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Abstract. All askers who post questions in Community-based Question Answer-
ing (CQA) sites such as Yahoo! Answers, Quora or Baidu’s Zhidao, expect to re-
ceive an answer, and are frustrated when their questions remain unanswered. We
propose to provide a type of “heads up” to askers by predicting how many an-
swers, if at all, they will get. Giving a preemptive warning to the asker at posting
time should reduce the frustration effect and hopefully allow askers to rephrase
their questions if needed. To the best of our knowledge, this is the first attempt
to predict the actual number of answers, in addition to predicting whether the
question will be answered or not. To this effect, we introduce a new prediction
model, specifically tailored to hierarchically structured CQA sites. We conducted
extensive experiments on a large corpus comprising 1 year of answering activity
on Yahoo! Answers, as opposed to a single day in previous studies. These exper-
iments show that the F1 we achieved is 24% better than in previous work, mostly
due the structure built into the novel model.

1 Introduction

In spite of the huge progress of Web search engines in the last 20 years, many users’
needs still remain unanswered. Query assistance tools such as query completion, and
related queries, cannot, as of today, deal with complex, heterogeneous needs. In addi-
tion, there will always exist subjective and narrow needs for which content has little
chance to have been authored prior to the query being issued.

Community-based Question Answering (CQA) sites, such as Yahoo! Answers, Quora,
Stack Overflow or Baidu Zhidao, have been precisely devised to answer these different
needs. These services differ from the extensively investigated Factoid Question An-
swering that focuses on questions such as “When was Mozart born?”, for which unam-
biguous answers typically exist, [1]. Though CQA sites also feature factoid questions,
they typically address other needs, such as opinion seeking, recommendations, open-
ended questions or very specific needs, e.g. “What type of bird should I get?” or “What
would you choose as your last meal?”.

Questions not only reflect diverse needs but can be expressed in very different styles,
yet, all askers expect to receive answers, and are disappointed otherwise. Unanswered
questions are not a rare phenomenon, reaching 13% of the questions in the Yahoo!
Answers dataset that we studied, as detailed later, and users whose questions remain
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unanswered are considerably more prone to churning from the CQA service [2] . One
way to reduce this frustration is to proactively recommend questions potential answer-
ers, [3,4,5,6]. However, the asker has little or no influence on the answerers’ behavior.
Indeed, a question by itself may exhibit some characteristics that reduce its potential
for answerability. Examples include a poor or ambiguous choice of words, a given type
of underlying sentiment, the time of the day when the question was posted, as well as
sheer semantic reasons if the question refers to a complex or rare need.

In this work, we focus on the askers, investigate a variety of features they can control,
and attempt to predict, based on these features, the expected number of answers a new
question might receive, even before it is posted. With such predictions, askers can be
warned in advance, and adjust their expectations, if their questions have little chances
to be answered. This work represents a first step towards the more ambitious goal of
assisting askers in posting answerable questions, by not only indicating the expected
number of answers but also suggesting adequate rephrasing. Furthemore, we can imag-
ine additional usages of our prediction mechanism, depending on the site priorities. For
instance, a CQA site such as Yahoo! Answers that attempts to satisfy all users might
decide to promote questions with few predicted answers in order to achieve a higher
answering rate. Alternatively a socially oriented site like Quora, might prefer to pro-
mote questions with many predicted answers in order to encourage social interaction
between answerers.

We cast the problem of predicting the number of answers as a regression task, while
the special case of predicting whether a question will receive any answer at all is viewed
as a classification task. We focus on Yahoo! Answers, one of the most visited CQA sites
with 30 millions questions and answers a month and 2.4 asked questions per second [7].
For each question in Yahoo! Answers, we generate a set of features that are extracted
only from the question attributes and are available before question submission. These
features capture asker’s attributes, the textual content of the question, the category to
which the question is assigned and the time of submission.

In spite of this rich feature set, off-the-shelf regression and classification models
do not provide adequate predictions in our tasks. Therefore, we introduce a series of
models that better address the unique attributes of our dataset. Our main contributions
are threefold:

1. we introduce a novel task of predicting the number of expected answers for a ques-
tion before it is posted,

2. we devise hierarchical learning models that consider the category-driven structure
of Yahoo! Answers and reflect their associated heterogeneous communities, each
with its own answering behavior, and finally,

3. we conduct the largest experiment to date on answerability, as we study a year-long
question and answer activity on Yahoo! Answers, as opposed to a day-long dataset
in previous work.

2 Background

With millions of active users, Yahoo! Answers hosts a very large amount of questions
and answers on a wide variety of topics and in many languages. The system is content-
centric, as users are socially interacting by engaging in multiple activities around a
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specific question. When a user asks a new question, she also assigns it to a specific cat-
egory, within a predefined hierarchy of categories, which should best match the general
topic of the question. For example, the question “What can I do to fix my bumper?” was
assigned to the category ‘Cars & Transportation > Maintenance & Repairs’. Each new
question remains “open” for four days (with an option for extension), or less if the asker
chose a best answer within this period. Registered users may answer a question as long
as it remains “open”.

One of the main issues in Yahoo! Answers, and in community-based question an-
swering in general, is the high variance in perceived question and answer quality. This
problem drew a lot of research in recent years. Some studies attempted to assess the
quality of answers [8,9,10,11], or questions [12,13], and rank them accordingly. Others
looked at active users for various tasks such, scoring their “reliability” as a signal for
high quality answers or votes [14,15,16], identifying spammers [17], predicting whether
the asker of a question will be satisfied with the received answers [18,19] or matching
questions to specific users [3,4,5].

Our research belongs to the same general school of work but focuses on estimating
the number of answers a question will receive. Prior work that analyzes questions, did
it in retrospect, either after the questions had been answered [9], or as a ranking task for
a given collection of questions [12,13]. In contrast, we aim at predicting the number of
answers for every new question before it is submitted.

In a related work, Richardson and White [20] studied whether a question will re-
ceive an answer or not. Yet, they conducted their study in a different environment, an
IM-based synchronous system, in which potential answerers are known. Given this en-
vironment they could leverage features pertaining to the potential answerers, such as
reputation. In addition, they considered the specific style of messages sent over IM,
including whether a newline was entered and whether some polite words are added.
Their experiment was of a small scale on 1,725 questions, for which they showed im-
provement over the majority baseline. We note that their dataset is less skewed than
in Yahoo! Answers. Indeed their dataset counted about 42% of unanswered questions,
while Yahoo! Answers datasets typically count about 13% of unanswered questions.
We will later discuss the challenges involved in dealing with such a skewed dataset.

A more related prior work that investigated question answerability is Yang et al. [21],
who addressed the same task of coarse (yes/no) answerability as above but in the same
settings as ours, namely Yahoo! Answers. Yang et al. approached the task as a classi-
fication problem with various features ranging from content analysis, such as category
matching, polite words and hidden topics, to asker reputation and time of day. They
used a one-day dataset of Yahoo! Answers questions and observed the same ratio of
unanswered questions as we did in our one-year dataset, namely 13%. Failing to con-
struct a classifier for this heavily skewed dataset, Yang et al. resorted to learning from
an artificially balanced training set, which resulted in improvements over the majority
baseline. In this paper, we also address this classification task, with the same type of
skewed dataset. However, unlike Yang et al., we attempt to improve over the majority
baseline without artificially balancing the dataset.
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Finally another major differentiator with the above previous work is that we do not
stop at simply predicting whether a question will be answered or not, but predict the
exact number of answers the question would receive.

3 Predicting Question Answerability

One key requirement of our work, as well as a differentiator with typical prior work on
question analysis, is that we want to predict answerability before the question is posted.
This imposes constraints on the type of data and signals we can leverage. Namely, we
can only use data that is intrinsic to a new question before submission. In the case of
Yahoo! Answers, this includes: (a) the title and the body of the question, (b) the category
to which the question is assigned, (c) the identity of the user who asked the question
and (d) the date and time the question is being posted.

We view the prediction of the expected number of answers as a regression problem,
in which a target function (a.k.a the model) ŷ = f(x) is learned, with x being a vector-
space representation of a given question, and ŷ ∈ R an estimate for y, the number of
answers this question will actually receive. All the different models we present in this
section are learned from a training set of example questions and their known number
of answers, D = {(xi, yi)}. The prediction task of whether a question will receive
an answer at all is addressed as a classification task. It is similarly modeled by a target
function ŷ = f(x) and the same vector space representation of a question, yet, the train-
ing target is binary, with answered (unanswered) questions being the positive (negative)
examples.

To fully present our models for the two tasks, we next specify how a question repre-
sentation x is generated, and then introduce for each task novel models (e.g. f(x)) that
address the unique properties of the dataset.

3.1 Question Features

In our approach, each question is represented by a feature vector. For any new question,
we extract various attributes that belong to three main types of information: question
meta data, question content, and user data. In the rest of this paper we use the term fea-
ture family to denote a single attribute extracted from the data. Question attributes may
be numerical, categorical or set-valued (e.g. the set of word tokens in the title). Hence,
in order to allow learning by gradient-based methods, we transformed all categorical
attributes to binary features, and binned most of the numeric attributes. For example,
the category of a question is represented as 1287 binary features and the hour it was
posted is represented as 24 binary features. Tables 3.1, 2 and 3 describe the different
feature families we extract, grouped according to their information source: the question
text, the asker and question meta data.

3.2 Regression Models

Following the description of the features extracted from each question, we now intro-
duce different models (by order of complexity) that use the question feature vector in
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Table 1. Features extracted from title and body texts

Feature Family Description # Features

Title tokens The tokens extracted from the title, not including stop words 45,011
Body tokens The tokens extracted from the body, not including stop words 45,508
Title sentiment The positive and negative sentiment scores of the title, calculated

by the SentiStrength tool [22]
2

Body sentiment The mean positive and negative sentiment scores of the sentences
in the body

2

Supervised LDA The number of answers estimated by supervised Latent Dirichlet
Allocation (SLDA) [23], which was trained over a small subset
of the training set

1

Title WH WH-words (what, when, where . . . ) extracted from the question’s
title

11

Body WH WH-words extracted from the question’s body 11
Title length The title length measured by the number of tokens after stopword

removal, binned on a linear scale
10

Body length The body length, binned on an exponential scale since this length
is not constrainted

20

Title URL The number of URLs that appear within the question title 1
Body URL The number of URLs that appear within the question body 1

order to predict the number of answers. We remind the reader that our training set con-
sists of pairs D = {(xi, yi)}, where xi ∈ RF is the F dimensional feature vector
representation of question qi, and yi ∈ {0, 1, 2 . . .} is the known number of answers
for qi.

Baseline Model. Yang et al. [21] compare the performance of several classifiers, linear
and non-linear, on a similar dataset. They report that a linear SVM significantly outper-
forms all other classifiers. Given these findings, as well as the fact that a linear model is
both robust [24] and can be trained very efficiently for large scale problems, we chose
a linear model f(xi) = wTxi + b as our baseline model.

Feature Augmentation Model. One of the unique characteristics of the Yahoo! An-
swers site is that it consists of questions belonging to a variety of categories, each with
its community of askers and answerers, temporal activity patterns, jargon etc., and that
the categories are organized in a topical taxonomy. This structure, which is inherent to
the data, suggests that more complex models might be useful in modeling the data. One
effective way of incorporating the category structure of the data in a regression model
is to enrich the features with category information. Specifically, we borrowed the idea
from [25], which originally utilized such information for domain adaptation.

To formally describe this model, we consider the Yahoo! Answers category taxon-
omy as a rooted tree T with “All Categories” as its root. When referring to the category
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Table 2. Features extracted based on the asker

Feature Family Description # Features

Asker ID The identity of the asker, if it asked at least 50 questions in the
training set. We ignore askers who asked fewer questions since
their ID statistics are unreliable

175,714

Mean # of answers The past mean number of answers the asker received for her ques-
tions, binned on an exponential scale

26

# of questions The past number of questions asked by the asker, binned on a
linear scale and on an exponential scale

26

Log # of questions The logarithm of the total number of questions posted by the
asker in the training set, and the square of the logarithm. For both
features we add 1 to the argument of the logarithm to handle test
users with no training questions.

2

Table 3. Features extracted from the question’s meta data

Feature Family Description # Features

Category The ID of the category that the question is assigned to 1,287
Parent Category The ID of the parent category of the assigned category for the

question, based on the category taxonomy
119

Hour The hour at which the question was posted, capturing daily pat-
terns

24

Day of week The day-of-week in which the question was posted, capturing
weekly patterns

7

Week of year The week in the year in which the question was posted, capturing
yearly patterns

51

tree we will use interchangeably the term node and category. We denote the category
of a question qi by C(qi). We further denote by P (c) the set of all nodes on the path
from the tree root to node c (including c and the root). For notational purposes, we use
a binary representation for P (c): P (c) ∈ {0, 1}|T |, where |T | is the number of nodes
in the category tree.

The feature augmentation model represents each question qi by x̂i ∈ RF |T | where
x̂i = P (C(qi)) ⊗ xi where ⊗ represents the Kronecker product. For example, given
question qi that is assigned to category ‘Dogs’, the respective node path in T is ‘All
Questions/Pets/Dogs’. The feature vector x̂i for qi is all zeros except for three copies of
xi corresponding to each of the nodes ‘All Questions’,‘Pets’ and ‘Dogs’.

The rationale behind this representation is to allow a separate set of features for each
category, thereby learning category specific patterns. These include learning patterns for
leaf categories, but also learning lower resolution patterns for intermediate nodes in the
tree, which correspond to parent and top categories in Yahoo! Answers. This permits a
good tradeoff between high resolution modeling and robustness, obtained by the higher
level category components shared by many examples.
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(a) Tree of categories (b) Tree of models

Fig. 1. An illustration of the subtree model structure. Shaded nodes in (a) represent categories
populated with questions, while unshaded nodes are purely navigational.

Subtree Model. An alternative to the feature augmentation model is to train several
linear models, each specializing on a different subtree of T . Let us note a subset of
the dataset as Dc = {(xi, yi)|qi ∈ S(c)}, where S(c) is the set of categories in the
category subtree rooted at node c. We also note a model trained on Dc as fc. Since
there is a one-to-one correspondence between models and nodes in T , the set of models
fc can be organized as a tree isomorphic to T . Models in deeper levels of the tree
are specialized on fewer categories than models closer to the root. Figure 1 illustrates
a category tree and its corresponding model tree structure. The shaded nodes in 1(a)
represent categories to which some training questions are assigned.

One simplistic way of using the model tree structure is to apply the root model (fA
in Figure 1(b)) to all test questions. Note that this is identical to the baseline model. Yet,
there are many other ways to model the data using the model tree. Specifically, any set
of nodes that also acts as a tree cut defines a regression model, in which the number of
answers for a given question qi is predicted by the first model in the set encountered
when traversing from the category ci, assigned to qi, to the root of T . In this work, we
shall limit ourselves to three such cuts:

TOP: qi is predicted by model fTop(ci), where Top(c) is the category in P (c) directly
connected to the root.

PARENT: qi is predicted by model fParent(ci)

NODE: qi is predicted by model fci

In Figure 1 the TOP model refers to {fB , fC}, the PARENT model refers to {fB , fC ,
fF , fH} and the NODE model refers to {fD, fE , . . . fM}.

Ensemble of Subtree Models. In order to further exploit the structure of the category
taxonomy in Yahoo! Answers, the questions in each category c are addressed by all
models in the path between this category and the tree root, under the subtree frame-
work described above. Each model in this path introduces a different balance between
robustness and specificity. For example, the root model is the most robust, but also the
least specific in terms of the idiomatic attributes of the target category c. At the other
end of the spectrum, fc is specifically trained for c, but it is more prone for over fitting
the data, especially for categories with few training examples.
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Instead of picking just one model on the path from c to the root, the ensemble model
for c learns to combine all subtree models by training a meta linear model:

f(xi) =
∑

c′∈P (c)

αcc′fc′(xi) + bc (1)

where fc′ are the subtree models described previously and the weights αcc′ and bc are
optimized over a validation set. For example, the ensemble model for questions assigned
to category E in Figure 1(a) are modeled by a linear combination of models fA, fB and
fE , which are trained on training sets D, DB and DE respectively.

3.3 Classification Models

The task of predicting whether a question will be answered or not is an important spe-
cial case of the regression task. In this classification task, we treat questions that were
not answered as negative examples and questions that were answered as the positive
examples. We emphasize that our dataset is skewed, with the negative class constituting
only 12.68% of the dataset. Furthermore, as already noted in [26], the distribution of
the number of answers per question is very skewed, with a long tail of questions having
high number of answers.

As described in the background section, this task was studied by Yang et al. [21], who
failed to provide a solution for the unbalanced dataset. Instead, they artificially balanced
the classes in their training set by sampling, which may reduce the performance of the
classifier on the still skewed test set. Unlike Yang et al., who used off-the-shelf clas-
sifiers for the task, we devised classifiers that specifically address the class imbalance
attribute of the data. We noticed that a question that received one or two answers could
have easily gone unanswered, while this is unlikely for questions with dozen answers
or more. When projecting the number of answers yi into two values, this difference be-
tween positive examples is lost and may produce inferior models. The following models
attempt to deal with this issue.

Baseline Model. Yang et al. [21] found that linear SVM provides superior performance
on this task. Accordingly, we choose as baseline a linear model, f(xi) = wTxi + b
trained with hinge loss. We train the model on the binarized datasetD0 = {(xi, sign(yi−
1/2))} (see our experiment for more details).

Feature Augmentation Model. In this model, we train the same baseline classifier
presented above. Yet the feature vector fed into the model is the augmented feature
representation introduced for the regression models.

Ensemble Model. In order to capture the intuition that not “all positive examples are
equal”, we use an idea closely related to works based on Error Correcting Output Cod-
ing for multi-class classification [27]. Specifically, we construct a series of binary clas-
sification datasets Dt = {(xi, z

t
i)} where zti = sign(yi − 1/2− t) and t = 0, 1, 2, . . ..

In this series, D0 is a dataset where questions with one or more answers are considered
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positive, while in D10 only examples with more than 10 answers are considered posi-
tive. We note that these datasets have varying degrees of imbalance between the positive
and the negative classes.

Denoting by ft the classifier trained on Dt, we construct the final ensemble classifier
by using a logistic regression

f(x) = σ(
∑

t

αtft(x) + b) (2)

where σ(u) = (1+ e−u)−1 and the coefficients αt and b are learned by minimizing the
log-likelihood loss on the validation set.

Ensemble of Feature Augmentation Models. In this model, we train the same ensem-
ble classifier presented above. Yet the feature vector fed into the model is the augmented
feature representation introduced for the regression models.

Classification Ensemble of Subtree Models. As our last classification model, we di-
rectly utilize regression predictions to differentiate between positive examples. We use
the same model tree structure used in the regression by ensemble of subtree models.
All models are linear regression models trained exactly as in the regression problem, in
order to predict the number of answers for each question. The final ensemble model is
a logistic regression function of the outputs of the individual regression models:

f(xi) = σ(
∑

c′∈P (c)

αcc′fc′(xi) + bc) (3)

where fc′ are the subtree regression models and the weights αcc′ and bc are trained
using the validation set.

4 Experiments

We describe here the experiments we conducted to test our regression and classification
models, starting with our experimental setup, then presenting our results and analyses.

4.1 Experimental Setup

Our dataset consists of a uniform sample of 10 million questions out of all non-spam
English questions submitted to Yahoo! Answers in 2009. The questions in this dataset
were asked by more than 3 million different users and were assigned to 1, 287 categories
out of the 1, 569 categories. A significant fraction of the sampled questions (12.67%)
remained unanswered. The average number of answers per question is 4.56 (σ =
6.11). The distribution of the number of answers follows approximately a geometric
distribution.

The distributions of questions among users and among categories are extremely
skewed, with a long tail of users who posted one or two questions and sparsely pop-
ulated categories. These distributions are depicted in Figure 2, showing a power law
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(a) Questions per user (b) Questions per category

Fig. 2. Distribution of number of questions depicted as a function of ranks

behavior for the questions per asker distribution. A large fraction of the categories have
quite a few questions, for example, about half of all categories in our dataset count less
than 50 examples.

We randomly divided our dataset into three sets: 80% training, 15% test and 5% val-
idation (for hyper-parameter tuning). Very few questions in the dataset attracted hun-
dreds of answers. To eliminate the ill effect of these questions on model training, we
modified the maximum number of answers per question to 64. This resulted in changing
the target of about 0.03% of the questions.

Due to its speed, robustness and scalability, we used the Vowpal Wabbit tool1 when-
ever possible. All regression models were trained with squared loss, except for ensem-
ble of subtree models, Eq. 1, whose coefficients were learned by a least squares fit.
All classification models were trained using Vowpal Wabbit with hinge loss, except for
the ensemble models, Eq. 2 and 3, whose coefficients were learned by maximizing the
log-likelihood of the validation set using Stochastic Gradient Descent. We note that for
a node c, where ensemble models should have been trained based on less than 50 val-
idation examples, we refrained from training the ensemble model and used the NODE

subtree model of c as a single component of the ensemble model.
Table 4 compares between the various trained models with respect to the number

of basic linear models used in composite models and the average number of features
observed per linear model. The meta-parameters of the ensemble models (Eq. 1 and 3)
were not included in the counting.

4.2 Results

The performance of the different regression models on our dataset was measured by
Root Mean Square Error (RMSE) [28] and by the Pearson correlation between the pre-
dictions and the target. Table 5 presents these results. As can be seen, all our models
outperform the baseline off-the-shelf linear regression model, with the best performing

1 http://hunch.net/˜vw/

http://hunch.net/~vw/
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Table 4. Details of the regression and classification models, including the number of linear mod-
els in each composite model, and the average number of features used by each linear model

Regression
Model # linear features

models per model
Baseline 1 267,781
Feature augmentation 1 12,731,748
Subtree - TOP 26 88,358
Subtree - PARENT 119 26,986
Subtree - NODE 924 9,221
Ens. of subtree models 955 13,360

Classification
Model # linear features

models per model
Baseline 1 267,781
Feature augmentation 1 12,731,748
Ensemble 7 267,781
Feature augmentation Ens. 7 12,731,748
Ens. of subtree models 955 13,360

Table 5. Test performance for the regression
models

Model RMSE Pearson
Correlation

Baseline 5.076 0.503
Feature augmentation 4.946 0.539
Subtree - TOP 4.905 0.550
Subtree - PARENT 4.894 0.552
Subtree - NODE 4.845 0.564
Ens. of subtree models 4.606 0.620

Table 6. Test performance for the classifica-
tion models

Model AUC
Baseline 0.619
Feature augmentation 0.646
Ensemble 0.725
Feature augmentation ensemble 0.739
Ensemble of subtree models 0.781

model achieving about 10% relative improvement. These results indicate the impor-
tance of explicitly modeling the different answering patterns within the heterogeneous
communities in Yahoo! Answers, as captured by categories. Interestingly, the feature-
augmentation model, which attempts to combine between categories and their ances-
tors, performs worse than any specific subtree model. One of the reasons for this is
the huge number of parameters this model had to train (see Table 4), compared to the
ensemble of separately trained subtree models, each requiring considerably fewer pa-
rameters to tune. A t-test based on the Pearson correlations shows that each model in
Table 5 is significantly better than the preceding one, with P-values close to zero.

The performance of models for the classification task was measured by the area
under the ROC Curve (AUC) [29]. AUC is a preferred performance measure when
class distributions are skewed, since it measures the probability that a positive example
is scored higher than a negative example. Specifically, the AUC of a majority model is
always 0.5, independently of the distribution of the targets.

Inspecting the classification results in Table 6, we can see that all the novel models
improve over the baseline classifier, with the best performing ensemble of subtrees
classifier achieving an AUC of 0.781, a substantial relative improvement of 26% over
the baseline’s result of 0.619. A t-test based on the estimated variance of AUC [30]
shows that each model in Table 6 is statistically significantly superior to its predecessor
with P-values practically zero.
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We next examine in more depth the performance of the ensemble of classifiers and
the ensemble of subtree regressors (the third and fifth entries in Table 6 respectively).
We see that the ensemble of classifiers explicitly models the differences between ques-
tions with many and few answers, significantly improving over the baseline. Yet, the
ensemble of subtree regressors not only models this property of the data but also the
differences in answering patterns within different categories. Its higher performance in-
dicates that both attributes are key factors in prediction. Thus the task of predicting the
actual number of answers has additional benefits, it allows for a better understanding of
the structure of the dataset, which also helps for the classification task.

Finally, we compared our results to those of Yang et al. [21]. They measured the
F1 value on the predictions of the minority class of unanswered questions, for which
their best classifier achieved an F1 of 0.325. Our best model for this measure was again
the ensemble of subtree models classifier, which achieved an F1 of 0.403. This is a
substantial increase of 24% over Yang et al.’s best result, showing again the benefits of
a structured classifier.

4.3 Error Analysis

We investigated where our models err by measuring the average performance of our
best performing models as a function of the number of answers per test question, see
Figure 3. We split the test examples into disjoint sets characterized by a fixed num-
ber of answers per question and averaged the RMSE of our best regressor on each set
(Figure 3(a)). Since our classifier is not optimized for the Accuracy measure, we set a
specific threshold on the classifier output, choosing the 12.672 percentile of test exam-
ples with lowest scores as negatives. Figure 3(b) shows the error rate for this threshold.
We note that the error rate for zero answers refers to false positives rate and for all other
cases it refers to the false negatives rate.

Figure 3(a) exhibits a clear minimum in the region most populated with questions,
which shows that the regressor is optimized for predicting values near 0. Although the
RMSE increases substantially with the number of answers, it is still moderate. In gen-
eral, the RMSE we obtained is approximately linear to the square root of the number of
answers. Specifically, for questions with large number of answers, the RMSE is much
smaller than the true number of answers. For example, for questions with more than 10
answers, which constitute about 13% of the dataset, the actual number of answers is ap-
proximately twice the RMSE on average. This shows the benefit of using the regression
models as input to a answered/unanswered classifier, as we did in our best performing
classifier. This is reflected, for example, in the very low error rates (0.0064 or less) for
questions with more than 10 answers in Figure 3(b).

While the regression output effectively directs the classifier to the correct decision
for questions with around 5 or more answers, Figure 3(b) still exhibits substantial error
rates for questions with very few or no answers. This is due to the inherent random-
ness in the answering process, in which questions that received very few answers could
have easily gone unanswered and vice versa and are thus difficult to predict accurately.

2 This is the fraction of negative examples in our training set.
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(a) Regression task (b) Classification task

Fig. 3. Performance of the Subtree Ensemble models as a function of the number of answers

In future work, we want to improve these results by employing boosting approaches
and constructing specialized classifiers for questions with very few answers.

4.4 Temporal Analysis

Intuitively, the time at which a question is posted should play a role in a social-media
site, therefore, like Yang et al. [21], we use temporal features. Our dataset, which spans
over one year, confirms their reported patterns of hourly answering: questions posted at
night are most likely to be answered, while “afternoon questions” are about 40% more
likely to remain unanswered.

To extend this analysis to longer time periods, we analyzed weekly and yearly pat-
terns. We first calculated the mean number of answers per question and the fraction
of unanswered questions as a function of the day of week, as shown in Figure 4. A
clear pattern can be observed: questions are more often answered towards the end of
the week, with a sharp peak on Fridays and a steep decline over the weekend. The dif-
ferences between the days are highly statistically significant (t-test, two sided tests).
The two graphs in Figure 4 exhibit extremely similar characteristics, indicating that the
fraction of unanswered questions is negatively correlated with the average number of
answers per question. This suggests that both phenomena are controlled by a supply and
demand equilibrium. This can be explained by two hypotheses: (a) both phenomena are
driven by an increase in questions (Yang et al.’s hypothesis) or (b) both phenomena are
driven by a decrease in the number of answers.

To test the above two hypotheses, we extracted the number of questions, number of
answers and fraction of unanswered questions on a daily basis. Each day is represented
in Figure 5 as a single point, as we plot the daily fraction of unanswered questions as
a function of the daily average number of answers per question (Figure 5(a)) and as a
function of the total number of daily questions (Figure 5(b)). We note that while some
answers are provided on a window of time longer than a day, this is a rare phenomenon.
The vast majority of answers are obtained within about twenty minutes from the ques-
tion posting time [5], hence our daily analysis.
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(a) Mean answers (b) Frac. unanswered

Fig. 4. Mean number of answers and fraction of number of answers as a function of the day of
the week, where ’1’ corresponds to Monday and ’7’ to Sunday

(a) (b)

Fig. 5. The daily fraction of unanswered questions as a function of the daily mean number of
answers and as a function of the total number of questions

Figure 5(a) exhibits a strong negative correlation (Pearson correlation r = −0.631),
while almost no effect is observed in Figure 5(b) (r = 0.010). We further tested the
correlation between the daily total number of answers and the fraction of fraction of
unanswered questions, and here as well a significant negative correlation was observed
(r = −0.386). These findings support the hypothesis that deficiency in answerers is the
key factor affecting the fraction of unanswered questions, and not the overall number of
questions, which was Yang et al’s hypothesis. This result is important, because it implies
that more questions in a community-based question answering site will not reduce the
performance of the site, as long as an active community of answerers strives at its core.

5 Conclusions

In this paper, we investigated the answerability of questions in community-based ques-
tion answering sites. We went beyond previous work that returned a binary result of
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whether or not the question will be answered. We focused on the novel task of pre-
dicting the actual number of expected answers for new questions in community-based
question answering sites, so as to return feedback to askers before they post their ques-
tions. We introduced a series of novel regression and classification models explicitly
designed for leveraging the unique attributes of category-organized community-based
question answering sites. We observed that these categories host diverse communities
with different answering patterns.

Our models were tested over a large set of questions from Yahoo! Answers, showing
significant improvement over previous work and baseline models. Our results confirmed
our intuition that predicting answerability at a finer grained level is beneficial. They also
showed the strong effect of the different communities interacting with questions on the
number of answers a question will receive. Finally, we discovered an important and
somehow counter-intuitive fact, namely that an increased number of questions will not
negatively impact answerability, as long as the community of answerers is maintained.

We constructed models that are performant at scale: even the ensemble models are
extremely fast at inference time. In future work, we intend to increase response time
even further and consider incremental aspects in order to return predictions as the asker
types, thus providing, in real-time, dynamic feedback and a more engaging experience.
To complement this scenario, we are also interested in providing question rephrasing
suggestions for a full assistance solution.
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