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Abstract. Two fundamental tasks of mobility modeling are (1) to track
the number of distinct persons that are present at a location of interest
and (2) to reconstruct flows of persons between two or more different
locations. Stationary sensors, such as Bluetooth scanners, have been ap-
plied to both tasks with remarkable success. However, this approach has
privacy problems. For instance, Bluetooth scanners store the MAC ad-
dress of a device that can in principle be linked to a single person. Unique
hashing of the address only partially solves the problem because such a
pseudonym is still vulnerable to various linking attacks. In this paper we
propose a solution to both tasks using an extension of linear counting
sketches. The idea is to map several individuals to the same position
in a sketch, while at the same time the inaccuracies introduced by this
overloading are compensated by using several independent sketches. This
idea provides, for the first time, a general set of primitives for privacy
preserving mobility modeling from Bluetooth and similar address-based
devices.

1 Introduction

Advanced sensor technology and spread of mobile devices allows for increasingly
accurate mobility modeling and monitoring. Two specific tasks are crowd mon-
itoring, i.e., counting the number of mobile entities in an area, and flow moni-
toring between locations, i.e., counting the number of entities moving from one
place to another within a given time interval.1 Both have several applications in
event surveillance and marketing [10, 16]. Moreover, matrices containing the flow
between every pair of locations (origin-destination, or OD-matrices) are an impor-
tant tool in many GIS applications, notably traffic planning and management [3].

Today’s sensor technologies such as GPS, RFID, GSM, and Bluetooth have
revolutionized data collection in this area, although significant problems remain
to be solved. One of those problems are privacy concerns. They mandate that,
while the count of groups of people can be inferred, inference on an individual
person remains infeasible. Directly tracing IDs through the sensors violates this

1 In this paper, we use the term ‘flow’ always as a short-hand for ‘flow between two or
more locations’.
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Fig. 1. The two mobility modeling tasks addressed in this paper: (a) crowd monitoring
and (b) flow monitoring

privacy constraint, because the amount of information stored allows for linking
attacks [12]. In such an attack, sensor information is linked to additional knowl-
edge in order to identify a person and infer upon her movement behavior. Hence,
application designers have to design and use new, privacy preserving methods.

The contribution of this paper is to provide a general set of primitives for
privacy-preserving mobility monitoring and modeling using stationary sensor
devices. Following the privacy-by-design paradigm [17, 21], we present a method
that stores just enough information to perform the desired inference task and
discards the rest. Thereby, privacy constraints are much easier to enforce.

Technically, the method we propose is based on Linear Counting sketches [26],
a data structure that allows to probabilistically count the distinct amount of
unique items in the presence of duplicates. Linear Counting not only obfuscates
the individual entities by hashing, but furthermore provides a probabilistic form
of k-anonymity. This form of anonymity guarantees that, by having access to all
stored information, an attacker cannot be certain on a single individual but can
at most infer upon k individuals as a group. Furthermore, Linear Counting is
an efficient and easy to implement method that outperforms other approaches
in terms of accuracy and privacy on the cost of higher memory usage [19].

The rest of the paper is structured as follows. After discussing related work
in section 2, we describe the application scenarios in section 3. In section 4
we present our extension to the linear counting method and give a theoretical
analysis of the error. Subsequently, we analyze the privacy of our method in
section 5. In section 6 we conduct extensive experiments on the accuracy of
Linear Counting and flow estimation under different privacy requirements to
test our approach. These experiments have been carried out on a a real-world
simulation. Section 7 concludes with a discussion of the results and pointers to
future directions.

2 Related Work

The basic tool we are using in this paper are sketches (see Cormode et al. [9]
for a good general introduction). Sketches are summaries of possibly huge data
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collections that, on the one hand, discard some information for the sake of space
efficiency or privacy, but that, on the other hand, still contain enough information
to restore the current value of certain variables of interest. Sketches are a very
universal tool and have been successfully applied for inferring heavy hitters,
moments of a distribution, distinct elements, and more. The general idea of
using sketches for privacy is described in Aggarwal and Yu [1] and Mir et al.
[20]. The first relates the privacy of a sketch to the variance of the estimator.
The latter discusses privacy paradigms that go beyond differential privacy [11]
and address security as well. They use various techniques for achieving privacy,
notably adding noise. In our approach, we do not employ noise as a source of
privacy. However, due to the probabilistic nature of our method, noise has no
excessive impact on the accuracy. Hence, adding noise to improve privacy can
be combined with our method.

The crucial task in this paper is to count the number of distinct objects at a
location (see Gibbons [14] for a general overview on approaches for this problem).
The method discussed in our paper, Linear Counting, is first described in [26].
This method can be seen as a special case of Bloom filters for counting [6]. So far,
it has received relatively little attention, because it is not as space efficient as log-
space approaches such as FM sketches, and traditionally sketches have mainly
been used to provide short summaries of huge data collections. However, in the
context of privacy preservation in the mobility modeling scenarios of this paper,
space is not so much an issue as is accuracy. To this end, recently very positive
results are reported for comparisons of Linear Counting with FM sketches and
other methods [19, 15]. Especially for smaller set sizes that appear in mobility
mining, Linear Counting has often an advantage in terms of accuracy. Hence,
for our scenario, it is a promising choice.

The idea of using Linear Counting for stationary sensors, specifically Blue-
tooth measurements, recently has also been described by Gonçalves et al. [15]
and similar work for mobile devices is reported in Bergamini et al. [4]. However,
here, for the first time, we describe extensions of the basic Linear Count sketches
that can be used to monitor flows between locations as well as to compensate
for the precision loss incurred for raising privacy.

Our approach for tracking flows is based on the ability to compute the inter-
section of sketches. A general method for computing general set expressions from
sketches is described in Ganguly et al. [13]. Though highly general, the approach
is ruled out for our application because the scheme requires to store information
at the coordinator which could be used for identifying persons and thus is not
privacy aware—it should be noted that it was not build for that purpose.

3 Application Scenarios

In the following, the two application scenarios in mobility monitoring covered
by this paper are described. The general setup in both applications is using
stationary sensor devices centralizing their sensor readings at a coordinator.

In general, a well-studied approach to monitoring people in an area is to
use sensors that count the number of mobile devices in their sensor radius [14,
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15], such as Bluetooth, or GSM scanners. From the amount of mobile devices,
the actual amount of people can be accurately estimated by assuming a stable
average fraction of people carrying such a device [18].

A stationary sensor S scans periodically for devices in its sensor range. Each
device is identifiable by its address a from a global address space A. The
stream of sensor readings of a sensor S is defined by RS ⊆ A × R+ where
(a, t) ∈ RS means that S has read a device address a at time stamp t. For a mea-
surement interval T = [b, e] ⊆ R+, the readings of sensor S in this time interval
is denoted by RT

S = {a ∈ A|∃t ∈ T : (a, t) ∈ RS}. In both application scenarios,
the sensor readings are evaluated to solve the application-specific problem.

3.1 Crowd Monitoring

In major public events, such as concerts, sport events or demonstrations, con-
tinuously monitoring the amount of people in certain areas is a key tool for
maintaining security. It is vital for the prevention of overcrowding as well as for
allocating security and service personnel to the places they are needed most.

To monitor an area using stationary sensor devices, a set of sensors S =
{S1, ..., Sk} is distributed over the area such that the union of their sensor ranges
covers the complete area (see Fig. 1(a)). For a single sensor S, the count dis-
tinct of unique entities that have been present in its range during a time in-
terval T is

∣
∣RT

S

∣
∣. The task is then to continuously monitor at a central site the

count distinct of the union of all sensor ranges. That is, we aim to monitor
|RTi

S1
∪ ... ∪ RTi

Sk
| for consecutive measurement intervals T0, T1, T2... of a fixed

time resolution.
Note that the problem of duplicates in the sensor readings cannot be avoided

in practice because of several reasons: Covering an area with circular sensor
ranges requires overlap and the radius of each sensor range cannot be accurately
estimated beforehand. Furthermore, entities can move between sensor ranges
during a measurement interval. Thus, independent of the specific application
design, summing the distinct counts of individual sensor readings usually over-
estimate the true number of devices. Without privacy restrictions, this problem
can be solved by centralizing the read device addresses or a unique hash of them
to eliminate duplicates. However, when addresses or unique identifiers are cen-
tralized, devices can be tracked and linked to real persons, thereby violating
common privacy constraints.

To solve this problem, we use Linear Counting that has been introduced as
an accurate and privacy preserving method for estimating the number of distinct
items in the presence of duplicates. Linear counting is a sketching technique, i.e.,
the vector of sensor readings is compressed to a lower dimensional vector, the so
called sketch, in such a way that a desired quantity can still be extracted suffi-
ciently accurate from the sketch. The linear count sketch maintains privacy by
deliberately compressing the sensor readings with a certain amount of collisions,
such that a deterministic inference from a sketch to an address is impossible.
A detailed analysis of the privacy aspect is provided in section 5. The distinct
amount of people in an area covered by several overlapping sensors is estimated
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by combining the individual sketches to a sketch of the union of sensor ranges.
The method is described in section 4.1. For that, only the sketches have to be
stored and send to the coordinator so that privacy is preserved at a very basic
level. This provides two general primitives for monitoring the amount of entities
in an area: linear count sketches for privacy-preserving estimation of the count
distinct of mobile entities in a sensor radius and estimation of the distinct count
of entities in an area defined as the union of sensor ranges.

3.2 Flow Monitoring

The flow of mobile entities, such as pedestrians, cars or trains, is a key quantity
in traffic planning. Streets, rails and public transportation networks are opti-
mized for handling these flows. For a given set of locations, all flows between the
locations can be combined in the form of an origin-destination matrix. These
matrices are an important tool in traffic management [2].

Flows of mobile entities between a set of locations can be estimated using
stationary sensors [3]. For that, given a set of locations of interest, a sensor is
placed at each location (e.g., see Fig. 1(b)). For a given time period, the flow
between two locations denotes the amount of mobile entities that have been
present at one location at the beginning of that time period and present at the
other location at the end of the period. An entity is present at a location, if it
is staying within the range of the sensor placed at that location. Thus, given a
time interval at the beginning of the period, Tb, and one at the end, Te, the flow
between two sensors S and S′ is defined as v (S, S′) = |{a ∈ A | a ∈ RTb

S ∧ a ∈
RTe

S′ }|. For convenience, we assume that sensor ranges do not overlap. In the case
of overlap, this notion of flow has to be extended so that the number of mobile
devices that stayed in the intersection is handled separately.

The existing approaches to flow monitoring with stationary sensors rely on
tracing unique identifiers through the sensor network. Hence, identifying and
tracking a specific device, i.e., a specific person, is possible in monitoring sys-
tems as soon as the identifier can be linked to a person. Again, this violates
common privacy restrictions. In order to monitor flows in a privacy-preserving
manner using linear count sketches, the definition of flow is modified to be able
to express the flow as the intersection of sensor readings of different time inter-
vals. Therefore, let Tb and Te be disjoint time intervals as in the aforementioned
definition of flow, then the flow can be expressed as v (S, S′) = |RTb

S ∩ RTe

S′ |.
In section 4.2, we show how local linear count sketches can be combined in a
privacy-preserving manner to estimate the size of an intersection.

The extension to paths of arbitrary length is straightforward. Given three
consecutive, disjoint time intervals T1, T2, T3, the flow on a path S1 → S2 → S3

can be represented as |RT1

S1
∩ RT2

S2
∩ RT3

S3
|. However, the accuracy of the flow

estimation is highly dependent on the size of the intersection compared to the
original sets. Moreover, the accuracy drops drastically in the number of inter-
sections, thereby limiting the length of paths that can be monitored. To boost
the accuracy and thereby ensure applicability, we present an improved estimator
that uses a set of intermediate estimators and their mean value in section 4.3.
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An OD-matrix L for a set of locations {l1, ..., lk} is defined as the flow between
each pair of locations, i.e., L ∈ R

k×k with Lij = v (li, lj). By placing a sensor at
each location, that is, sensor Si is placed at location li, an OD-matrix L can be
estimated by Lij = v (Si, Sj). This provides another mobility mining primitive:
the estimation of flows, paths and OD-matrices based on the intersection of
sensor readings.

4 Extending Linear Counting

In this section, we present the technical solution to the application scenarios
introduced in section 3. We start by recapitulating Linear Counting sketches,
which serve as fundamental tool. In particular, for the flow-monitoring it is
necessary to extend this sketching technique to monitoring the size of an inter-
section of two or more sensor readings. For both application scenarios, privacy
preservation demands that we use basic sketches at the sensors with relatively
high variance in their estimates. This variance even increases when estimating
intersections. In order to increase the accuracy again on the output layer, we
present an improved estimator that reduces the variance by combining several
independent sketches.

4.1 From Sensors to Sketches

Given the sensor readings RT
S = {a ∈ A | ∃t ∈ T : (a, t) ∈ RS} of a sensor

S during a time interval T , the goal is to represent the number of distinct
devices observed without explicitly storing their addresses. A problem of this
kind is referred to as count distinct problem, which can be tackled by Linear
Counting sketches [26]. They have originally been introduced to estimate the
number of unique elements within a table of a relational database.

In our scenario, this means that, instead of storing all readings within a mea-
surement interval T , a sensor just maintains a binary sketch sk

(RT
S

) ∈ {0, 1}m
of some fixed length m. The sketch is determined by a random hash map
h : A → {0, . . . ,m − 1} such that the following uniformity property holds:
for all a ∈ A and all k ∈ {0, . . . ,m − 1} it holds that P(h(a) = k) = 1/m.
For practical purposes this can be approximately achieved by choosing, e.g.,
h(a) = ((va+w) mod p) mod m, with uniform random numbers v, w ∈ N and
a fixed large prime number p. Other choices of hash functions are possible (see
e.g., Preneel [22]).

A sensor maintains its sketch as follows. At the beginning of the measurement
interval it starts with an empty sketch (0, . . . , 0), and on every address a ∈ A
read, until the end of the interval, the sketch is updated by setting the h(a)-th
position to 1. For the whole measurement interval this results in a sketch

sk
(RT

S

)

[k] =

{

1 , if ∃a ∈ RT
S , h(a) = i

0 , otherwise
.

In our application scenarios, a global population of mobile entities P ⊆ A of
size |P| = n is monitored with a set of sensors. The size of the global population
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n is an upper bound to the number of mobile entities in a sensor reading. In
each sensor reading, a subset of the global population is captured, i.e., RT

S ⊆ P ,
thus |RT

S | ≤ |P|, or nS ≤ n (from now on we denote
∣
∣RT

S

∣
∣ as nS).

The number of distinct addresses within a sensor reading can then be es-
timated based on the sketch as follows. Assume a sensor reading RT

S with
∣
∣RT

S

∣
∣ = nS and the respective sketch sk

(RT
S

)

. Let uS denote the number of zeros
in the sketch and vS = uS/m the relative zero count. Now, the maximum like-
lihood count estimator for the number of distinct items nS is n̂S = −m lnvS .
Whang et al. [26] shows that the expected value, and the variance of this esti-
mator are asymptotically well-behaved. Here, asymptotically refers to the limit
for increasing n while the loadfactor t = n/m and the relative size cS = nS/n
of S are kept constant. With this notion of limit, that we simply denote by lim
for the remainder of this paper, the expected value and the variance can be
expressed as

limE[n̂S ] = nS + (enS/m − nS/m− 1)/2 = nS (1)

limV(n̂S) = m
(

enS/m − nS/m− 1
)

, (2)

respectively. Hence, asymptotically, the estimator is unbiased and has a bounded
variance. Standard concentration inequalities can be used to convert this result
into probabilistic error guarantees.

In the crowd monitoring scenario, the size of the global population n can
be estimated as the size of the union of all individual sensor readings. By con-
struction of the sketches, it is possible to build a sketch of the union of sensor
readings RT

S and RT
S′ by combining the individual sketches with the point-wise

binary OR operation (i.e., sk
(RT

S

)

[k] ∨ sk
(RT

S′
)

[k] is equal to 1 if and only if

sk
(RT

S

)

[k] = 1 or sk
(RT

S′
)

[k] = 1). The following statement holds:

Proposition 1 (Whang et al. [26]). Let RS1 , ...,RSk
be readings of a set of

sensors S = S1, ..., Sk. The sketch constructed from the union of these readings
can be obtained by calculating the binary or of the individual sketches. That is,

sk

(
k⋃

i=1

RSi

)

=

k∨

i=1

sk(RSi) .

This is already sufficient to continuously track the total number of distinct ad-
dresses in the crowd monitoring scenario: for a pre-determined time resolution,
the sensor nodes construct sketches of their readings, send them to a monitoring
coordinator, and start over with new sketches. As required by the application,
the coordinator can then compute the estimate of distinct counts of mobile
entities based on the OR-combination of all local sketches. However, for the
flow-monitoring scenario we have to be able to compute the number of distinct
addresses in the intersection of sensor readings. Therefore, we have to extend
the Linear Counting approach.
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4.2 Intersection Estimation

In the following, a method is presented for estimating the intersection of two sets
using linear count sketches. The sketch of the intersection cannot be constructed
from the individual sketches (note that using the binary ’and’ operation on the
two sketches does in general not result in the correct sketch of the intersection).
Therefore, this method is based on the inclusion-exclusion formula for sets. That
is, we can express the size of the intersection of two sets A,B as |A ∩ B| =
|A| + |B| − |A ∪ B|. The estimator for the intersection of two sensor ranges is
defined in a similar way, using the estimators for each sensor and their union. Let
n̂S , n̂S′ denote the estimator for

∣
∣RT

S

∣
∣, respectively

∣
∣RT

S′
∣
∣. Let furthermore n̂S∪S′

denote the estimator based on the sketch of the union of the sensor readings RT
S

andRT
S′ as defined in proposition 1. Then the intersection estimator is defined

as

ñS,S′ = n̂S + n̂S′ − n̂S∪S′ (3)

It turns out that also this estimator asymptotically is unbiased and has a bounded
variance. The first follows directly from the linearity of the expected value. Thus,
we can note:

Proposition 2. For a constant loadfactor t and constant fractions cS , c
′
S, the

estimator ñS,S′ is asymptotically unbiased, i.e., limE[ñS,S′ ]/|S ∩ S′| = 1.

Furthermore, we can bound the variance of our estimator by the variance of
the union estimator. This implies that resulting probabilistic error guarantees
become tighter the closer the ratio |S ∩ S′|/|S ∪ S′| is to one.

Proposition 3. Asymptotically, the variance of the intersection estimator ñS,S′

is bounded by the variance of the count estimator for the union, i.e., limV(ñS,S′)
≤ limV(n̂S∪S′).

Proof (sketch). For some subset A ⊆ P and a fixed sketch position k ∈ {0, . . . ,m−
1} let us denote by pA = P(sk(A)[k] = 0) the probability that the sketch of A
has entry 0 at position k. Due to the uniformity of the hash function h it holds
that pA = (1− 1/m)

nA . The limit of this probability p∗A = lim pA is equal to
lim (1− t/n)

ncA = e−t·cA . The variance of the intersection estimator can be
re-expressed in terms of the covariances σ of the individual count estimators:

V(ñS,S′) = V(n̂S + n̂S′ − n̂S∪S′)

= V(n̂S) + V(n̂S′) + V(n̂S∪S′) + 2σ(n̂S , n̂S′)

− 2σ(n̂S , n̂S∪S′)− 2σ(n̂S′ , n̂S∪S′) . (4)

In order to determine the limit of the covariances for the count estimators n̂A and
n̂B for some arbitrary subsets A,B ⊆ P we can use Whang et al. [26, Eq. (8)]
and the bi-linearity of the covariance

limσ(n̂A, n̂B) = σ(m (tcA − vA/p
∗
A − 1),m (tcB − vB/p

∗
B − 1))

= m2σ(vA,vB)/(p
∗
Ap

∗
B) = m2σ(uA/m,uB/m)/(p∗Ap

∗
B)

= σ(uA,uB)/(p
∗
Ap

∗
B) . (5)
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Let sk(A) [k] denote the binary negation of sketch position k. The co-variances
of the absolute number of zero entries uA and uB is

σ(uA,uB) =

m∑

k=1

m∑

l=1

σ
(

sk(A) [k], sk(B) [l]
)

(6)

=

m∑

k=1

σ
(

sk(A) [k], sk(B) [k]
)

+

m∑

k,l=1
k �=l

σ
(

sk(A) [k], sk(B) [l]
)

.

Let U = A ∪B and I = A ∩B. We state without proof that the co-variances of
the individual sketch positions are given by

σ
(

sk(A) [k], sk(B) [k]
)

= pU − pApB

σ
(

sk(A) [k], sk(B) [l]
)

= pA\B pA\B(1− 2/m)|I| − pApB

for the cases k = l and k �= l, respectively. From this and Eq. (6) it follows that

limσ(uA,uB) = m (p∗U − p∗Ap
∗
B) +m(m− 1)

(

p∗A\Bp
∗
B\A(1− 2/m)

|I| − p∗Ap
∗
B

)

= m
(

e−t(cA+cB−cI) − e−t(cA+cB) − cIte
−t(cA+cB)

)

,

where the second equality follows from several steps of elementary calculus that
we omit here. By Eq. (5) we can then conclude

limσ(n̂A, n̂B) = m
(

etcI − tcI − 1
)

= limV(n̂I)

Inserting this result in Eq. (4), and noting that for fixed cA ≤ cB it holds that
limV(n̂A) ≤ limV(n̂B) (see eq. (2)), in particular Var[n̂S∩S′ ] ≤ Var[n̂S ] as well
as Var[n̂S∩S′ ] ≤ Var[n̂S′ ], yields

limV(ñS,S′) = lim(V(n̂S∪S′) + 2V(n̂S∩S′)− V(n̂S)− V(n̂S′))

≤ lim(V(n̂S∪S′) + 2V(n̂S∩S′)− V(n̂S∩S′)− V(n̂S∩S′))

= limV(n̂S∪S′)

�

When estimating the flow, the intersection of the readings of sensor S in a

time interval Tb are intersected with the readings of sensor S′ in consecutive
time interval Te. Let ΔT denote the time period between those two intervals.
Then we denote the estimator for the flow between S and S′ for this time period
as ñΔT

S,S′. This method can straight-forwardly be extended to paths. The flow on

a path S1 → S2 → S3 can be represented as |RT1

S1
∩ RT3

S2
∩ RT3

S3
|. This quantity

can again be estimated using the inclusion-exclusion formula.

ñΔT
S1 S2,S3

=n̂S1 + n̂S2 + n̂S3 − n̂S1∪S2 − n̂S1∪S3 − n̂S2∪S3 + n̂S1∪S2∪S3

The drawback of estimating the flow on paths is that the accuracy decreases
drastically in the number of nodes on the path. In conclusion, we now have two
major sources of high variance. A high loadfactor that is necessary to comply
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with high privacy requirements and a large number of intersections, required to
monitor long paths. In the following a method for reducing the variance of the
estimators is presented that improves the estimation of count distinct at a single
sensor, as well as union and intersection estimation. Through this improvement,
a higher loadfactor can be chosen to increase privacy while maintaining the same
estimation accuracy. Furthermore, this improvement allows for monitoring the
flow on longer paths with sufficient accuracy.

4.3 Improved Estimator

The improved estimator is based on the idea that the average of independent
estimations of the same quantity is again an equally biased estimator with lower
variance [7]. Hence, at each sensor, not one sketch is constructed, but r different
sketches using r different and independent hash functions. This yields r different
intermediate estimates, n̂1, ..., n̂r. The improved estimator is then defined as the
mean of these intermediate estimates, i.e., η̂ = 1

r

∑r
i=1 n̂

i. The n̂1, ..., n̂r are
maximum likelihood estimators for count distinct and as such they are normally
distributed and independent with common mean and variance [24], i.e., for all
i ∈ {1, ..., r} it holds that n̂i ∼ N (E[n̂],V(n̂)). Thus, the improved estimator is
normally distributed with η̂ ∼ N (

E[n̂], 1rV(n̂)
)

. The improved estimator has the
same expected value as the intermediate estimates, that is, it is asymptotically
unbiased, whereas the variance of the improved estimator is reduced by a factor of
1/r. Furthermore, because the intermediate estimators are normally distributed
and asymptotically unbiased, the improved estimator based on their mean is not
only again a maximum likelihood estimator for the count distinct, it is also the
uniformly minimum variance unbiased estimator and the minimum risk invariant
estimator [23].

However, in the pathological event that a sketch becomes full, i.e., un = 0,
the estimate for the count distinct based on this sketch is infinity. If only one of
the r sketches runs full, the estimator fails. This drawback can be circumvented
by using the median of the intermediate results instead of their mean. The
median is very robust to outliers but has also weaker error guarantees, i.e., to
guarantee an error not larger than ε with probability 1− δ, the mean estimator
requires r ≥ z1−δ

√

V(n̂)/ε, the median method requires r ≥ log (1/δ)/ε2 [8]
intermediate estimators. Consequently, for ε < 1, the mean estimator requires
less intermediate estimates to be as accurate as the median method.

5 Privacy Analysis

The main threat to privacy in the presented application scenarios is the so called
linking attack, i.e., an attacker infiltrates or takes over the monitoring system and
links this knowledge to background information in order to draw novel conclu-
sions. For example, in a standard monitoring system that distributes the sensor
readings, i.e., the device addresses, an attacker that knows the device address
of a certain person as background knowledge, and furthermore infiltrates the
monitoring system, is able to track this person throughout the monitored area.
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Sketching prevents these linking attacks in two ways, obfuscation and k-
anonymity. Obfuscation is accomplished by hashing the device address to sketch
positions. Hence, before an attacker is able to re-identify a device, she has to
infer the employed hash function. However, this very basic obfuscation tech-
nique can be vanquished using statistical analysis on sensor readings. The second
anonymization technique is accomplished by the natural property of sketches to
compress the address space, implicating collisions of addresses when mapped to
sketch positions. Whereas these collisions entail a loss in accuracy, they create
a form of anonymity, because an attacker can only infer upon a set of devices
whose addresses are all mapped to that very same sketch position.

Formally, a monitoring system guarantees k-anonymity (see Sweeney [25]), if
every monitored entity is indistinguishable from at least k other entities. Using
linear count sketches with a loadfactor t results in t collisions per bucket on
expectation, as implied by the uniformity property of the hash function, i.e.,

∀i ∈ {0, ...,m− 1} : E
[∣
∣{a ∈ RT

S : h(a) = i}∣∣] = t .

Hence, the expected level of anonymity is t. We denote this form of anonymity
expected k-anonymity, because the number of collisions is not deterministi-
cally guaranteed as required by regular k-anonymity. For a mathematical deriva-
tion of a similar probabilistic guarantee in the context of Bloom filters the reader
is referred to Bianchi et al. [5].

The union of sensor readings is estimated by the binary or of the individual
sketches. The binary or of a set of sketches has a loadfactor at least as high as
the individual sketches themselves. Therefore, the level of expected k-anonymity
is at least as high.

The intersection of sensor readings can contain far less device addresses than
the individual readings. A sketch that is created on the readings of the intersec-
tion has thus a lower loadfactor. Even so, the intersection estimator presented in
this paper is based on the estimators of the individual sketches and their union;
the sketch of the intersection is not constructed at all. Therefore, the level of
k-anonymity of this estimator for the intersection is again at least as high as the
anonymity of the individual sketches.

6 Experiments

In this section the empirical analysis of our method is presented. The general set
up of experiments is as follows. A set of n addresses is randomly sampled out of
a pre-defined address range (A = {1, · · · , 5×107}). Out of this set we repeatedly
sample with duplicates. The set is partitioned into k subsets S1, · · · , Sk where
Si represents the sensor readings of sensor i. For each sensor Si, a sketch ski of
size m is generated using a global hash function h for all sensors. The estimate of
sketches, their unions and intersections are then calculated as explained above.

6.1 Properties of the Estimator

For the first experiment, we simulate 3 sensors and vary the number of persons
inside the sensor range from 500 to 250,000. Results for the average ratio of
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estimator and true value and the standard deviation of the ratio are shown in
Fig. 2(a) and Fig. 2(b), respectively. The estimate is highly accurate—the error
is always below 1%. Compared to the error introduced by the inference of the
number of persons present in the area from the number of active Bluetooth
devices [18], the error is negligible.

For simple Linear Counting, these results confirm existing expectations from
theory and experimental studies. We need not go into a detailed comparison
with other sketching methods in this paper, since two recent studies [19, 15]
have done that already. One of the basic findings in these studies is that Linear
Counting gives, using a suitable loadfactor, much more accurate estimates of
the number of distinct objects than other sketching methods, e.g. FM-sketches
or sampling based methods. This holds especially for small set sizes—where a
number of 10,000 might already be considered small. For our application scenario
this is important, since the size—especially of the intersections—can decrease to
a few hundred persons. The experiment goes beyond the existing studies by
showing that for the intersection of two sets the error can also be very low with
a suitable loadfactor and that we can always set up a very accurate estimator
using Linear Counting. A significant error of the estimator comes in only because
we deliberately trade privacy against accuracy. As shown in section 5 the basic
mechanism responsible for privacy is increasing the loadfactor. We analyze this
trade-off, i.e., we investigate the impact of the loadfactor on the accuracy of
estimates of one sensor as well as of intersections of up to five sensors. We
simulate 5 sensors, and vary the loadfactor and the number of intersections. We
average the results over 2,000 runs. The results are depicted in Fig. 3(a).

(a) (b)

Fig. 2. Average estimate n̂ (a) and average standard deviation (b) relative to the true
value n for a loadfactor of 1

The results confirm that the standard error increases with the loadfactor
(Fig. 3(a), upper part), and even more rapidly with the number of intersections
(Fig. 3(a), lower part). From this experiment we conclude that simple Linear
Counting is indeed suitable for loadfactors smaller than 2 and intersection of
at most two sensors. But for higher loadfactors or more intersections the trade-
off can become unacceptable. This finding motivates the improved estimator
investigated in the following.
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(a) (b)

Fig. 3. (a) Distribution of estimates for loadfactors 0.5, 1, 2, 3, 4, 5 (upper part) and
numbers of sensors intersected, 1, 2, 3, 4, 5 with a constant loadfactor of 5 (lower part).
(b) Distribution of estimates using improved estimator with number of intermediate
estimates r set to 5 (upper left), 15, 30 and 50 (lower right).

For that, we concentrate on a loadfactor of 5, because in regular k-anonymity
5 is a common value to ensure privacy. For each sensor, we take r ∈ {5, 15, 30, 50}
different random initializations of the hash function, resulting in r different
sketches per sensor. Results, averaged over 500 runs, are shown in Fig. 3(b).
The mean of estimates reduces the variance and is close to the true value. A
good trade-off between the increase in accuracy and the higher memory require-
ments for storing multiple sketches is in the range between 15-30 sketches, since
for higher numbers of sketches the variance reduction per additional sketch be-
comes insignificant. With these results we have demonstrated how to achieve a
good trade-off between accuracy, privacy level, and memory consumption.

6.2 Real-World Simulation

To investigate the flow and crowd monitoring in a more realistic setting, we
implemented a simulation environment as follows. A random graph of k nodes
with Bernoulli Graph Distribution (p = 0.4) is generated; the position of nodes
in 2D-space is calculated using an automatic graph layout method. A number s
of node locations is attached with sensors with a predefined range. In general, a
sensor may cover more than one node and several edges. A number of n objects,
i.e. the global population, is created. For each object a random sequence of tour
stops (nodes of the graph) is generated. For every pair of tour stops the shortest
path is determined using Dijkstra’s method and inserted into the sequence be-
tween the stops. Finally, to each object a velocity, starting time and a step size
is assigned (the latter because objects are not only at the node positions, but
travel along the edges). During the simulation, for each time step the objects
follow the tour with the assigned velocity and starting time, and their position
along the edges is calculated. Each sensor monitors at each time step the objects
in its sensor range. For each sensor and time period a new sketch is calculated
and stored. As a ground truth, also the object address are stored. The simulation
stops when the last object has completed its tour.
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(a) (b)

Fig. 4. (a)Crowd simulation with Random Bernoulli Graph, 1000 persons (red dots),
5 Bluetooth sensors with overlapping range. (b) Estimated value (green dashed) and
true value (red dotted) for each sensor for the first 50 time steps.

(a)

S1 S2 S3 S4 S5

S1 0.005 0.008 0.007 0.018 0.001

S2 0.026 0.026 0.01 0.006 0.015

S3 0.004 0.003 0.016 0.002 0.014

S4 0.02 0.03 0.011 0.004 0.012

S5 0.014 0.005 0.004 0.017 0.027

(b)

Fig. 5. Flow estimation (green) and true values (red) between four sensors (a) as
well as relative error of an OD-matrix between five sensors (b). Results are from flow
simulation with 20000 persons and 5 sensors.

For the crowdmonitoring scenario, overlapping sensors are simulated. Fig. 4(a)
shows a snapshot from a simulation run. For the flow monitoring we use non-
overlapping areas. The main difference compared to the experiments discussed
in the last section is that the distribution of objects at nodes is not independent
from each other because of flow constraints along the graph. The distribution is
generated by a process very similar to real traffic flow, so that we have realistic
flow properties over time. Fig. 4(b) shows an example for crowd monitoring
with 15 nodes, 5 sensors, 1000 objects and a loadfactor of 5. Evidently, the es-
timates closely track the true values, as expected from the theoretical analysis
and the experiments reported in the last section. For the flow monitoring sce-
nario, Fig. 5(a) shows the estimate (green, dashed) and true (red, dotted) value
of the flows between 4 sensors over time. Next we simulated the OD-matrix
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construction problem. Table 5(b) shows the relative error of an OD-matrix con-
struction for 20,000 persons moving over a period of 15 time steps in a system
with 12 nodes, tracked by 5 sensors. Each sensor uses the improved estimator
with 30 sketches and a loadfactor of 5. From these results we conclude that even
for moderately sized sets, the error is very low. Overall, we conclude from the
experiments that Linear Counting behaves in the more complex setting of the
simulation as expected from a theoretical point of view and is a very promising
approach for deployment in real-world applications.

7 Discussion

In this paper we present a new, privacy aware method for estimating flows and
tracks as well as for estimating OD-matrices. This way, we extended the Linear
Counting approach to a general set of primitives for privacy-preserving mobility
modeling. We show theoretically and empirically that two challenging application
scenarios can be solved using and combining this set of primitives. To compensate
the accuracy deficit of Linear Counting for strict privacy requirements we present
a method for increasing the accuracy, while maintaining the privacy. This method
is also applicable to boost accuracy in flow estimation, allowing to monitor even
tracks.

In contrast to many privacy-preserving approaches, this one is easy to im-
plement, has excellent accuracy and can be implemented efficiently. Our experi-
ments suggest that it is immensely useful in a practical settings and can have a
real impact on how stationary sensor based data collection is done.

While being accurate on count distinct and flow estimation, even for strict pri-
vacy, the accuracy of our method drops drastically with the length of monitored
tracks. The improved estimator can compensate this drop to a certain level.
However, experiments show that estimating tracks of length greater 5 leads to
large errors. Therefore, we recommend using our method on count distinct and
flows. When monitoring tracks, depending on their length, a user might have to
reduce privacy requirements in order to maintain a certain accuracy.

The main drawback of Linear Counting when compared to other sketching
techniques is the memory usage. Most sketching techniques, e.g., FM Sketches,
use memory logarithmic in the number of items it estimates. The linear count
sketches, however, have linear memory usage, leading to potentially large sketches.
Fortunately, stationary sensors usually can be equipped with large memory (e.g.,
32GB flash memory). Hence, this is unproblematic for our application scenarios.
Still, the memory footprint can become problematic, because communication is
in general costly. If large sketches have to be send very frequently, communi-
cation costs can become significant, or sketch sizes might even exceed network
capacities.

In follow up research, we want to tackle the general problem of communica-
tion costs when using stationary sensors. However, when monitoring non-linear
functions, like the union or intersection of sets, this task is not trivial. The LIFT-
approach provides a framework for communication reduction in distributed sys-
tems, allowing communication efficient monitoring of non-linear functions. We
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want to apply the LIFT-approach to our monitoring system and test the benefits
of employing the LIFT-approach in a real-world experiment.
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