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Abstract. Accurate prediction of future onset of disease from Electronic
Health Records (EHRs) has important clinical and economic implica-
tions. In this domain the arrival of data comes at semi-irregular intervals
and makes the prediction task challenging. We propose a method called
multiplicative-forest point processes (MFPPs) that learns the rate of fu-
ture events based on an event history. MFPPs join previous theory in
multiplicative forest continuous-time Bayesian networks and piecewise-
continuous conditional intensity models. We analyze the advantages of
using MFPPs over previous methods and show that on synthetic and
real EHR forecasting of heart attacks, MFPPs outperform earlier meth-
ods and augment off-the-shelf machine learning algorithms.

1 Introduction

Ballooning medical costs and an aging population are forcing governments and
health organizations to critically examine ways of providing improved care while
meeting budgetary constraints. A leading candidate to fulfill this mandate is the
advancement of personalized medicine, the field surrounding the customization
of healthcare to individuals. Predictive models for future onset of disease are the
tools of choice here, though the application of existing models to existing data
has had mixed results.

The research into improvements in predictive modeling has manifested in two
main areas: better data and better models. Electronic health records (EHRs) now
provide rich medical histories on individuals including diagnoses, medications,
procedures, family history, genetic information, and so on. The individual may
have regular check-ups interspersed with hospitalizations and medical emergen-
cies, and the sequences of semi-irregular events can be considered as timelines.

Unlike timelines, the majority of models incorporating time use a time-series
data representation. In these models data are assumed to arrive at regular
intervals. Irregular arrivals of events violate this assumption and lead to miss-
ing data and/or aggregation, resulting in a loss of information. Experimen-
tally, such methods have been shown to underperform analogous continuous-time
models [1].

To address the irregularity of medical event arrivals, we develop a continuous-
time model: multiplicative-forest point processes (MFPPs). MFPPs model the
rate of event occurrences and assume that they are dependent on an event history
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in a piecewise-constant manner. For example, the event of aspirin consumption
(or lack thereof) may affect the rate of myocardial infarction, or heart attack,
which in turn affects the rate of thrombolytic therapy administration. Our goal
is to learn a model that identifies such associations from data.

MFPPs build on previous work in piecewise-constant conditional intensity
models (PCIMs) using ideas from multiplicative-forest continuous-time Bayesian
networks (mfCTBNs) [2,3]. MFPPs extends the regression tree structure of
PCIMs to regression forests. Unlike most forest learning algorithms, which min-
imize a classification loss through function gradient ascent or ensembling, MF-
PPs are based on a multiplicative-forest technique developed in CTBNs. Here, a
multiplicative assumption for combining regression tree values leads to optimal
marginal log likelihood updates with changes in forest structure. The multi-
plicative representation allows MFPPs to concisely represent composite rates,
yet also to have the flexibility to model rates with complicated dependencies. As
the multiplicative forest model leads to representational and computational gains
in mfCTBNs, we show that similar gains can be achieved in the point process
domain. We conduct experiments to test two main hypotheses. First, we test for
improvements in learning MFPPs over PCIMs, validating the usefulness of the
multiplicative-forest concept. Second, we assess the ability of MFPPs to classify
individuals for myocardial infarction from EHR data, compared to PCIMs and
off-the-shelf machine learning algorithms.

Specifically we address two modeling scenarios for forecasting: ex ante (mean-
ing “from the past”) forecasting and supervised forecasting. An ex ante forecast
is the traditional type of forecasting and occurs if no labels are available in the
forecast region. An example of ex ante forecasting is the prediction of future
disease onset from the present day forwards. Acquiring labels from the future
is not possible, and labels from the past may introduce bias through a cohort
effect. However, in some cases, labels may be used, and we call such forecasts
“supervised”. An example of supervised forecasting is the retrospective cohort
study to predict the class of unlabeled examples as well as to identify risk factors
leading to disease. The application of continuous-time models to the forecast-
ing case is straightforward. When labels are available, however, we choose to
apply MFPPs in a cascade learning framework, where the MFPP predictions
contribute as features to supervised learning models.

In Section 2, we discuss point processes and contrast them from continuous-
time Bayesian networks (CTBNs) noting their matching likelihood formulations
given somewhat different problem setups. We show that multiplicative forest
methods can be extended to point processes. We also introduce the problem of
predicting myocardial infarction, discuss the various approaches to answering
medical queries, and introduce our method of analysis. In Section 3, we present
results on synthetic timelines and real health records data and show that MF-
PPs outperform PCIMs on these tasks, and that the timeline analysis approach
outperforms other standard machine learning approaches to the problem. We
conclude in Section 4.
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Fig. 1. A timeline (top) deconstructed into point processes (bottom)

2 Point Processes

Data that arrive at irregular intervals are aptly modeled with timelines. A time-
line is a sequence of {event,time} pairs capturing the relative frequency and
ordering of events. This representation arises in many domains, including neu-
ron spike trains [4], high-frequency trading [5], and medical forecasting [6]. We
describe and build upon one such model: the point process.

A point process treats each event type individually and specifies that it
(re-)occurs according to the intensity (or rate) function λ(t|h) over time t given
an event history h. Figure 1 shows a sample timeline of events deconstructed into
individual point processes. The conditional intensity model (CIM) is a proba-
bilistic model formed by the composition of such processes. Our work will build
on piecewise-constant conditional intensity models (PCIMs), which make the
assumption that the intensity functions λ(t|h) are constant over positive-length
intervals. PCIMs represent the piecewise-constant conditional intensity functions
with regression trees, and one is shown in Figure 2 (left).

The piecewise-constant intensity assumption is convenient for several reasons.
For one, the likelihood can be computed in closed form. We can also compute
the sufficient statistics by counting events and computing a weighted sum of
constant-intensity durations. With these, we can directly estimate the maxi-
mum likelihood model parameters. Finally, we note that with this assumption
the likelihood formulation becomes identical to the one used in continuous-time
Bayesian networks (CTBNs). The shared likelihood formula lets us apply a re-
cent advance in learning CTBNs: the use of multiplicative forests. Multiplicative
forests produce intensities by taking the product of the regression values in ac-
tive leaves. For example, a multiplicative forest equivalent to the tree described
above is shown in Figure 2 (right). These models were shown to have large em-
pirical gains for parameter and structure learning similar to those seen in the
transition from tree models to random forests or boosted trees [3]. Our first goal
is to show that a similar learning framework can be applied to point processes.
We describe the model in fuller detail below.

2.1 Piecewise-Continuous Conditional Intensity Models (PCIMs)

Let us consider the finite set of event types l ∈ L. An event sequence or trajectory
x is an ordered set of {time, event} pairs (t, l)ni=1. A history h at time t is the
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Fig. 2. A piecewise-constant conditional intensity tree for determining the rate of event
type A (left). An equivalent multiplicative intensity forest (right). An example of active
paths are shown in red. The active path in the tree corresponds to the intersection of
active paths in the forest, and the output intensity is the same (3 = 1× 3).

subset of x whose times are less than t. Let l0 denote the null event type, and
use the null event pairs (l0, t0) and (l0, tend) to denote the start and end times
of the trajectory. Then the likelihood of the trajectory given the CIM θ is:

p(x|θ) =
∏

l∈L

n∏

i=1

λl(ti|hi, θ)
�(l=li)e

∫
t
−∞ λl(τ |x,θ)dτ

PCIMs introduce the assumption that the intensity functions are constant over
intervals. As described in [2], let Σl be a set of discrete states so that we obtain
the set of parameters λls for s ∈ Σl. The active state s is determined by a
mapping σl(t, x) from time and trajectory to s. Let Sl hold the pair (Σl, σl(t, x))
and let S = {Sl}l∈L. Then the PCIM likelihood simplifies to:

p(x|S, θ) =
∏

l∈L

∏

s∈Σl

λ
Mls(x)
ls e−λlsTls(x) (1)

where Mls(x) is the count of events of type l while s is active in trajectory x,
and Tls(x) is the total duration that s, for event type l, is active.

2.2 Continuous-Time Bayesian Networks (CTBNs)

Continuous-time Bayesian networks model a set of discrete random variables
x1, x2, . . . , xd = X over continuous time, each with si number of discrete states
for i in {1, . . . , d} [7]. CTBNs make the assumption that the probability of transi-
tion for variable x out of state xj at time t is given by the exponential distribution
λxj |ue

−λxj |ut with rate parameter (intensity) λxj |u given parents setting u. The

variable transitions from state xj to xk with probability Θxjxk|u, where Θxjxk|u
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is an entry in state transition matrix Θu. The parents setting u is an element
of the joint state Ux over parent variables of x, and the parent dependencies
are provided in a directed possibly-cyclic graph. A complete CTBN model can
be described by two components: a distribution B over the initial joint state,
typically represented by a Bayesian network, and a directed graph over variables
X with corresponding conditional intensity matrices (CIMs). The CIMs hold the
intensities λxj |u and state transition probability matrices Θu.

The CTBN likelihood is defined as follows. A trajectory, or a timeline, is
broken down into independent intervals of fixed state. For each interval [t0, tend),
the duration t = tend − t0 passes and a variable x transitions at tend from state
xj to xk. All other variables xi �= x rest during this interval in their active states
x′
i. Then, the interval density is given by:

λxj |ue
−λxj |ut

︸ ︷︷ ︸
x transitions

Θxjxk|u

︸ ︷︷ ︸
to state xk

∏

x′
i:xi �=x

e
−λx′

i
|ut

︸ ︷︷ ︸
while xi’s rest

The trajectory likelihood is given by the product of intervals:

∏

x∈X

∏

xj∈x

∏

u∈Ux

λ
Mxj |u
xj |u e−λxj |uTxj |u

∏

xk �=xj

Θ
M

xjxk|u
xjxk|u (2)

where the Mxj|u (and Mxjxk|u) are the numbers of transitions out of state xj (to

state xk), and where the Txj|u are the amounts of time spent in xj given parents
settings u. Defining rate parameter λxixj |u = λxi|uΘxixj |u and set element p =
xj × u (as in [3]), Equation 2 can be rewritten as:

∏

x∈X

∏

x′∈x

∏

p

λ
Mx′|p
x′|p e−λx′|pTp (3)

Note how the form of the likelihood in Equation 1 is identical to Equation 3.

2.3 Contrasting PCIMs and CTBNs

Despite the similarity in form, PCIMs and CTBNs model distinctly different
types of continuous-time processes. Table 1 contrasts the two models. The pri-
mary difference is that, unlike point processes, CTBNs model a persistent, joint
state over time. That is, a CTBN provides a distribution over the joint state for
any time t. Additionally, CTBN variables must possess a 1-of-si state represen-
tation for si > 1 whereas point processes typically assume non-complementary
event types. Furthermore, in CTBNs, observations are typically not of changes in
state at particular times but instead probes of the state at a time point or inter-
val. With persistent states, CTBNs can be used to answer interpolative queries,
whereas CIMs are designed specifically for forecasting. Another notable differ-
ence is that CTBNs are Markovian: the intensities are determined entirely by the
current state of the system. While more restrictive, this assumption allows for
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Table 1. Contrasting piecewise-constant continuous intensity models (PCIMs) and
multiplicative-forest continuous-time Bayesian networks (mfCTBNs). Key similarities
are highlighted in blue.

PCIM mfCTBN

Model of: event sequence persistent state

Intensities piecewise-constant network-dependent constant

Dependence event history joint state (Markovian)

Labels event types variables

Emissions events states (x′, 1 of si)

Structure regression tree multiplicative forest

Evidence events (partial) observations of states

Likelihood
∏

l

∏
s λ

Mls
ls e−λlsTls

∏
x′
∏

p λ
Mx′|p
x′|p e−λx′|pTp

variational and MCMC methods to be applied. On the other hand, PCIMs lend
themselves to forecasting because the potentially prohibitive inference about the
persistent state that CTBNs require is no longer necessary. This is because the
rate of event occurrences depends on the event history instead of the current
state.

2.4 Multiplicative-Forest Point Processes (MFPPs)

The similar likelihood forms allow us to extend the multiplicative-forest concept
[3] to PCIMs. Following [2], we define the state Σl and mapping σl(t, x) according
to regression trees. Let Bl be the set of basis state functions f(t, x) that maps
to a basis state set Σf , akin to σ(t, x) that maps to a single element s. As in
[3], we can view the basis functions as set partitions of the space over Σ =
Σl1 × Σl2 × . . .Σl|L| . Each interior node in the regression tree is associated
with a basis function f . Each leaf holds a non-negative real value: the intensity.
Thus one path ρ through the regression tree for event type l corresponds to a
recursive subpartition resulting in a set Σρ, and every (l, s) ∈ Σρ corresponds to
leaf intensity λlρ, i.e., we set λls = λlρ. Figure 2 shows an example of the active
path providing the intensity (λls = λlρ = 3).

MFPPs replace these trees with random forests. Given that each tree repre-
sents a partition, the intersection of trees, i.e. a forest, forms a finer partition.
The subpartition corresponding to a single intensity is given by the intersection
Σρ =

⋂k
j=1 Σρ,j of sets corresponding to the active paths through trees 1 . . . k.

The intensity λlρ is given by the product of leaf intensities. Figure 2 (right)
shows an example of the active paths in a tree, producing the forest intensity
(λls = λlρ = 1× 3).

MFPPs use the PCIM generative framework. Forecasting is performed by
forward sampling or importance sampling to generate an approximation to the
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distribution at future times. Learning MFPPs is analogous to learning mfCTBNs.
A tree is learned iteratively by replacing a leaf with a branch with corresponding
leaves. As in forest CTBNs, MFPPs have (1) a closed form marginal log likeli-
hood update and (2) a simple maximum likelihood calculation for modification
proposals. The intensities for the modification are the ratios between observed
(Mls) divided by expected (λlsTls) number of events prior to modification and
while Σρ is active. These two properties together provide the best greedy update
to the forest model.

The use of multiplicative forest point processes has several advantages over
previous methods.

– Compared to trees, forest models can represent more intensities per param-
eter, which is equal to the number of leaves in the model. For example, if a
ground truth model has k stumps, that is, k single-split binary trees, then
the forest can represent the model with 2k parameters. An equivalent tree
would require 2k parameters. This example arises whenever two risk factors
are independent, i.e., their risks multiply.

– While forests can represent these independences when needed, they also can
represent non-linear processes by increasing the depth of the tree beyond
one. This advantage was established in previous work comparing trees to
Poisson Networks [2,8], and forests possess advantages of both approaches.

– Unlike most forest models, multiplicative-forest trees may be learned in an
order that is neither sequential nor simultaneous. The forest appends a stump
to the end of its tree list when that modification improves the marginal
likelihood the most. Otherwise it increases the depth of one tree. The data
determines which expansion is selected.

– Multiplicative forests in CTBNs are restricted to learning from the current
state (the Markovian assumption), whereas MFPPs learn from a basis set
over some combination of the event history, deterministic, and constant fea-
tures.

– Compared to the application of supervised classification methods to temporal
data, the point process model identifies patterns of event sequences over time
and uses them for forecasting. Figure 3 shows an example of the supervised
forecasting setup. In this case, it may be harder to predict event B without
using recurrent patterns of event sequences.

We hypothesize that these advantages will result in improved performance at
forecasting, particularly in domains where risk factors are independent. As many
established risk factors for cardiovascular disease are believed to contribute to
the overall risk independently, we believe that MFPPs should outperform tree
methods at this task. Because of their facility in modeling irregular series of
events, we also believe that MFPPs should also outperform off-the-shelf machine
learning methods.

2.5 Related Work

A rich literature exists on point processes focusing predominantly on spatial
forecasting. In spatial domains, the point process is the temporal component of
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Fig. 3. Supervised forecasting. Labels are provided by the binary classification out-
come: whether at least one event occurs in the forecasted region.

a model used to predict spatiotemporal patterns in data. The analysis of multi-
variate, spatial point processes is related to our work in its attempt to charac-
terize the joint behavior of variables, for example, using Ripley’s K function test
for spatial homogeneity [9]. However, these methods do not learn dependency
structures among variables; instead they seek to characterize cross-correlations
observed in data. Generalized linear models for simple point processes are more
closely related to our work. Here, a linear assumption for the intensity function is
made, seen for example in Poisson networks [8]. PCIMs adopt a non-parametric
approach and was shown to substantially improve upon previous methods in
terms of model accuracy and learning time [2]. Our method builds on upon the
PCIM framework.

Risk assessment for cardiovascular disease is also well studied. The primary
outcome of most studies is the identification of one or a few risk factors and the
quantification of the attributable risk. Our task is slightly different; we seek to
predict from data the onset of future myocardial infarctions. The prediction task
is closely related to risk stratification. For cardiovascular disease, the Framing-
ham Heart Study is the landmark study for risk assessment [10]. They provide a
10-year risk of cardiovascular disease based on age, cholesterol (total and HDL),
smoking status, and blood pressure. A number of studies have been since con-
ducted purporting significant improvements over the Framingham Risk Score
using different models or by collecting additional information [11]. In particular,
the use of EHR data to predict heart attacks was previously addressed in [12].
However, in that work the temporal dependence of the outcome and its predic-
tors was strictly logical and limited the success of their approach. We seek to
show that, compared to standard approaches learning from features segmented
in time, a point process naturally models timeline data and results in improved
risk prediction.

3 Experiments

We evaluate MFPPs in two experiments. The first uses a model of myocardial
infarction and stroke, and the goal is to learn MFPPs to recover the ground truth
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Fig. 4. Ground truth dependency structure of heart attack and stroke model. Labels
on the edges determine the active duration of the dependency. Omitted in the graph
is the age dependency for all non-deterministic nodes if the subject is older than 18.

model from sampled data. The second is an evaluation of MFPPs in predicting
myocardial infarction diagnoses from real EHR data.

3.1 Model Experiment: Myocardial Infarction and Stroke

We introduce a ground truth PCIM model of myocardial infarction and stroke.
The dependency structure of the model is shown in Figure 4. To compare
MFPPs with PCIMs, we sample k trajectories from time 0 to 80 for k =
{50, 100, 500, 1000, 5000, 10000}. We train each model with these samples and
calculate the average log likelihood on a testing set of 1000 sampled trajectories.
Each model used a BIC penalty to determine when to terminate learning. For
features, we constructed a feature generator that uniformly at random selects an
event type trigger and an active duration of one of {t−1, t−5, t−10, t−20, t−50}
to t. Note that the feature durations do not have a direct overlap with the depen-
dency intervals shown in Figure 4. Our goal was to show that, even without being
able to recover the exact ground truth model, we could get close with surrogate
features. MFPPs were allowed to learn up to 10 trees each with 10 splitting fea-
tures; PCIMs were allowed 1 tree with 100 splitting features. We also performed
a two-tailed paired t-test to test for significant differences in MFPP and PCIM
log likelihood. We ran each algorithm 250 times for each value of k.
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MFPPs and PCIMs were significant at a p-value of 1-e20. Dotted lines show the like-
lihoods when ground truth features were made available to the models.

Figure 5 shows the average log likelihood results. Both MFPPs and PCIMs
appear to converge to close to the ground truth model with increasing training
set sizes. The lack of complete convergence is likely due to the mismatch in
ground truth dependencies and the features available for learning. Error bars
indicating the empirical 95 percent confidence intervals are also shown for MFPP.
Similar error bars were observed for the ground truth and PCIMmodels but were
omitted for clarity. The width of the interval is due to the variance in testing
set log likelihoods. If we look at level average log likelihood lines in Figure 5, we
observe that we only need a fraction of the data to learn a MFPP model equally
good as the PCIM model. Both models completed all runs in under 15 minutes
each.

We used a two-sided paired t-test to test for significant differences in the
average log likelihood. For all numbers of trajectories k, the p-value was smaller
than 1e-20. We conclude that the MFPP algorithm significantly outperformed
the PCIM algorithm at recovering the ground truth model from data of this
size.

3.2 EHR Prediction: Myocardial Infarction

In this section we describe the experiment on real EHR data. We define the
task to be forecasting future onset of myocardial infarction between the years
2005 and 2010 given event data prior to 2005. We propose two forms of this
experiment: ex ante and supervised forecasting. First, we test the ability of
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past.

MFPP to forecast events between 2005 and 2010 in all patients given the data
leading up to 2005. Figure 6 depicts the ex ante forecasting setup.

Second, we split our data into training and testing sets to test MFPP in its
ability to perform supervised forecasting. In this setup, we provide data between
2005 and 2010 for the training set in addition to all data prior to 2005 for both
training and testing sets. We choose to focus on the outcome of whether a subject
has at least one myocardial infarction event between the 2005 and 2010. Figure
3 shows the supervised forecasting setup.

We use EHR data from the Personalized Medicine Research Project (PMRP)
cohort study run at the Marshfield Clinic Research Foundation [13]. The Marsh-
field Clinic has followed a patient population residing in northern Wisconsin and
the outlying areas starting in the early 1960s up to the present. From this cohort,
we include all subjects with at least one event between 1970 and 2005, and with
at least one event after 2010 or a death record after 2005. Filtering with these
inclusion criteria resulted in a study population of 15,446, with 428 identified
individuals with a myocardial infarction event between 2005 and 2010.

To make learning and inference tractable, we selected additional event types
from the EHR corresponding to risk factors identified in the Framingham Heart
Study[10]: age, date, gender, LDL (critical low, low, normal, high, critical high,
abnormal), blood pressure (normal, high), obesity, statin use, diabetes, stroke,
angina, and bypass surgery. Because the level of detail specified in EHR event
codes is fine, we use the above terms that represent aggregates over the terms
in our database, i.e., we map the event codes to one of the coarse terms. For
example, an embolism lodged in the basilar artery is one type of stroke, and we
code it simply as “stroke”. The features we selected produced an event list with
over 1.8 million events. As MFPPs require selecting active duration windows to
learn, we used durations of size {0.25, 1, 2, 5, 10, 100 (ever)}, with more features
focused on the recent past. Our intuition suggests that events occurring in the
recent past are more informative than more distant events.

We compare MFPP against two sets of machine learning algorithms based on
the experimental setup. For ex ante forecasting, we test against PCIMs [2] and
homogeneous Poisson point processes, which assume independent and constant
event rates. We assess their performance using the average log likelihood of the
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true events in the forecast region and precision-recall curves for our target event
of interest: myocardial infarction. For supervised forecasting, we test against
random forests and logistic regression [2,14]. As MFPP is not an inherently
supervised learning algorithm, we also include a random forest learner using fea-
tures corresponding to the intensity estimates based on the ex ante forecasting
setup. We call this method MFPP-RF. We use modified bootstrapping to gen-
erate non-overlapping training and testing sets, and we train on 80 percent of
the entire data. We compare the supervised forecasting methods only in terms
of precision-recall due to the non-correspondence of the methods’ likelihoods.

We also make a small modification to the MFPP and PCIM learning procedure
when learning for modeling myocardial infarction, i.e., rare, events. On each
iteration we expand one node in the forest of every event type instead of the
forest of a single event type. The reason for this is that low intensity variables
contribute less to the likelihood, so choosing the largest change in marginal
log likelihood will tend to ignore modeling low intensity variables. By selecting
an expansion for every event type each iteration, we ensure a rich modeling of
myocardial infarction in the face of high frequency events such as blood pressure
measurements and prescription refills. We note that because of the independence
of likelihood components for each event type, this type of round-robin expansion
is still guaranteed to increase the model likelihood. This statement would not
hold, for example, in CTBNs, where a change in a variable intensity may change
its latent state distribution, affecting the likelihood of another variable. Finally,
for ease of implementation and sampling, we learn trees sequentially and limit
the forest size to 40 total splits.

Ex Ante Forecasting Results. Table 2 shows the average log likelihood re-
sults for ex ante forecasting for the MFPP, PCIM and homogeneous Poisson
point process models. Both MFPPs and PCIMs perform much better than the
baseline homogeneous model. MFPPs outperform PCIMs by a similar margin
observed in the synthetic data set.

Table 2. Log likelihood of {MFPP,
PCIM, independent homogeneous
Poisson processes} for forecasting
patient medical events between 2005
and 2010.

Method Log likelihood

MFPP 12.1
PCIM 10.3
Poisson -54.8

Figure 7 shows the precision-recall curve
for predicting a myocardial infarction event
between 2005 and 2010 given data on sub-
jects prior to 2005. MFPPs and PCIMs per-
form similarly at this task. The high-recall
region is of particular interest in the medi-
cal domain because it is more costly to miss
a false negative (e.g. undiagnosed heart at-
tack) than a false positive (false alarm). Sim-
ply put, clinical practice follows the “better
safe than sorry” paradigm, so performance
high-recall region is of highest concern. We
plot the precision-recall curves between recalls of 0.5 and 1.0 for this reason. The
absolute precision for all methods remains low and might exhibit the challenging
nature of ex ante forecasting. Alternatively, the low precision results could be
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Fig. 7. Precision-recall curves for ex ante forecasting. MFPPs are compared against
PCIMs and homogeneous Poisson point processes.

a result of potential incompatibility of the exponential waiting time assumption
and medical event data. Since forecasting can be considered a type of extrap-
olative prediction, a violation of the model assumptions could lead to subopti-
mal predictions. Despite these limitations, compared to the baseline precision of
428/15,446 = 0.028, the trained methods do provide utility in forecasting future
MI events nonetheless.

Supervised Forecasting Results. Figure 8 provides the precision-recall curve
for the supervised forecasting experiment predicting at least one myocardial
infarction event between 2005 and 2010. As we see, MFPP underperforms com-
pared to all supervised learning methods. However, the MFPP predicted intensi-
ties features boosts the MFPP-RF performance compared to the other classifiers.
This suggests that while MFPP is a valuable model but may not be optimized
for classification.

MFPPs also provide insight into the temporal progression of events. Figure 9
shows the first two trees of the forest learned for the rate of myocardial infarction.
We observe the effects on increased risk: history of heart attack, elevated LDL
cholesterol levels, abnormal blood pressure, and history of bypass surgery. While
the whole forest is not shown (see http://cs.wisc.edu/~jcweiss/ecml2013/),
the first two trees provide the main effects on the rate. As you progress
through the forest, the range over intensity factors narrows towards 1. The taper-
ing effect of relative tree “importance” is a consequence of experimental decision
to learn the forest sequentially, and it provides for nice interpretation: the first
few trees identify the main effects, and subsequent trees make fine adjustments
for the contribution of additional risk factors.

As Figure 9 shows, the dominating factor of the rate is whether a recent
myocardial infarction event was observed. In part, this may be due to an in-
creased risk of recurrent disease, but also because some EHR events are “treated

http://cs.wisc.edu/~jcweiss/ecml2013/
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Fig. 8. Precision-recall curves for supervised forecasting. MFPPs are compared against
random forests, logistic regression, and random forests augmented with MFPP intensity
features.
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Fig. 9. First two trees in the MFPP forest. The model shows the rate predictions for
myocardial infarction (MI) based on cholesterol (LDL), blood pressure (BP), previous
MI, and bypass surgery. Time is in years; for example, [t-1,t) means “within the last
year”, and (-Inf, t) means “ever before”.

for” events, meaning that the diagnosis is documented because care is provided.
Care for incident heart attacks occurs over the following weeks, and so-called
myocardial infarction events may recur over that time frame.

Despite the recurrence effect, the MFPP model provides an interpretable rep-
resentation of risk factors and their interactions with other events. For example,
Tree 1 shows that elevated cholesterol levels increase the rate of heart attack
recurrence while normotensive blood pressure measurements decrease it. The
findings corroborate established risk factors and their trends.



Forest-Based Point Processes for Myocardial Infarctions 561

4 Conclusion

In this work we introduce an efficient multiplicative forest learning algorithm
to the point process community. We developed this algorithm by combining
elements of two continuous-time models taking advantage of their similar likeli-
hood forms. We contrasted the differences between the two models and observed
that the multiplicative forest extension of the CTBN framework would inte-
grate cleanly into the PCIM framework. We showed that unlike CTBNs, MFPP
forests can be learned independently because of the PCIM likelihood decompo-
sition and intensity dependence on event history. We applied this model to two
data sets: a synthetic model, where we showed significant improvements over the
original PCIM model, and a cohort study, where we observed that MFPP-RFs
outperformed standard machine learning algorithms at predicting future onset
of myocardial infarctions. We provide multiplicative-forest point process code at
http://cs.wisc.edu/~jcweiss/ecml2013/.

While our work has shown improved performance in two different compar-
isons, it would also be worthwhile to consider extensions of this framework to
marked point processes. Marked point processes are ones where events contain
additional information. The learning framework could leverage the information
about the events to make better predictions. For example, this could mean the
difference between reporting that a lab test was ordered and knowing the value
of the lab test. The drawback of immediate extension to marked point processes
is that the learning algorithm needs to be paired with a generative model of
events in order to conduct accurate forecasting. Without the generative ability,
sampled events would lack the information required for continued sampling. The
integration of these methods with continuous-state representations would also
help allow modeling of clinical events such as blood pressure to be more precise.
Finally, we would like to be able to scale our methods and apply MFPPs to any
disease. Because EHR systems are constantly updated, we can acquire new up-
to-date information on both phenotype and risk factors. To fully automate the
process in the present framework, we need to develop a way to address the scope
of the EHR, selecting and aggregating the pertinent features for each disease of
interest and identifying the meaningful time frames of interest.
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