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Abstract. In the field of computer aided celiac disease diagnosis, wide-angle
endoscopy lenses are employed which introduce significant barrel type distor-
tions. Although the images can be rectified using distortion correction methods,
computer based diagnosis suffers from missing information in highly distorted
image regions. First, we investigate the impact of simple and advanced interpo-
lation techniques on the classification rates. Furthermore we explore the effect
of considering different image resolutions. Whereas in previous studies distor-
tion correction in most cases turned out to be disadvantageous, we show that for
certain setups distortion correction definitely is advantageous.
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1 Introduction

Celiac disease [11] is an autoimmune disorder which affects the small intestine in ge-
netically predisposed individuals after introduction of gluten containing nutrient. Char-
acteristic for this disease is an inflammatory reaction in the mucosa of the small bowel
caused by a dysregulated immune response triggered by ingested gluten proteins. Dur-
ing the course of celiac disease the mucosa loses its absorptive villi and hyperplasia of
the enteric crypts occurs leading to a diminished ability to absorb food. According to a
study [2], the overall prevalence in the USA in not-at-risk groups was 1:133 .

Computer aided celiac disease diagnosis relies on images taken during endoscopy.
The employed cameras are equipped with wide angle lenses, which suffer from a signif-
icant amount of barrel type distortion. Whereas the distortion in central image pixels can
be neglected, peripheral regions are highly distorted. Thereby, the feature extraction as
well as the following classification is compromised. Based on camera calibration, dis-
tortion correction (DC) techniques are able to rectify the images. However, although
the barrel type distortion can be undone, especially in peripheral regions there remains
a lack of information, as the DC method stretches the image. The lack of information
has to be compensated using an interpolation technique.

In recent studies, the impact of barrel type distortion [9] and distortion correction
[5] on the classification rate of celiac disease endoscopy images was investigated. The
authors have shown that image patches in peripheral regions, which are more strongly
affected by the distortion are more likely to be misclassified. However, with distortion
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correction, the classification rate on average even suffers. In [4], different distortion
correction techniques have been investigated.

In this paper, priority is given to the following aspects:

– Interpolation: First, different interpolation methods are investigated. Not the vi-
sual quality, but only the classification rate is our interest. Apart from the simple
and commonly used bilinear and nearest neighbor interpolation, we investigate a
Lanczos filter which effectively imitates the perfect low pass filter. Moreover, a
(non-linear) edge preserving method is analyzed.

– Scale: Furthermore, we investigate the impact of the image scale on the classifica-
tion rate. For all features a setup is chosen, that only pixels in the 8-pixel neigh-
borhood are considered. These features are adjusted implicitly, by downscaling the
input image. We know that distortion correction in a small neighborhoods (achieved
with the original image), mostly does not improve the performance. However, we
suspect that by downscaling the image, the profit of distortion correction could be
increased and thereby a benefit in the classification performance might be achieved.

The paper is organized as follows: In Sect. 2, the problems of DC based feature
extraction are explained. In Sect. 3, the utilized DC method, the different interpolation
methods and the used features are explained. In Sect. 4, experiments are shown and the
results are discussed. Section 5 concludes this paper.

2 Motivation – Problems within Distortion Correction

Distortion correction of barrel type distortions is known to effectively rectify the ge-
ometrical properties of images taken with wide angle or fish eye lenses. Visually, the
distortion corrected images seem to be better suited for classification of computer based
celiac disease diagnosis than the distorted images. However, there are certain inadequa-
cies which arise if DC is applied. Whereas the images are geometrically corrected, in
case of considering small details (i.e. texture), new problems are introduced.

Intuitively, the probability of a feature or of single characteristics of a feature should
be uniformly distributed over all coordinates of the image. For example this condition
could be violated in case of systematic sensor faults. Distortion correction, is another
source for a violation of the mentioned condition.

We utilize images taken with the same endoscope and we compute pixel based prop-
erties (which are also included in features), for each pixel in all images. Afterwords,
the average of the features for each coordinate over all images is calculated, to get the
mean for each point. Having a large number of images, the resulting data should be
approximately homogeneous. A high degree on inhomogeneity indicates an anomaly.

As an example, we visualize a property which is a part of the well known local
ternary patterns (LTP [14]). Especially, we consider the probability that the pixel above
the current pixel has approximately (±2) the same value as the current pixel. In Fig. 1,
the distributions of this certain property are given for the original (Fig. 1a) and for the
distortion corrected image (with different downscaling factors: Fig. 1b-1d). A similar
behavior can be achieved not just with the mentioned property, but with many others too
(e.g. LBP [12], ELBP [8]). In the original image, apart from slight stripes (caused by
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(a) Original image (b) DC image
(original size)

(c) DC image
(downscaling factor 2)

(d) DC image
(downscaling factor 4)

Fig. 1. Distribution of the upper sample of local ternary patterns: Especially we consider the
occurrences of the sample value equaling approximately (±2) the center value

(a) x-Distance (b) y-Distance

Fig. 2. The distances to the next sample point in interpolation within DC are represented by gray
values. A dark region corresponds to a small distance and vice versa.

the sensor), the property is approximately uniformly distributed. In the DC images, the
property definitely is not approximately uniformly distributed, however, with downscal-
ing the uniform distribution can be recovered. With blurring after applying the distortion
correction, a similar behavior can be achieved. For these experiments, we utilized bi-
linear interpolation within distortion correction as done in previous studies [9,5,4]. We
identified two major issues which occur in distortion correction:

– Interference patterns
Especially in central, but also in peripheral regions strange (interference) patterns
can be observed (Fig. 1b).
Explanation: During interpolation (needed in rasterization), some required pixel
values are near to real sample pixel values in the original image. In opposite, oth-
ers are approximately in the middle of four sample pixels. The problem in distor-
tion correction is the following: Whereas in the first case, edge frequencies are
maintained quite effectively, in the second case the edges are blurred during inter-
polation. In Fig. 2, the distances of interpolation coordinates to the next sample
coordinates are visualized. It can be seen, that the pattern shown in Fig. 2b, can
also be recognized in the averaged feature images (Fig. 1b).

– Contrast between center and peripheral regions
Apart from the mentioned patterns, a significant difference between central and
peripheral regions can be observed with some feature properties.
Explanation: In central image regions, the image is not changed significantly within
DC. But in peripheral image regions, the original image has to be stretched strongly,
in order to rectify the barrel type distortion. The stretching results in a decrease of
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high frequencies which is visualized in Fig. 3. These figures show the average local
frequencies, contained in the distorted (Fig. 3a) and in the distortion corrected im-
ages (Fig. 3b) with reference to the distance to the center of distortion. Therefore,
we computed the local discrete Fourier transform (with window size 16×16) for all
of our endoscopy images and for all pixels. Then we averaged all Fourier spectra
having the same distance to the center of distortion. In Fig. 3 (a) and (b), for each
frequency (corresponds to a ring in the 2-D Fourier domain) on the x-axis and for
each distance to the center of distortion (y-axis), the logarithmic average value of
the Fourier power spectrum is given. In order to emphasize on the differences, in
Fig. 3c, we subtracted the distortion corrected from the distorted frequency image.
In this image, it can be seen, that with an increasing distance to the center of dis-
tortion, especially high frequencies are decreasing in case of distortion correction.
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Fig. 3. Local DFT: These figures show averaged local frequencies. On the x-axis the frequencies
(a low value corresponds with a low frequency and vice versa) and on the y-axis the distances
from the center of distortion are given.

3 Theory

3.1 Distortion Correction

We utilize the distortion correction method based on the work of Melo et al. [10]. In
this approach, the circular barrel type distortion is modeled by the division model [3].
Having the center of distortion x̂c and the distortion parameter ξ, an undistorted point
xu can be calculated from the distorted point xd as follows:

xu = x̂c +
(xd − x̂c)

||xd − x̂c||2 · ru(||xd − x̂c||2) . (1)

||xd − x̂c||2 (in the following rd) is the distance (radius) of the distorted point xd

from the center of distortion x̂c. The function ru defines for a radius rd in the distorted
image, the new radius in the undistorted image:

ru(rd) =
rd

1 + ξ · r2d
. (2)

Figure 4 shows a distorted and the corresponding undistorted image of a checker-
board pattern.
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(a) Original image (b) DC image

Fig. 4. Distorted and undistorted image of a (planar) checkerboard pattern

3.2 Interpolation Techniques in Distortion Correction

In order to get a rasterization after applying a distortion correction method, an inter-
polation method must be applied. We investigate the following techniques, which are
identified to have quite different properties:

– Bilinear interpolation
– Nearest neighbor interpolation
– Lanczos interpolation

The Lanczos filter [1] with a = 3 is known to imitate the perfect low pass filter
(sinc) quite effectively and reduces ringing artifacts. With this filter, the available
frequencies are retained, whereas aliasing is avoided.

– Edge preserving interpolation
The Lanczos filter is known to retain the available frequencies. However, in this
case due to the stretching of the image in peripheral regions, high frequencies (sharp
edges) are missing after undistortion. Consequently, maintaining the available fre-
quencies is not enough to reconstruct the real edge information. Therefore, an edge
preserving interpolation method [15] has been implemented. Unlike usual (linear)
interpolation kernels, with this nonlinear approach the behavior of the interpola-
tion depends on the image properties. Near edges, high frequencies are encouraged
(similar to nearest neighbor interpolation), whereas smooth regions are retained
smooth (similar to linear interpolation).

In Fig. 5, a perfect (undistorted) checkerboard pattern (Fig. 5a - 5d) and a smooth
gray value gradient image (Fig. 5e - 5h) are undistorted (leads to an inverse distortion)
and the different interpolation techniques are applied. Whereas from the first images,
the ability of edge preservation, from the second image the ability of preserving smooth
gradients can be deduced visually. Although undistorting an undistorted image is not a
sensible application, the differences of the interpolation methods can be seen well with
artificial images. The major positive (+) and negative (–) properties of the interpolation
techniques are outlined in Table 1. It can be seen, that the chosen methods have quite
different strengths and weaknesses.
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(a) Bilinear (b) Nearest n. (c) Lanczos (d) Edge pres.

(e) Bilinear (f) Nearest n. (g) Lanczos (h) Edge pres.

Fig. 5. The impact of the different interpolation methods on a distorted checkerboard pattern (top
row) and a smooth gray value gradient image (bottom row)

Table 1. Properties of interpolation methods

Bilinear Nearest n. Lanczos Edge pres.
edge preservation – + o +
smoothness + – + o
avoid ringing + + o +

3.3 Features in Classification

In order to investigate the feature extraction methods with differently downscaled im-
ages, all of our features are adjusted, to operate only in the direct neighborhood (only
the 8 neighbors are considered). For the experiments, the following features are used:

– Local binary patterns [12] (LBP): This features is used with a radius (i.e. the
distance to the neighboring samples) of 1 and 4 (LBP4) and 8 (LBP8) neighboring
samples, respectively.

– Local ternary patterns [14] (LTP): This feature is used with a radius of 1 and with
8 neighbors. The threshold, which has been evaluated during exhaustive search, is
set to 1.

– Extended local binary patterns [8] (ELBP): As LBP, ELBP is used with a radius
of 1 and 8 neighbors.

– Gray level co-occurrence matrix [6] (GLCMP): The feature vector consists of
the Haralick features [6] contrast, correlation, energy and homogeneity of the gray
level co-occurrence matrices with different offset vectors. In order to focus on small
neighborhoods (as above), the offset vectors (0, 1)T , (1, 0)T , (1, 1)T , (1,−1)T

have been chosen for creating the matrices.
– Edge co-occurrence matrix [13] (ECM): To get the ECM, first the orientations

of all local image gradient quantized to 8 directions have to be evaluated. Whereas
non-edge pixels (this is determined using the canny-edge detector) are ignored, with
the orientation-labels (1 to 8) of edge pixels, the gray level co-occurrence matrix is
computed (as above). As ECM feature vector the whole matrix is used.



Distortion Correction in Celiac Disease Classification 519

4 Experiments

4.1 Experimental Setup

The image test set used contains images of the duodenal bulb taken during duodeno-
scopies at the St. Anna Children’s Hospital using pediatric gastroscopes (with resolution
768× 576 and 528× 522 pixels, respectively). In a preprocessing step, texture patches
with a fixed size of 128 × 128 pixels were manually extracted. The size turned out to
be optimally suited in earlier experiments on automated celiac disease diagnosis [7]. In
case of distortion correction, the patch position is adjusted according to the distortion
function. Downscaling with bicubic interpolation is executed after patch extraction (i.e.
the considered regions are always the same, only the resolution differs). To generate the
ground truth for the texture patches used, the condition of the mucosal areas covered by
the images was determined by histological examination from the corresponding regions.
Severity of villous atrophy was classified according to the modified Marsh classifica-
tion scheme [11]. Although it is possible to distinguish between the different stages of
the disease (called Marsh 3A-3C), we only aim in distinguishing between images of
patients with (Marsh3A-3C) and without the disease (called Marsh0). We decided for
this policy, because the two classes case is more relevant in practice. Our experiments
are based on a database containing 163 (Marsh 0) and 124 (Marsh 3A-3C) images,
respectively. Example texture patches are shown in Fig. 6. For classification, we use
the k-nearest-neighbor classifier. This rather weak classifier has been chosen to empha-
size on quantifying the discriminative power of the features proposed in this work. To
avoid any bias in the results, leave-one-patient-out cross validation is utilized. We eval-
uated all different combinations of downscaling factors and interpolation techniques.
We also considered previously blurring in combination with downscaling, but thereby
the achieve classification results can not be improved. Moreover, different interpolation
techniques within image resizing did not lead to significantly different rates.

(a) Marsh 3A-3C (b) Marsh 0

Fig. 6. Example patches of patients with (left) and without the disease (right)

4.2 Results

In Fig. 7a - 7f, the achieved classification rates with the different features and differ-
ent image resolutions can be observed. Whereas the bold lines represent the approach
without distortion correction, the different thin lines stand for different interpolations
within distortion correction. In all figures can be seen, that the original approach (i.e.
without distortion correction) is beneficial in case of the original image size (left most
points). However, with increasing downscaling factor, in general the classification rates
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(a) LBP8 (8 sample points)
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(b) LBP4 (4 sample points)
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(c) ELBP
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(d) ECM
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(e) LTP
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(f) GLCMP

Fig. 7. The plots show classification rates achieved with the considered features. Especially, the
dependency of the scaling factor (x-axis) and the different interpolation methods (thin lines) can
be seen.

with distortion correction are increasing compared with the approach without DC. For
each feature, downscaling factors exist, for which DC is beneficial (points where all
thin lines are above the thick line). If the discriminative power of the feature benefits
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from the slight image downscaling (factors 2 and above), then the distortion correc-
tion has a positive effect on the classification rate as shown in Fig. 7b, 7d, 7e and 7f.
With the features LBP4, ECM and LTP the best overall classification rates are achieved
with distortion correction and a moderate downscaling factor (between 1.5 and 2.0).
With GLCMP, the best rate is achieved with distortion correction and a high down-
scaling factor (4.0). Especially using the GLCMP feature, a considerable performance
increase (considering all downscaling factors) can be observed. Otherwise, if the classi-
fication rate falls significantly with the downscaling factor, the best classification rate is
achieved without DC (Fig. 7c: With ELBP the classification rate strongly falls between
downscaling factors 1.5 to 3).

4.3 Discussion

A positive effect of distortion correction can be observed, especially when the images
are downscaled. Downscaling the image implies, that pixels which a higher displace-
ment (in the original image) are considered. Consequently, high frequencies (i.e. sharp
edges) in the image are no longer extracted. Instead, with the downscaled images, lower
frequencies are extracted by the feature. With the original images, distortion correction
in general does not provide better results. A reason for this behavior is, that the regarded
high frequencies are destroyed by the image stretching of the DC method in peripheral
regions. With downscaled images, the geometric context and low frequencies are getting
more important than high frequencies (sharp edges). Therefore, the distortion correction
has a beneficial effect on the classification rate. The enhanced interpolation methods do
not imply significantly better classification results. As distortion correction on original
images is disadvantageous, the missing information cannot be compensated effectively
even by the enhanced methods.

5 Conclusion

If images are downscaled, a positive effect of distortion correction can be observed. That
means, distortion correction is especially sensible, if the classification rate utilizing a
specific feature benefits from the downscaling (e.g. with the gray level co-occurrence
matrix). Using feature extraction methods which suffer strongly from downscaling (e.g.
ELBP), distortion correction does not improve the best classification result. The differ-
ence between the interpolation techniques is quite small. Even with the more sophis-
ticated methods (the Lanczos and the edge preserving method [15]) no significant im-
provement of classification rates can be achieved (compared to the very simple bilinear
and nearest neighbor interpolation). We showed that high frequencies cannot be main-
tained with any interpolation method, whereas the lower frequencies are maintained
with each of the investigated interpolation techniques.
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12. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with clas-
sification based on feature distributions. Pattern Recognition 29(1), 51–59 (1996)

13. Rautkorpi, R., Iivarinen, J.: A novel shape feature for image classification and retrieval. In:
Proc. of the International Conference on Image Analysis and Recognition (ICIAR), pp. 753–
760 (2004)

14. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult
lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS,
vol. 4778, pp. 168–182. Springer, Heidelberg (2007)

15. Wang, F., Xu, Y., Zhao, Y., Hu, F.: A new nonlinear interpolation algorithm for edge preserv-
ing. In: 2010 International Conference on Multimedia Technology (ICMT), pp. 1–4 (October
2010)


	Problems in Distortion Corrected Texture Classification and the Impact of Scale and Interpolation
	1 Introduction
	2 Motivation – Problems within Distortion Correction
	3 Theory
	3.1 Distortion Correction
	3.2 Interpolation Techniques in Distortion Correction
	3.3 Features in Classification

	4 Experiments
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion

	5 Conclusion
	References




