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Abstract. Perona–Malik diffusion is a well-known type of nonlinear diffusion
that can be used for image segmentation and denoising. The process itself needs
an parameter k to decide which edges will be retained and which can be blurred
and a stopping time tS . Although there have been investigations on how to set
these parameters, especially for regularized diffusion models, as well as different
criteria for the optimal stopping time have been suggested, there is yet no quick
and conclusive way to estimate both parameters – or to reduce the search space
at least. In this paper, we show that Gaussian noise characteristics of an image
and the diffusion parameters for an optimal optical result can be estimated based
on the image histogram. We demonstrate the effectiveness of lazy learning in this
area and develop a custom feature weighting algorithm.

1 Introduction

In 1990, Perona and Malik proposed nonlinear diffusion as a model mainly for image
segmentation in a scale-space process [10]. It has been shown that this model can also be
used for denoising. The model itself is expressed through a partial differential equation
(PDE): It = div(c(||∇I||)∇I) with I(x, 0) = I0(x), where Ω ⊂ R

2
+ denotes the

picture domain, I : Ω → R+ the intensity mapping for gray scale images, x ∈ Ω, and
appropriate boundary condition are taken. Furthermore, Perona and Malik introduced
conduction coefficient functions expressed by c. The proposed explicit functions are

c1(||∇I||) = exp
(
− (||∇I||/k)2

)
and c2(||∇I||) =

(
1 + (||∇I||/k)2

)−1

.

Of utmost importance is the parameter k. It can best be described as an gradient
threshold. When we investigate the derivative of the flux function

Φ(∇I) = ∇I · c(||∇I||), (1)

we notice that with c1 for edges with ||∇I|| > k, we experience backwards diffusion,
for ||∇I|| ≤ k forward diffusion. On the one hand the backwards diffusion leads to edge
enhancement [10,4,2,6,13], but also creates the problem of ill-posedness and image
segmentation, which is not desirable for denoising.

2 Related Work

Different methods to estimate or determine k and tS have been investigated. For k, Per-
ona and Malik proposed in [10] a method: in each iteration, take the Quantile p0.9 of the
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gradient histogram as k. Of course, this approach was meant for image segmentation,
not denoising.

In the total variation image processing domain, the constrained optimization ap-
proach of Rudin et al. [12] avoids the problem of stopping time estimation – at the
cost of a Lagrangian multiplier that has to be chosen. Convergence of the PDE then
yields the desired minimal energy and optimized image [6,5].

Although the choice of k is such an important issue in nonlinear diffusion, not much
research has been done in the area lately. Today, there are mostly simple histogram-
based and morphological approaches. Histogram-based methods include the mentioned
Canny algorithm which changes k in each iteration or a simple quadratic approximation
of k by the image’s average gradient as carried out in [14]. This is an interesting and yet
simple approach; however, the formula is only based on two images. A quick experiment
using our training set with ca. 130 images reveals that the method cannot be generalized.

In [16], Voci et al. proposed estimating the gradient threshold by the gradient his-
togram’s p-Norm. For this, they introduced a new parameter σ for weighting the p-
Norm. In effect, we get an histogram-based method again. Their morphological method,
in contrast, compares the image opening and closing, thus estimating the average noise
quantity and in the end, k.

An interesting approach, similar to the Canny method can be found in [7]. This
method does not take the full histogram into account. Instead, it ranks blocks of a given
window size w by a defined homogeneity and only regards the most inhomogeneous
blocks for parameter estimation.

Weickert introduced his coherence enhancing diffusion and discussed the choice of
the parameters - like a suitable stopping time tS of the process [17]. Mrazek and Navara
developed a time-selection strategy for iterative image restoration techniques: the stop-
ping time is chosen such that the correlation of signal and noise in the filtered image
is minimized [8]. Gilboa et al. used SNR Analysis [1] which was shown to be quite
effective with respect to maximizing the SNR, but the SNR is per se not a good indica-
tor for the subjective quality of an image as perceived by a human. This issue has been
investigated by Wang et al. in [9] who developed the structural similarity index SSIM.
The resulting index is a good approximation of the human visual system, as discussed
by Ndajah et al. [9]. In this paper, we will concentrate on estimating parameters which
will maximize the SSIM.

Different to the mentioned authors, we try to give a priori estimates for the parame-
ters, not an a posteriori stopping criterion.

3 Parameter Estimation

In this section, we present for estimating the mentioned parameters. The first method is
reducing the parameter space such that brute force parameter search becomes feasible.
When an explicit model, on the other hand, is required, we show a simple machine
learning method that is able to give reasonable estimates for a given input image.

3.1 Parameter Space Reduction

In [15], we present a new model for nonlinear diffusion that is constructed for efficient
denoising and well-posedness. Although it requires again the parameter pair (k, tS),
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we could show that the range of k values is significantly smaller than with the original
Perona and Malik model. All images in our test set had the optimal parameter k in the
range of [6, 12] which results in acceptable denoising for a constant value k = 9.

3.2 Machine Learning Methods

Machine learning methods are usually categorized into lazy learning and eager learn-
ing. When applying lazy learning, an agent usually works with a training set of classified
instances and compares them with a given, unclassified instance. The main methods in
this field are nearest neighbour-based algorithms.

In eager learning, the learning algorithm usually gets the database as an input once
and derives an algorithm for classifying from this data. Afterwards, a given example can
be classified with respect to the learned model. While eager learning has the advantages
of needing less memory and being able to reduce the influence of noise in the data, lazy
learning techniques are especially useful when the data has no simple underlying model
that can be learned by common machine learning algorithms.

In the remainder of this paper we show that for the estimation of k, no easy model
can be derived. Hence we are restricted to lazy learning techniques. In contrast to that,
when estimating the stopping time tS methods from both classes work almost equally
well.

3.3 Data Structure

For all machine learning experiments, we need to create input data from a set of im-
ages as training or test data. A prerequisite for this process is to define the feature set
for the input training data set. In contrast to [17], we focus on a histogram approach:
Each gray scale image is transformed in a intensity histogram and a gradient magnitude
histogram. After that, we interpret both histograms as a statistical distribution and use
these standard descriptors for characterizing the distribution:

– Quantiles
{
p 1

8
, p 1

4
, p 1

2
, p 3

4

}

– Average value
– Median value
– Standard deviation

These result in a (14 + 1)-dimensional space. Hence, each dimension is called an at-
tribute or feature of an instance, which is a n-tuple of values, one for each attribute and
one for the parameter k or tS . For later sections, we will denote the set of all attributes
by A. The 15th dimension is the dimension of the value that shall be estimated, e.g.
k. Our used training set contains 128 images in different categories, mainly from the
Berkeley Segmentation database. The test set contains 10 images (see Fig. 3) not in the
training set.

Interestingly, in most publications, the authors conclude that structural information
is required to estimate good parameter values. In contrast to that, our results show that
the simple histogram approach does a reasonable job while being relatively simple.



214 D. Thuerck and A. Kuijper

3.4 Estimating Noise Variance

In this paper, we assume a Gaussian noise model with zero mean as underlying noise
model for our images. For our numerical experiments, the noise variance will be dis-
cretized in a set of classes: {0.001, 0.005, 0.01, 0.05, 0.1}. To the human vision system,
a higher noise variance is commonly perceived as stronger noise. For denoising purposes,
this usually means that more iterations of the denoising process must be executed. Hence,
the estimation of an image’s noise variance is a prerequisite for estimating tS .

For noise estimation, we used a simple regression tree algorithm with alternating
growing and pruning, using randomly chosen 2

3 of the data for growing in each iteration.
The error measurement is carried out using the mean squared error metric. A leaf’s value
is then the average variance of all instances in the leaf.

When using the resulting model for classifying the test set presented in the next sec-
tions, we can estimate the correct value in 90% of all cases. Of course, this might be
due to the discretized classes. This weakness can be improved by interpolating between
classes or by using more complex regression tree algorithms like M5P [11] which cre-
ate linear functions for each leaf. However, a 90% success rate is sufficient for our
following tasks. The value can be used as a 16th dimension in the parameter estimation
process or for inducing convergence in the denoising process (see [15]).

Average gradient magnitude ≤ 51.87

Average gradient magnitude ≤ 32.94

Average gradient magnitude ≤ 20

Gradient magnitude quantile p 1
4
≤ 15

v = 0.001 v = 0.005

v = 0.01

v = 0.05

v = 0.1

Fig. 1. Example regression tree for estimating noise variance v for a given image, trained on our
training set

3.5 Estimating k

Unfortunately, the estimation of k is not quite as easy as the variance. If we plot k
against each one of our features, most plots are likely to resemble normal distributions.
Therefore, there is no usable information which could be used with regression algo-
rithms. Experiments with our regression program verify that claim: The data is at most
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distributed in 2 leafs which would result in a binary choice for k. This is also the reason
why the approach of Shao and Zou cannot work: There is no quadratic interpolation
model for the correlation of average gradient, we can only recognize the different vari-
ance classes in a plot of k over the average gradient. This fact can be proven by using
an regression algorithm based on a quadratic model. Additionally, additive regression
or other ensemble techniques as boosting do not work. In fact, none of the classifiers
provided by the WEKA [3] framework deliver a satisfying model.

This insight leads to the necessity of using a lazy learning technique, for example
a simple nearest neighbor (NN) method. In this algorithm, all features or attributes
a ∈ A for a given image are calculated. Afterwards, we compute the distance between
two instances by an modified euclidean metric

d(x, y) =

√∑
a∈A

(ax − ay)2. (2)

as a combination of the distances of two instances’ attributes. However, as most at-
tributes usually have different orders of scale - e.g. the average gradient may be around
32, while the intensity Quantile pi0.75 is 160 - thus leading to an unwanted implicit
attribute weight in the naive approach. A first solution here is to normalize all attributes
to [0, 1]. Normalized attributes will be denoted by â, leading to the metric

d(x, y) =

√∑
a∈A

(âx − ây)2. (3)

where all attributes share the implicit weight 1. Equation (6) shows the metric that is
used in simple nearest neighbor methods in our experiments (

”
1NN“ and

”
4NN“ where

x in xNN is the number of nearest neighbors whose values are included in calculating
the estimation).

Up to here, our technique uses equal weights for all attributes of a histogram. As
explained before, some attributes are normally distributed when plotting their rela-
tion to k. Hence, those attributes deliver less information in the sense of entropy than
non-normally distributed attributes. This motivates our attribute weighting method: At-
tributes which contain more information about the distribution of k receive a higher
weight than others. We will measure the amount of transferred information by the dis-
crete entropy.

After Shannon, the entropy of a discrete random variable X over an alphabet Z =
{z1, z2, ...} is defined as H(X) = −∑

z∈Z P (X = z) · log2 P (X = z).In the appli-
cation, we discretize the values of each attribute in 256 values, resulting in the alphabet
{0, 1, ..., 255} and calculate the attribute’s entropy. Afterwards, the entropy value is di-
vided by the entropy of a normal distribution, which is in this case log2 256 = 8. The
derived formula for the weights is now

wa = 1− H(a)

8
(4)

which results in our entropic distance metric

d(x, y) =

√∑
a∈A

wa(âx − ây)2. (5)
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The metric can be explained intuitively: An attribute that has a lower entropy value
will usually reveal more regularities in contrast to the normal distribution. Hence, an
attribute with lower entropy should be weighted stronger in the distance measure. The
comparison with the normal distribution’s entropy is only for normalizing purposes.

After calculating the distance to all images in the database, those images are ranked
after their distance, low distances first. To estimate k, the values of the first n nearest
neighbors is simply averaged. Here again, we can introduce weights in the average to
penalize higher distances. In our experiments, a weight 1

d2 with d being the distance,
delivered the best results.

This entropic measure will be called nENN with n as the number of instances that
are involved in the averaging process.

3.6 Estimating tS

Having k fixed, we usually get a development for the image quality as depicted in Fig.
2. The image quality (independent of used metric) has a single global maximum at a
given time tS which we call optimal stopping time. For all t > tS , the image quality
decreases; convergence is not guaranteed. Apart from estimating k, the next task is now
estimating the ideal stopping time.
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Fig. 2. Typical image quality development (SSIM [9]) in time when applying a diffusion model
(here from [15])

The problem is very similar to the problem explained above: Scatter plots show that
there also is no trivial model for tS . Hence we need to use our learning techniques from
above again; the technique can be applied without further changes. Interestingly, experi-
ments show that the eager learner M5P delivers results of nearly the same quality for the
test set as the entropic lazy learning techniques. For M5P, a linear model with an under-
lying regression tree of 2 classes was used. As a minimum occupancy per node, we chose
n = 100; the model was created using the machine learning framework WEKA [3].

4 Numerical Experiments and Comparison

All learning algorithms mentioned above were tested on a test set of 10 images, none
of those contained in the training set (see Fig. 3). We tried to concentrate on pictures
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which were not taken for testing purposes, as this shows the performance of our method
in practical use. All images were scaled to 512 pixels on the larger side and saved as
binary PGM.

The variance levels used for noise on the test set were {0.005, 0.05}. For each pic-
ture, we determined optimal parameters (k, tS) for each image and variance levels us-
ing brute force to optimize the SSIM. The metric used for image quality measure is the
SSIM [9]. The SSIM offers an human vision system-based quality metric that penalizes
noise as well as blur [9]; just notice that the SSIM is normalized to [0, 1] and equal
images result in an SSIM of 1.

The Perona Malik filter itself is discretized as explained in [10] as a simple finite
differences lattice model and implemented in pure C. The resulting programs are con-
nected to MATLAB via the MEX interface. For testing purposes, we benchmarked the
algorithms 1ENN, 4ENN, 1NN, 4NN, M5P and Shao [14], with abbreviations explained
above.

Fig. 3. Images in test set in the order of their reference number

4.1 Estimation Performance for k and tS

As the short statistical evaluation for k (Table 1) and tS (Table 2) show, for the ks
in an interval of [32,111], all methods deliver a quite good estimation. Although the
average performance is comparable, the standard nearest neighbour methods 1NN and
4NN tend to have outliers, e.g. Fig. 5. The ENN methods, on the other hand, present a
constant estimation performance, preventing extremely wrong results.

When comparing the number of data points used for estimation, the entropic method
improves in performance with a highern. Further experiments have shown that increasing
n beyond 4 does not yield a significant improvement in the estimation performance. In
the light of this result, we recommend two combinations for parameter setting:

1. 1ENN for k, 4ENN for tS
2. 4ENN for k, 4ENN for tS

as 1ENN and 4ENN are likewise suited for k estimation. Both methods and their SSIM
results are compared in the next section.
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4.2 Denoising with Estimated Parameters

After evaluating the estimated parameters in contrast to the optimised parameters, we
shall now proceed to investigate the effects of estimation errors on the image denoising

Table 1. Statistical evaluation of k estimation methods

Quantity 1ENN 4ENN 1NN 4NN M5P Shao
average absolute error 11.15 11.19 17.55 21.6 51.45 35.57
average relative error 0.18 0.19 0.36 0.48 0.8 0.58
absolute error span 0-30 2-27 3-79 2-91 14-95 19-60
relative error span 0-0.3 0-0.39 0-1.6 0-2.9 0.65-1 0.53-0.65

Table 2. Statistical evaluation of tS estimation methods

Quantity 1ENN 4ENN 1NN 4NN M5P
average absolute error 5.3 4.5 7.7 5.79 5.67
average relative error 0.52 0.39 0.71 0.52 0.19
absolute error span 0-24 0-13 0-27 0-24 2-44
relative error span 0-3.5 0-1.43 0-3.5 0-1.4 0.34-0.56
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(a) 1ENN for k, 4ENN for tS
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(b) 4ENN for both k and tS

Fig. 4. SSIM results for denoising with 2 parameter estimation methods. For each test images,
we present two bar groups: One for variance 0.005 and one for variance 0.05, where in turn
each group consists two bars, denoting the result of the application of the estimated and optimal
parameters.
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Fig. 5. Testing images #8,#7,#5: two typical cases and #5 as worst case, i.e. worst estimation. Top
row: optimal parameters, bottom row: estimated parameters.

process. As mentioned above, the denoising success is measured by an increase of the
denoised image’s SSIM. When looking at bar charts Fig. 4 (a) for method 1 and (b) for
method 2, we can see that the errors from estimation result in only small SSIM deficits.
Altogether, the estimated values provided almost equal denoising as the optimised pa-
rameters. It is obvious that higher estimation errors lead to higher SSIM deficits, but for
a quick estimation, our methods perform well. If one wants to optimise the SSIM, our
estimates can be used as bounds for reducing the parameter search space by over 70%.

5 Conclusion

This paper has investigated the use of different machine learning techniques for Perona
and Malik parameter estimation. An entropy-based distance measure was developed
and used for estimation, which resulted in parameter combinations that led to denoised
images of a quality comparable to the image denoised with optimal parameters. Differ-
ent estimation methods were compared, with 4ENN winning the overall comparison.
Its underlying database can be gradually improved by adding new images, making it
possible to create even better approximations. The methods itself can also be applied to
other denoising processes.
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