F we define the prediction function f(x) = argmaxy∈Y F (x,y;w). Ac-
cording to Finley and Joachims [11] the problem of finding f can be restated as
a n-slack margin rescaling maximum-margin problem:
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min
w,ξ

1

2
‖w‖2 + C

n

n∑

i=1

ξi

s.t. ∀i : ξi ≥ 0,

∀i, ∀y ∈ Y\yi : w
T δΨi(y) ≥ Δ(y,yi)− ξi,

(4)

where δΨi(y) = Ψ(xi,yi)−Ψ(xi,y), ξi are the slack variables introduced in order
to accommodate for margin violations and Δ(y,yi) is the loss function.

The optimization problem of Eq. 4 introduces a constraint for every possible
wrong clustering of the set. Since the number of wrong clusterings scales more
than exponentially with the number of items, we choose to employ the cutting
plane algorithm [15] that, starting with no constraints, aims at iteratively find-
ing the most violated one ŷi = argmaxy Δ(yi,y) −wT δΨi(y) and re-optimize
until convergence. Finding the most violated constraint requires to solve the
correlation clustering problem, which we know to be NP-hard [14]. Finley and
Joachims [11] propose a greedy approximation which works by initially consid-
ering each element in its own cluster, then iteratively merging the two clusters
whose union would produce the worst clustering score.

The learning ability of the algorithm strongly depends on the choice of the loss
function in Eq. 4, as it has the power to force or relax input margins. Given the
analogy between trajectories clustering and the noun-coreference problem [17],
we adopt the MITRE score [18] from NLP in defining the loss of Eq. 4:

Δ(yi,y) ≡ ΔM (yi,y) = 1− F1 (5)

where F1 is the harmonic mean of precision and recall computed as in [18].

3 Shape-Augmented Learning

The spatial organization of pedestrians inside groups tends to obey to patterns
that facilitate social interactions and verbal communications, while trying to
avoid collisions with in-group members and out-group pedestrians. This pat-
terns are highly dependent on the crowd density, the environment conformation
and the group speed and it’s not completely clear yet how these elements are
all correlated together. Nevertheless recent behavior analysis research has been
focusing on the formalization of such concepts. Moussäıd et al. [1] show from
real-world data that up to 70% of observed pedestrians in a commercial street
are walking in groups and provide a distribution of those groups size. Despite
the different experimental scenario, Bandini et al. [16] provide empirical results
about the frequency of group patterns which converge accordingly to the work
of Moussäıd et al. [1]. As a consequence, we think it does make sense to consider
some pattern more probable than others while searching the crowd for groups.

A peculiar consideration emerging from these studies [16] states that in dense
scenarios, people tend to rearrange in formations which allow to feel compact
and protected from out-group individuals, Fig. 3b (case B), while if space is
available people prefer to reside in a line-like shape, Fig. 3c (case B). In both
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(a) (b) (c)

Fig. 3. (a) reports the most frequent group patterns. (b) and (c) show two scenarios
where proxemic measure would produces socially implausible grouping predictions.

(a) (b)

Fig. 4. The process employed in order to obtain a shape histogram (b) from a given
group pattern (a)

cases, minimizing mutual distances among members (i.e. exploiting proxemics)
is not sufficient to produce socially plausible groups, Fig. 3b and 3c (cases A).

3.1 Modeling Shapes

In order for a group-shape descriptor to be considered effective, it should be
invariant under translation, rotation and scale, as relative distances are already
taken into account by pairwise features. Moreover it should be robust against
small variations, i.e. small differences in the group configuration should corre-
spond to small differences in the shape description.

We begin by finding the mean point C between group members and starting
from the closest one and following a counter clock-wise direction, we keep track
of the angular position of each member w.r.t. C, as shown in Fig. 4a. This
step guarantees that the scoring measure will be invariant under translation
and rotation. In order to ensure scale invariance as well, we choose to neglect
the distance between group members focusing only on their sequential angular
distance, i.e. we only measure the angular distance from one member to the next
one, yielding to the histogram reported in Fig. 4b. Note that every histogram
obtained as described above is characterized by a number of bins equal to the
number of group members and a normalization value of a turn. Shapes can now
be compared using a trivial histogram intersection measure.

3.2 Shape-Aware Loss Function

Given the social groups configurations depicted in Fig. 3a and their relative shape
histograms obtained as explained in Sec. 3.1, we propose to build a codebook
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of preferred shapes, shapebook, where each configuration is associated with an
a-priori probability of occurrence extracted from sociological studies [1][16]. The
configurations listed in Fig. 3a are only a subset of all the possible ones, but we
remark that a group can still be detected as such, even if it lays in a configuration
that we do not model. It will simply be considered less probable.

Given a possible clustering solution y, we can measure how much the de-
tected groups are sociologically conceivable by (i) finding, for each frame f in
the time window T and for the configuration sy,f of each group y ∈ y the most
similar shape s̄y,f among the ones described in the shapebook, (ii) evaluating
the similarities of their histograms through histogram intersection and by (iii)
assigning a score proportional to the probability of the group pattern s̄y,f and its
similarity with pattern sy,f . The process is synthesized in the following formula:

ΔS(y) = 1− 1

|T |
∑

y∈y

∑

f∈T
[sy,f ∩ s̄y,f ] p(s̄y,f). (6)

As shapes embody our a-priori knowledge of the problem, we want to force
them into the learning framework. To our knowledge, there isn’t any explicit
proposal in literature focused on the idea of encoding a-priori data in Struc-
tural SVM. Moreover, since we let correlation clustering define the joint feature
representation, we employ pairwise features which cannot capture global level
information such as the shape of the group they are in. Due to the impossibility
of including shapes at a feature level, we consider the loss function level, where
information about all individuals in the scene can be accessed simultaneously.
By pursuing this idea, we define the shape-aware loss function Δ(yi,y) as

Δ(yi,y) ≡ λΔM (yi,y) + (1− λ)ΔS(y). (7)

By replacing the loss function in the constraints of Eq. 4 with the one of Eq. 7,
we obtain

min
w,ξ

1

2
‖w‖2 + C

n

n∑

i=1

ξi

s.t. ∀i : ξi ≥ 0,

∀i, ∀y ∈ Y\yi : w
T δΨi(y) − (1− λ)ΔS(y) ≥ λΔM (y,yi)− ξi.

(8)

The new set of constraints state that it doesn’t matter if the margin of the
feature space isn’t optimally maximized as the classifier can also count on the
fact that poorly structured solutions will be highly penalized. This allows w to
be slightly less fit on the data, enhancing the generalization capability of the
algorithm.

Given the optimization problem of Eq. 8, questions arise on the correctness
and on the convergence of classical algorithms to solve this unconventional SSVM
problem. We modified the original cutting plane algorithm [15] and solved the
dual form of the quadratic problem of line 11 in Alg. 1 through the Sequen-
tial Minimal Optimization (SMO) approach, inspired by the work of Lee and
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Jang [19]. Let LP be the Lagrangian of the problem in Eq. 8, by differentiating
it and back-substituting we obtain its dual counterpart LD, as in Eq. 9.

max
α,β

LD(α, β) = −1

2

∑

i,y �=yi

∑

j,ȳ �=yj

αiyαjȳδΨi(xi,y)δΨj(xj , ȳ)

+
∑

i,y �=yi

αiyΔ(yi,y) +
∑

i,y �=yi

βiy(1− λ)ΔS(y)

s.t. ∀i :
∑

y �=yi

(αiy + βiy) =
C

n
, ∀i, ∀y : αiy ≥ 0, βiy ≥ 0.

(9)

The maximum of LD can be found by differentiating with respect to both α and
β, resulting in the identity λΔM (yi,y) = wT δΨi(xi,y). It can be shown that by
exploiting this equivalence, the SMO step update results as in line 8 of Alg. 2.

Algorithm 1. Cutting Plane Shape

Input: {(xi,yi)}n, C, ε
Output: w
1: Si := 0, ∀i ∈ Nn

2: repeat
3: for i := 1→ n do
4: H(y) = Δ(yi,y)−wT δΨi(xi,y)
5: ŷi = argmax

y
H(y)

6: ξi = max{
7: maxy∈Si

(1 − λ)ΔS(y),

8: maxy∈Si
H(y)}

9: if H(ŷ > ξi + ε then
10: Si ← Si ∪ {ŷ}
11: α← opt. dual over S =

⋃
i Si

12: end if
13: end for
14: until no Si changes during iteration

Algorithm 2. SMO Shape

Input: {(xi, yi)}n, S, α, C
Output: α
1: w :=

∑
i,y �=yi

αiyδΨi(xi,y)

2: repeat
3: for all (xi, ŷ) ∈ S do
4: if (xi, ŷ) violates KKT then

5: s :=
λΔM (yi,ŷ)−wT δΨi(xi,ŷ)

‖δΨi(xi,ŷ)‖2
6: sclip ← min{s, C

n −
∑

y �=yi

αiŷ}

7: sclip ← max{sclip,−αiŷ}
8: α← α + sclip
9: w ← w + sclipδΨi(xi,y)
10: end if
11: end for
12: until no αiŷ changes during iteration

Eq. 10 provides the KKT conditions of line 4 of Alg. 2 that have to be met in
order for the algorithm to converge to an optimal solution.

αiy = 0 ⇒ wT δΨi(xi,y) ≥ λΔM (yi,y)

0 <
∑

y �=yi
αiy < C

n ⇒ wT δΨi(xi,y) = λΔM (yi,y)
∑

y �=yi
αiy = C

n ⇒ wT δΨi(xi,y) ≤ λΔM (yi,y)

(10)

4 Experimental Results

We tested our system on two publicly available datasets, namely the BIWI Walk-
ing Pedestrians dataset [6] and the Crowds-By-Examples (CBE ) dataset [20].
The former records two low crowded scenes, one outside a university, named eth,
and one, hotel, at a bus stop, both shown in Fig. 5, while the latter records a
high density crowd video outside another university, student003 (stu003). As
it can be seen from Fig. 1, stu003 dataset provides some real challenge as the
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(a) BIWI hotel (b) BIWI eth

(c) CBE student003

Fig. 5. Visual results on test videos1

Fig. 6. Test results for different values
of λ on stu003

Table 1. Performance comparison in
terms of precision and recall computed
according to the MITRE [18]

our λ = 0.8 [6] [7]
P R P R P R

hotel 93.2 93.7 - - 91.3 95.9
eth 88.4 91.6 - - 83.0 80.2
stu003 85.9 86.3 46.0 82.0 80.5 77.0

density of the pedestrians is significant as well as for the presence of stairs and
multiple entry and exit points. In the test setting we trained the classifier with
one minute and two minutes of crowd videos; the trajectories were acquired on
a time window of 10 seconds with no overlap. We evaluate the impact on perfor-
mances of taking into account group shapes. The control parameter λ of Eq. 7
can be seen as a trade-off between how correct the solutions must be (accord-
ing to the training data) and how valuable are to be considered the structured
patterns within those solutions. In particular, Fig. 6 shows the accuracy trend
obtained by varying λ in the stu003 dataset, with a significant improvement at
λ = 0.8. Table 1 highlights the performance gain is more relevant in this partic-
ular dataset as the density of the crowd doesn’t allow the feature alone to easily
separate groups, suggesting it is at this level that shapes become actually inci-
sive. Moreover we compare our results with state-of-the-art methods [6][7] and
the quantitative results shown in Tab. 1 indicate that our method outperforms
all the approaches in most of the proposed videos. This is due to the use of a
sociological feature, supervised learning able to better generalize to previously
unseen scenarios and a specifically designed loss function. Our method takes
about 1 second to cluster 10 seconds of observed trajectories in an averagely
crowded scene. Fig. 5 reports a visual example of the classifier solutions.

5 Conclusions

We proposed a method for detecting small groups of pedestrian in crowd by
employing supervised structured learning and sociological theories. In particular,

1 See more video examples at http://imagelab.ing.unimore.it.

http://imagelab.ing.unimore.it
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we devised a method to encode common groups shapes as a-priori knowledge.
Results prove the effectiveness of adopting a social perspective on the task as our
method outperforms current state of the art work. This project was supported
by Modena local police and Softech ICT center of Regione Emilia Romagna.
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