
Parallel Boosting with Momentum

Indraneel Mukherjee1, Kevin Canini1, Rafael Frongillo2, and Yoram Singer1

1 Google Inc.
indraneelenator@gmail.com, {canini,singer}@google.com

2 Computer Science Division, University of California Berkeley
raf@cs.berkeley.edu

Abstract. We describe a new, simplified, and general analysis of a
fusion of Nesterov’s accelerated gradient with parallel coordinate de-
scent. The resulting algorithm, which we call BOOM, for boosting with
momentum, enjoys the merits of both techniques. Namely, BOOM re-
tains the momentum and convergence properties of the accelerated gra-
dient method while taking into account the curvature of the objective
function. We describe a distributed implementation of BOOM which is
suitable for massive high dimensional datasets. We show experimentally
that BOOM is especially effective in large scale learning problems with
rare yet informative features.

Keywords: accelerated gradient, coordinate descent, boosting.

1 Introduction

Large scale supervised machine learning problems are concerned with building
accurate prediction mechanisms from massive amounts of high dimensional data.
For instance, Bekkerman et al. [15] gave as an example the problem of train-
ing a Web search ranker on billions of documents using user-clicks as labels.
This vast amount of data also comes with a plethora of user behavior and click
patterns. In order to make accurate predictions, different characteristics of the
users and the search query are extracted. As a result, each example is typically
modeled as a very high-dimensional vector of binary features. Yet, within any
particular example only a few features are non-zero. Thus, many features appear
relatively rarely in the data. Nonetheless, many of the infrequent features are
both highly informative and correlated with each other. Second order methods
take into account the local curvature of the parameter space and can potentially
cope with the skewed distribution of features. However, even memory-efficient
second order methods such as L-BFGS [12] cannot be effective when the pa-
rameter space consists of 109 dimensions or more. The informativeness of rare
features attracted practitioners who crafted domain-specific feature weightings,
such as TF-IDF [13], and learning theorists who devised stochastic gradient and
proximal methods that adapt the learning rate per feature [4,6]. Alas, our exper-
iments with state-of-the-art stochastic gradient methods, such as AdaGrad [4],
underscored the inability of stochastic methods to build very accurate predictors

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 17–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 I. Mukherjee et al.

which take into account the highly correlated, informative, yet rare features. The
focus of this paper is the design and analysis of a batch method that is highly
parallelizable, enjoys the fast convergence rate of modern proximal methods, and
incorporates a simple and efficient mechanism that copes with what we refer to
as the elliptical geometry of the feature space.

Our algorithm builds and fuses two seemingly different approaches. Due to
the scale of the learning problems, we have to confine ourselves to first order
methods whose memory requirements are linear in the dimension. One of the
most effective approaches among first order optimization techniques is Nesterov’s
family of accelerated gradient methods. Yuri Nesterov presented the core idea
of accelerating gradient-based approaches by introducing a momentum term al-
ready in 1983 [8]. The seemingly simple modification to gradient descent obtains
optimal performance for the complexity class of first-order algorithms when ap-
plied to the problem of minimization of smooth convex functions [7]. Nesterov
and colleagues presented several modifications in order to cope with non-smooth
functions, in particular composite (sum of smooth and non-smooth) functions.
The paper of the late Paul Tseng provides an excellent, albeit technically com-
plex, unified analysis of gradient acceleration techniques [16]. This paper is also
the most related to the work presented here as we elaborate in the sequel.

Both Nesterov himself as well as the work of Beck and Teboulle [1], who built
on Nesterov’s earlier work, studied accelerated gradient methods for compos-
ite objectives. Of the two approaches, the latter is considered more efficient to
implement as it requires storing parameters from only the last two iterations
and a single projection step. Beck and Teboulle termed their approach FISTA
for Fast Iterative Shrinkage Thresholding Algorithm. We start our construction
with a derivation of an alternative analysis for FISTA and accelerated gradient
methods in general. Our analysis provides further theoretical insights and dis-
tills to a broad framework within which accelerated methods can be applied.
Despite their provably fast convergence rates, in practice accelerated gradient
methods often exhibit slow convergence when there are strong correlations be-
tween features, amounting to elliptical geometry of the feature space. Putting the
projection step aside, first order methods operate in a subspace which conforms
with the span of the examples and as such highly correlated rare features can
be overlooked. This deficiency is the rationale for incorporating an additional
component into our analysis and algorithmic framework.

Coordinate descent methods [17] have proven to be very effective in machine
learning problems, and particularly in optimization problems of elliptical geome-
tries, as they can operate on each dimension separately. However, the time com-
plexity of coordinate descent methods scale linearly with the dimension of the
parameters and thus renders them inapplicable for high-dimensional problems.
Several extensions that perform mitigated coordinate descent steps in parallel
for multiple coordinates have been suggested. Our work builds specifically on
the parallel boosting algorithm from [2]. However, parallel boosting algorithms
on their own are too slow. See for instance [14] for a primal-dual analysis of the
rate of convergence of boosting algorithms in the context of loss minimization.

Parallel Boosting with Momentum 19

Our approach combines the speed of accelerated gradient methods with the ge-
ometric sensitivity of parallel coordinate descent, and enjoys the merits of both
approaches.We call the resulting approach BOOM, for boosting withmomentum.
As our experiments indicate, BOOM clearly outperforms both parallel boosting
and FISTA over a range of medium- to large-scale learning problems. The afore-
mentioned paper by Tseng also marries the two seemingly different approaches.
It is based on extending the so called 1-memory version of accelerated gradient
to inner-product norms, and indeed by employing a matrix-based norm Tseng’s
algorithm can model the elliptical geometry of the parameter space. However,
our analysis and derivation are quite different than Tseng’s. We take a more
modular and intuitive approach, starting from the simplest form of proximal
methods, and which may potentially be used with non-quadratic families of
proximal functions.

The rest of the paper is organized as follows. We describe the problem setting
in Sec. 2 and review in Sec. 3 proximal methods and parallel coordinate descent
for composite objective functions. For concreteness and simplicity of our deriva-
tions, we focus on a setting where the non-smooth component of the objective
is the 1-norm of the vector of parameters. In Sec. 4 we provide an alternative
view and derivation of accelerated gradient methods. Our derivation enables a
unified view of Nesterov’s original acceleration and the FISTA algorithm as spe-
cial cases of an abstraction of the accelerated gradient method. This abstraction
serves as a stepping stone in the derivation of BOOM in Sec. 5. We provide
experiments that underscore the merits of BOOM in Sec. 6. We briefly discuss
a loosely-coupled distributed implementation of BOOM which enables its usage
on very large scale problems. We comments on potential extensions in Sec. 7.

2 Problem Setting

We start by first establishing the notation used throughout the paper. Scalars
are denoted by lower case letters and vectors by boldface letters, e.g. w. We
assume that all the parameters and instances are vectors of fixed dimension
n. The inner product of two vectors is denoted as 〈w,v〉 =

∑n
j=1 wjvj . We

assume we are provided a labeled dataset {(xi, yi)}mi=1 where the examples have
feature vectors in R

n. The unit vector whose j’th coordinate is 1 and the rest
of the coordinates are 0 is denoted ej . For concreteness, we focus on binary
classification and linear regression thus the labels are either in {−1,+1} or real-
valued accordingly. A special case which is nonetheless important and highly
applicable is when each feature vector is sparse, that is only a fraction of its
coordinates are non-zero. We capture the sparsity via the parameter κ defined
as the maximum over the 0-norm of the examples, κ = maxi |{j : xi,j �= 0}|. The
convex optimization problem we are interested in is to associate an importance
weight with each feature, thus find a vector w ∈ R

n which minimizes:

L(w) =
∑m

i=1 �(〈w,xi〉 , yi) + λ1‖w‖1 = F(w) + λ1‖w‖1 ,

where F denotes the smooth part of L. As mentioned above, the non-smooth
part of L is fixed to be the 1-norm of w. Here � : R × R → R+ is a prediction

20 I. Mukherjee et al.

loss function. In the concrete derivations presented in later sections we focus on
two popular loss functions: the squared error �(ŷ, y) = 1

2 (ŷ − y)2 for real-valued
labels, and the logistic loss �(ŷ, y) = 1 + e−yŷ for binary labels, where ŷ is the
prediction and y is the true label. Throughout the paper w∗ denotes the point
minimizing L.

3 Proximal Methods

We begin by reviewing gradient descent for smooth objective functions and then
show how to incorporate non-smooth 1-norm regularization. We review how the
same minimization task can be carried out using parallel coordinate descent.

Gradient Descent. Let us first assume that λ1 = 0, hence L = F . We denote
by L the maximum curvature of F in any direction, so that ∇2F 	 LI. This
property of F coincides with having a Lipschitz-continuous gradient of a Lips-
chitz constant L. We can locally approximate F around any point v using the
following quadratic upper bound: F(w+δ) ≤ F(w)+〈∇F(v), δ〉+ 1

2 δ
†(LI)δ

︸ ︷︷ ︸
L‖δ‖2

.

In each iteration, the new weight wt+1 is chosen to minimize the above bound
anchored at the previous iterate wt, which amounts to,

wt+1 = wt − (1/L)∇F(wt) . (1)

For this update, recalling L = F , simple algebra yields the following drop in the
loss,

L(wt)− L(wt+1) ≥ ‖∇L(wt)‖22/(2L) . (2)

The guarantee of (2), yields that it takes O
(
L‖w0 −w∗‖2/ε) iterations to obtain

an approximation that is ε-close in the objective value.

Incorporating 1-norm regularization. When λ1 > 0, the local approximation
has to explicitly account for the �1 regularization, we have the following local
approximation:

L(w + δ) ≤ F(w) + 〈δ,∇F(w)〉 + (L/2)‖δ‖2 + λ1‖w+ δ‖1 .

We can decompose the above Taylor expansion in a coordinate-wise fashion

L(w + δ) ≤ L(w) +
∑n

j=1 f
L
j (δj) , (3)

where
fL
j (δ)

�
= gjδ + (1/2)Lδ2 + λ1 |wj + δ| − λ1 |wj | , (4)

where gj denotes ∇F(w)j . Multiple authors (see e.g. [5]) showed that the value
δ∗j minimizing fj satisfies wj + δ∗j = Pgj

L (wj), where

Pg
L (w)

�
= sign (w − g/L) [|w − g/L| − λ1/L]+ . (5)

In fact, with this choice of δ∗j we can show the following guarantee using standard
arguments from calculus.

Parallel Boosting with Momentum 21

Lemma 1. Let fL
j be defined by (4) and δ∗j chosen as above, then

fL
j (0)− fL

j (δ
∗
j) ≥ (L/2)δ∗j

2 .

Gradient descent with �1 regularization iteratively chooses wt+1 to minimize the
local approximation around wt, which amounts to

∀j : wt+1,j = Pgj
L (wt,j) , (6)

and using (3) and Lemma 1 we obtain the following guarantee:

L(wt)− L(wt+1) ≥ (L/2)‖wt −wt+1‖2 . (7)

This guarantee yields the same convergence rate of O
(
L‖w0 −w∗‖2/ε) as before.

Coordinate Descent. In coordinate descent algorithms, we take into account the
possibility that the curvature could be substantially different for each coordinate.
Let Lj denotes the maximum curvature of F along coordinate j, then as we show
in the sequel that parallel coordinate descent achieves a convergence rate of
O(

∑n
j=1 κLj(w0,j − w∗

j)
2/ε), where κ is the aforementioned sparsity parameter.

Note that when the dataset is perfectly spherical and all the coordinate wise
curvatures are equal to L0, convergence rate simplifies to O

(
κL0‖w0 −w∗‖2/ε),

and we approximately recover the rate of gradient descent. In general though,
the coordinate-specific rate can yield a significant improvement over the gradient
descent bounds, especially for highly elliptical datasets.

Let us describe a toy setting that illustrates the advantage of coordinate
descent over gradient descent when the feature space is elliptical. Assume that
we have a linear regression problem where all of the labels are 1. The data matrix
is of size 2(n−1)×n. The first n−1 examples are all the same and equal to the unit
vector e1, that is, the first feature is 1 and the rest of the features are zero. The
next n−1 examples are the unit vectors e2, . . . , en. The matrix ∇2F is diagonal
where the first diagonal element is n−1 and the rest of the diagonal elements
are all 1. The optimal vector w∗ is (1, . . . , 1) and thus its squared 2-norm is n.
The largest eigen value of ∇2F is clearly n−1 and thus L = n−1. Therefore,
gradient descent converges at a rate of O(n2/ε). The rest of the eigen values of
∇2F are 1, namely, Lj = 1 for j ≥ 2. Since exactly one feature is “turned on”
in each example κ = 1. We therefore get that coordinate descent converges at a
rate of O(n/ε) which is substantially faster in terms of the dimensionality of the
problem. We would like to note in passing that sequential coordinate descent
converges to the optimal solution in exactly n steps.

To derive the parallel coordinate descent update, we proceed as before via a
Taylor approximation, but this time have a separate approximation per coordi-
nate: F(w+θej) ≤ F(w)+θ∇F(w)j+(Lj/2)θ

2 . In order to simultaneously step
in each coordinate, we employ the sparsity parameter κ and Jensen’s inequality
(see e.g. [3]) to show

F (w + θ/κ) ≤ F(w) + (1/κ)
∑n

j=1

(
θj∇Fj(w) + (Lj/2)θ

2
j

)

= F(w) +
∑n

j=1

(
gjθj/κ+ (1/2)Ljκ (θj/κ)

2
)
.

22 I. Mukherjee et al.

By replacing θj/κ by δj , we get

F(w + δ) ≤ F(w) +
∑n

j=1

(
gjδj + (κLj/2)δ

2
j

)
. (8)

Introducing the �1 regularization terms on both sides, we have

L(w + δ) ≤ L(w) +
∑n

j=1 f
κLj
j (δj) , (9)

where f
κLj
j is as in (4). From our earlier discussions, we know the optimal choice

δ∗ minimizing the previous expression satisfies δ∗j = Pgj
κLj

(wj). Accordingly, the
parallel coordinate descent update is

wt+1,j = Pgj
κLj

(wt,j) , (10)

and using (9) and Lemma 1, we have

L(wt)− L(wt+1) ≥
∑n

j=1(κLj/2) (wt,j − wt+1,j)
2 . (11)

As before, with this guarantee on the progress of each iteration we can show
that the convergence rate is O(

∑n
j=1 κLj(w0,j − w∗

j)
2/ε).

4 Accelerated Gradient Methods

In this section we give a new alternative derivation of the accelerated gradi-
ent method (AGM) that underscores and distills the core constituents of the
method. Our view serves as a stepping stone towards the extension that incor-
porates parallel boosting in the next section. Accelerated methods take a more
general approach to optimization than gradient descent. Instead of updating the
parameters using solely the most recent gradient, AGM creates a sequence of
auxiliary functions φt : R

n → R
n that are increasingly accurate approximations

to the original loss function. Further, the approximating functions uniformly
converge to the original loss function as follows,

φt+1(w)− L(w) ≤ (1− αt) (φt(w) − L(w)) , (12)

where each αt ∈ (0, 1) and the entire sequence determines the rate of conver-
gence. At the same time, AGM produces weight vectors wt such that the true
loss is lower bounded by the minimum of the auxiliary function as follows,

L(wt) ≤ minw φt(w) . (13)

The above requirement yields directly the following lemma.

Lemma 2. Assume that (12) and (13) hold in each iteration, then after t iter-
ations, L(wt)− L(w∗) is be upper bounded by,

(∏
k<t (1− αk)

)
(φ0(w

∗)− φ0(w0) + L(w0)− L(w∗)) .

Parallel Boosting with Momentum 23

The inequality (12) is achieved by choosing a linear function L̂t that lower bounds
the original loss function, L̂t(w) ≤ L(w), and then squashing φt towards the
linear function by a factor αt,

φt+1 = (1− αt)φt + αtL̂t. (14)

Nesterov chose the initial auxiliary function to be a quadratic function centered
at v0 = w0 (an arbitrary point vector), with curvature γ0 = L/2, and intercept
φ∗
0 = L(w0), φ0(w) = γ0‖w − v0‖2 + φ∗

0 = L
2‖w −w0‖2 + L(w0). Then, using

an inductive argument, each φt is also a quadratic function with a center vt,
curvature γt = γ0

∏
t′<t(1− αt′), and intercept φ∗

t

φt(w) = γt‖w − vt‖2 + φ∗
t . (15)

Moreover, if the linear function L̂t has slope ηt, algebraic manipulations yield:

vt+1 = vt − (αt/2γt+1)ηt (16)

φ∗
t+1 = φt+1(vt)− (φt+1(vt)− φt+1(vt+1))

= (1− αt)φ
∗
t + αtL̂t(vt)− γt+1‖vt+1 − vt‖2

= (1− αt)φ
∗
t + αtL̂t(vt)− (α2

t /4γt+1)‖ηt‖2 . (17)

The last two equalities follow from (14), (15), and (16). To complete the al-
gorithm and proof, we need to choose L̂t, αt and wt+1 so as to satisfy (13).
Namely, L(wt+1) ≤ φ∗

t+1. All acceleration algorithms satisfy these properties
by tackling the expression in (17) in two steps. First, an intermediate point
yt+1 = (1− αt)wt + αtvt is chosen. Note by linearity of L̂t we have,

L̂t(yt+1) = (1 − αt)L̂t(wt) + αtL̂t(vt) ≤ (1− αt)L(wt) + αtL̂t(vt) .

Then, a certain proximal step is taken from yt+1 in order to reach wt+1, making
sufficient progress in the process that satisfies,

L̂t(yt+1)− L(wt+1) ≥ (α2
t /4γt+1)‖ηt‖2 . (18)

Combining the above two inequalities and inductively assuming that L(wt) ≤ φ∗
t ,

it can be shown that L(wt+1) is at most φ∗
t+1 as given by (17).

The acceleration method in its abstract and general form is described in Algo-
rithm 1. Further, based on the above derivation, this abstract algorithm ensures
that (12) and (13) hold on each iteration. Consequently Lemma 2 holds as well
as the following theorem.

Theorem 1. The optimality gap L(wt)−L(w∗) when wt is constructed accord-
ing to Algorithm 1 is at most,

(∏
k<t(1− αk)

)
L‖w0 −w∗‖2 . (19)

Proof. It suffices to show that the bound of Lemma 2 can be distilled to the
bound of (19). Using the definition of φ0 we have

φ0(w
∗)− φ0(w0) = (L/2)‖w∗ −w0‖2 . (20)

24 I. Mukherjee et al.

Further, since the maximum curvature is L, the function has a Lipschitz-
continuous gradient with Lipschitz constant L, namely, for any two vectors x,x′

the following inequality holds L(u) − L(u′) ≤ (L/2)‖x− x′‖2 and in particular
for u = w0 and u′ = w∗. Summing the term from inequality (20) with the
Lipschitz-continuity bound completes the proof.

We next present two concrete instantiations of Algorithm 1. Each variant chooses
a lower bounding function L̂t, a proximal step for reaching wt+1 from yt+1, and
finally αt so that (18) holds.

Nesterov’s Acceleration [9]. In this setting there is no 1-norm regularization,
λ1 = 0, so that L = F . Here L̂t is the tangent plane to the surface of L at yt+1,
ηt = ∇L(yt+1) and L̂t(w) = L(yt+1)+〈ηt,w− yt+1〉, which by definition lower
bounds L. Further, let wt+1 be obtained from yt+1 using the proximal step in
(1),

wt+1 = yt+1 − (1/L)∇L(yt+1) . (21)

Then, we have the same guarantee as in (2),

L(yt+1)− L(wt+1) ≥ 1/(2L)‖∇L(yt+1)‖2 .

By definition of η, (18) holds if we choose αt to satisfy

1/(2L) = α2
t /(4γt+1), (22)

which by expanding γk and using γ0 = L/2, simplifies to

α2
t /(1− αt) =

∏
k<t(1− αk) . (23)

From the above recurrence, the following inverse quadratic upper bound holds.

Lemma 3. Assume that (23) holds, then
∏

s<t(1− αs) ≤ 2
(t+1)2

Lemma 3 with Thm. 1 yields a rate of convergence of O(L‖w −w∗‖2/√ε).

FISTA [1]. In FISTA, wt+1 is set from yt+1 using (6), namely, wt+1,j =

Pgj
L (yt+1,j). With this choice of wt+1, L̂t is constructed as follows,

ηt = L (yt+1 −wt+1) , L̂t(w) = L(wt+1) + (1/2L)‖η‖2 + 〈η,w− yt+1〉 . (24)

The fact that L̂t lower bounds L is not obvious as was shown in [1]. We provide a
more general proof later in Lemma 4. Note that the definition (24) implies that,
L̂t(yt+1)− L(wt+1) = (1/2L)‖η‖2. Thus (18) holds when αt is set as in (22) so
as to satisfy the recurrence (23). Once again invoking Lemma 3 and Theorem 1,
we obtain the same convergence rate of O(L‖w0 − w∗‖2)/√ε). The resulting
algorithm may appear different than the original FISTA algorithm, but can be
shown to be equivalent.

Parallel Boosting with Momentum 25

Algorithm 1. Accelerated Gradient

1: inputs: loss L : Rn → R,
curvature L ∈ R+.

2: initialize: w0 = v0 ∈ R
n,

γ0 ← L/2.
3: for t = 0, 1, . . . , do
4: Pick αt ∈ (0, 1)
5: Set γt+1 = γ0

∏
k≤t(1− αk).

6: yt+1 ← (1− αt)wt + αtvt.
7: Choose linear function

L̂t ≤ L with slope ηt

8: Choose wt+1 using yt+1

so that (18) holds
9: vt+1 ← vt − (αt/2γt+1)ηt

10: end for

Algorithm 2. Boosting with Momentum

1: inputs: loss L,
sparsity κ and L1, . . . , Ln.

2: initialize: w0 = v0 ∈ R
n,

∀j : γ0,j ← κLj/2.
3: for t = 0, 1, . . . , do
4: Pick αt ∈ (0, 1)
5: Set γt+1,j = γ0,j

∏
k≤t(1− αk).

6: yt+1 ← (1− αt)wt + αtvt.
7: Choose linear function

L̂t ≤ L with slope ηt

8: Choose wt+1 using yt+1

so that (28) holds
9: ∀j : vt+1,j ← vt,j − (αt/2γt+1,j)ηt,j .
10: end for

5 BOOM: A Fusion

In this section we use the derivation of the previous section in a more general
setting in which we combine the momentum-based gradient descent with parallel
coordinate decent. As mentioned above we term the approach BOOM as it fuses
the parallel boosting algorithm from [2] with momentum accelerated gradient
methods [9,10,11].

The structure of this section will closely mirror that of Section 4, the only
difference being the details for handling per-coordinate curvature. We start by
modifying the auxiliary functions to account for the different curvatures Lj of F
in each direction, starting with the initial function,

φ0(w) =
∑n

j=1 γ0,j(wj − v0,j)
2 + φ∗

0.

The γ0,j are initialized to κLj/2 for each coordinate j, and φ∗
0 is set to L(w0):

φ0(w) =
∑n

j=1(Lj/2)(wj − v0,j)
2 + L(w0).

So instead of a spherical quadratic, the new auxiliary function is elliptical, with
curvatures matching those of the smooth part F of the loss function. As before,
we will choose a linear function L̂t ≤ L in each round and squash φt towards it
to obtain the new auxiliary function. Therefore (14) continues to hold, and we
can again inductively prove that φt continues to retain an elliptical quadratic
form:

φt(w) =

n∑

j=1

γt,jLj(wj − vt,j)
2 + φ∗

t , (25)

where γt,j = γ0,j
∏

k<j(1− αk). In fact, if L̂t has slope ηt, then we can show as
before:

26 I. Mukherjee et al.

vt+1,j = vt,j − (αt/2γt+1,j)ηt,j (26)

φ∗
t+1 = φt+1(vt)− (φt+1(vt)− φt+1(vt+1))

= (1− αt)φ
∗
t + αtL̂t(vt)−

∑t
j=1 γt+1,j (vt+1,j − vt,j)

2

= (1− αt)φ
∗
t + αtL̂t(vt)−

∑n
j=1(α

2
t /4γt+1,j)η

2
t,j . (27)

By picking yt+1 = (1 − αt)wt + αtvt as before and arguing similarly we can
inductively show the same invariant L(wt) ≤ φ∗

t , except wt+1 has to satisfy the
following guarantee instead of (18):

L̂t(yt+1)− L(wt+1) ≥
∑n

j=1(α
2
t /4γt+1,j)η

2
t,j . (28)

The algorithm in this abstract form is given in Algorithm 2. We have now es-
tablished that (12) and (13) hold in each iteration, and hence using Lemma 2
and arguing as before, we have the following theorem.

Theorem 2. If Algorithm 2 outputs wt in iteration t, then the suboptimality
L(wt)−L(w∗) can be upper bounded by

(∏
k<t(1− αk)

)∑n
j=1 κL0,j(wt,j−w∗

j)
2.

In order to make Algorithm 2 concrete, we must choose {αt}, L̂t, and wt+1 to
satisfy the required constraints. Our selection will be analogous to the choices
made by FISTA, but incorporating different curvatures. We first selectwt+1 from
yt+1 in a way similar to (10), ∀j : wt+1,j = Pgj

κLj
(yt+1,j), where gj = ∇F(yt+1)j .

Based on this choice, we select L̂t as follows:

ηt,j = κLj (yt+1,j − wt+1,j) (29)

L̂t(w) = L(wt+1) +
∑n

j=1(η
2
j /2κLj) + 〈ηt,w − yt+1〉 . (30)

By extending Lemma 2.3 in [1] we can show L̂t ≤ L.
Lemma 4. If L̂t is defined as in (30), then ∀w : L̂t(w) ≤ L(w).

The proof relies on optimality properties of the choice wt+1 and involves some
subgradient calculus. We defer it to the supplementary materials. In addition to
the lower bounding property L̂t ≤ L, from the definition (30), we also have

L̂t(yt+1)− L(wt+1) =
∑n

j=1(1/2κLj)η
2
j .

Then the constraint (28) will follow if we set αt to satisfy:

α2
t /(4γt,j) = 1/(2κLj). (31)

Expanding out γt,j and using γ0,j = Lj/2 we obtain
α2

t

1−αt
=

2γ0,j

κLj

∏
k<t(1−αk) =∏

k<t(1− αk), which is identical to (23).
We have now defined a particular instantiation of Algorithm 2, which satis-

fies the required conditions by the above discussion. We dub this instantiation
BOOM, and give the full procedure in Algorithm 3 for completeness. Applying
Theorem 2 and once again invoking Lemma 3, we have the following theorem,
which yields a O(

∑n
j=1 κLj(w0,j − w∗

j)
2/
√
ε) convergence rate.

Parallel Boosting with Momentum 27

Theorem 3. The wt output by Algorithm 3 satisfies the bound

L(wt)− L(w∗) ≤ (2/(t+ 1)2)
∑n

j=1 κLj(w0,j − w∗
j)

2.

As examples, consider linear and logistic loss. When L uses the linear loss, the
curvature parameters are given by Lj =

∑
i x

2
i,j where xi ∈ R

n is the feature
vector for the ith example in the training set. With logistic loss, the curvature
can be bounded by Lj = (1/4)

∑
i x

2
i,j [5].

6 Experiments

Algorithm 3. BOOM

1: inputs: loss L, regularizer λ1,
2: parameters: κ and L1, . . . , Ln

3: initialize: w0 = v0 = 0, γ0,j ← κLj/2
4: for t = 0, 1, . . . , do
5: Pick αt satisfying (23)
6: Set γt+1,j ← γ0,j α

2
t/(1− αt).

7: yt+1 ← (1− αt)wt + αtvt.
8: g← ∇L(yt+1)
9: wt+1,j ← Pgj

κLj
(yt+1,j)

10: vt+1,j ← vt,j − αtκLj

2γt+1,j
(yt+1,j − wt+1,j)

11: end for

We tested the performance of four
algorithms: (1) parallel boosting,
discussed in Section 3, (2) FISTA,
discussed in Section 4, (3) BOOM,
shown in Algorithm 3, and (4) se-
quential boosting. Note that for the
first three algorithms, within each
iteration, each coordinate in the fea-
ture space {1, . . . , n} could be as-
signed a separate processing thread
that could carry out all the com-
putations for that coordinate: e.g.,
the gradient, the step-size, and the
change in weight for that coordinate.

Therefore by assigning enough threads, or for the case of massively high dimen-
sional data, implementing these algorithms on a distributed architecture and
allocating enough machines, the computation time could remain virtually con-
stant even as the number of dimensions grows. However, in sequential boosting
a single iteration consists of choosing n coordinates uniformly at random with
replacement, then making optimal steps along these coordinates, one by one in
order. Therefore, in terms of computational time, one iteration of the sequential
algorithm is actually on the order of n iterations of the parallel algorithms. The
goal in including sequential boosting was to get a sense for how well the parallel
algorithms can compete with a sequential algorithm, which in some sense has
the best performance in terms of number of iterations. In all the experiments,
when present, the curve corresponding to parallel boosting is shown in solid red
lines, Fista in dashed blue, BOOM in solid lightgreen, and sequential boosting
in dashed black.

We next describe the datasets. The synthetic datasets were designed to test
how algorithms perform binary classification tasks with varying levels of sparsity,
ellipticity, and feature correlations. We generated 9 synthetic datasets for binary
classification, and 9 for linear regression. Each dataset has 1000 examples (split
into train and test in a 2:1 ratio) and 100 binary features. Each feature is sparse
or dense, occurring in 5% or 50%, resp. of the examples. The fraction of sparse

28 I. Mukherjee et al.

features is 0, 0.5, or 1.0. Note that with a 0.5 fraction of sparse features, the
ellipticity is higher than when the fraction is 0 or 1. For each of these settings,
either 0, 50, or 100 percent of the features are grouped into equal blocks of
identical features. The labels were generated by a random linear combination of
the features, and contain 10% white label noise for binary classification, or 10%
multiplicative Gaussian noise for the linear regression datasets. We ran each of
the four algorithms for 100 iterations on each dataset.

0 20 40 60 80 100
0

20

40

60

80

100
0% sparse features

0 20 40 60 80 100
0

20

40

60

80

100
50% sparse features

0 20 40 60 80 100
0

20

40

60

80

100
100% sparse features

(a) logistic

0 20 40 60 80 100
0

20

40

60

80

100
0% sparse features

0 20 40 60 80 100
0

20

40

60

80

100
50% sparse features

0 20 40 60 80 100
0

20

40

60

80

100
100% sparse features

(b) linear

Fig. 1. (Synthetic data) The top and bottom rows
represent logistic and linear regression experiments,
resp. The columns correspond to partitions of the
datasets based on fraction of sparse features. The
x-axis is iterations and the y-axis is the progress
after each iteration, averaged over the datasets in
the partition.

For each algorithm, in each
iteration we measure progress
as the drop in loss since the
first iteration, divided by the
best loss possible, expressed
as a percentage. For the train-
ing set we considered regular-
ized loss, and for the test set
unregularized loss. We par-
tition the datasets based on
whether the fraction of sparse
features, is 0, 0.5 or 1. For
each partition, we plot the
progress on the training loss
of each algorithm, averaged
across all the datasets in the
partition.

The results are tabulated
in Figure 1 separately for lo-
gistic and linear regression.

BOOM outperforms parallel boosting and FISTA uniformly across all datasets
(as mentioned above, the sequential boosting is shown only as a benchmark).
Against FISTA, the difference is negligible for the spherical datasets (where the
fraction of sparse features is 0 or 1), but more pronounced for elliptical datsets

1 10 100

10
4.5

10
4.7

10
4.9

ijcnn1

1 10 100

10
3.3

10
3.4

10
3.5

mushrooms

1 10 100

10
3.274

10
3.285

splice

1 10 100

10
4.1

10
4.4

w8a

1 10 100

10
4.1

10
4.6

1 10 100

10
3.1

10
3.2

10
3.3

1 10 100

10
2.93

10
2.98

1 10 100

10
4

Fig. 2. (Medium-size real data) The top and bottom rows correspond to training and
test data, resp. The x-axis measures iterations, and the y-axis measures loss with and
without regularization for the training and test sets, resp.

Parallel Boosting with Momentum 29

(where the fraction of sparse features is 0.5). The plots on the test loss have the
same qualitative properties, so we omit them.

10 20 50 100 200

0.
30

0.
34

Dataset One

10 20 50 100 200

0.
14

5
0.

15
5

0.
17

0

Dataset Two

Fig. 3. (Large scale data) The x-axis is itera-
tions and the y-axis is r-squared of the loss. The
solid curves correspond to r-squared over train-
ing sets, and the dashed curve over the test-sets.

We next ran each algorithm for
100 iterations on four binary clas-
sification datasets: ijcnn1, splice,
w8a and mushrooms. The cri-
teria for choosing the datasets
were that the number of exam-
ples exceeded the number of fea-
tures, and the size of the datasets
were reasonable. The continuous
features were converted to bi-
nary features by discretizing them
into ten quantiles. We made ran-

dom 2:1 train/test splits in each dataset. The datasets can be found at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
The log-log plot of train and test losses against the number of iterations are
shown respectively in the left and right columns of Figure 2. BOOM signifi-
cantly outperforms both FISTA and parallel boosting on both train and test
loss on each dataset, suggesting that most real datasets are elliptical enough for
the coordinate-wise approach of BOOM to make a noticeable improvement over
FISTA.

Finally, we report large-scale experiments over two anonymized proprietary
datasets. Both are linear regression datasets, and we report R-squared errors
for the training set in solid lines, and test set in dashed. Dataset One contains
7.964B and 80.435M examples in the train and test sets, and 24.343M features,
whereas Dataset Two contains 5.243B and 197.321M examples in the train and
test sets, and 712.525M features. These datasets have very long tails, and the
sparsity of the features varies drastically. In both datasets 90% of the features
occur in less than 7000 examples, whereas the top hundred or so features occur
in more than a hundred million examples each. Because of this enormous ellip-
ticity, FISTA barely makes any progress, performing miserably even compared
to parallel boosting, and we omit its plot. Sequential boosting is infeasibly slow
to implement, and therefore we only show plots for BOOM and parallel boosting
on these datasets. The results are shown in Figure 3, where we see that BOOM
significantly outperforms parallel boosting on both datasets.

7 Conclusions

We presented in this paper an alternative abstraction of the accelerated gradi-
ent method. We believe that our more general view may enable new methods
that can be accelerated via a momentum step. Currently the abstract acceler-
ated gradient method (Algorithm 1) requires an update scheme which provides
a guarantee on the drop in loss. Just as the choices of step size and slope were
be abstracted, we suspect that this gradient-based condition can be relaxed, re-
sulting in a potentially non-quadratic family of proximal functions. Thus, while

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

30 I. Mukherjee et al.

the present paper focuses on accelerating parallel coordinate descent, in prin-
ciple the techniques could be applied to other update schemes with a provable
guarantee on the drop in loss.

References

1. Beck, A., Teboulle, M.: Fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal of Imaging Sciences 2, 183–202 (2009)

2. Collins, M., Schapire, R.E., Singer, Y.: Logistic regression, AdaBoost and Bregman
distances. Machine Learning 47(2/3), 253–285 (2002)

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (1991)
4. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 2121–2159
(2011)

5. Duchi, J., Singer, Y.: Boosting with structural sparsity. In: Proceedings of the 26th
International Conference on Machine Learning (2009)

6. McMahan, H.B., Streeter, M.: Adaptive bound optimization for online convex
optimization. In: Proceedings of the Twenty Third Annual Conference on Compu-
tational Learning Theory (2010)

7. Nemirovski, A., Yudin, D.: Problem complexity and method efficiency in optimiza-
tion. John Wiley and Sons (1983)

8. Nesterov, Y.: A method of solving a convex programming problem with convergence
rate o(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

9. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic
Publishers (2004)

10. Nesterov, Y.: Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming 103, 127–152 (2005)

11. Nesterov, Y.: Primal-dual subgradient methods for convex problems. Mathematical
Programming 120(1), 221–259 (2009)

12. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer Series in
Operations Research and Financial Engineering (2006)

13. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval.
Information Processing and Management 24(5) (1988)

14. Shalev-Shwartz, S., Singer, Y.: On the equivalence of weak learnability and lin-
ear separability: new relaxations and efficient algorithms. In: Proceedings of the
Twenty First Annual Conference on Computational Learning Theory (2008)

15. Svore, K., Burges, C.: Large-scale learning to rank using boosted decision trees.
In: Bekkerman, R., Bilenko, M., Langford, J. (eds.) Scaling Up Machine Learning.
Cambridge University Press (2012)

16. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimiza-
tion. Submitted to SIAM Journal on Optimization (2008)

17. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Mathematical Programming Series B 117, 387–423 (2007)

Parallel Boosting with Momentum 31

Appendix

In this appendix we provide technical proofs for theorems and lemmas whose
proof were omitted from the body of the manuscript.

Proof of Lemma 1 Let ∂fL
j denotes a subgradient of fL

j . By convexity of fL
j and

optimality of δ∗j , ∂f
L
j is increasing, in the range (0, δ∗j). Further, by optimality

of δ∗j , there fL
j has a zero subgradient at the point δ∗j . The form of (4) implies

that ∂fL
j increases at the rate of at least Lj . Therefore, we get that

fL
j (0)− fL

j (δ
∗
j) =

∫ 0

δ∗j
∂fL(z)dz ≥ ∫ δ∗j

0 Lzdz = L
2δ

∗
j
2 . ��

Proof of Lemma 2 The proof amounts to application of (13) and (12) as follows,

∀w∗ : L(wt)− L(w∗) ≤ φt(w
∗)− L(w∗) [using (13)]

≤ (∏
k<t (1− αk)

)
(φ0(w

∗)− L(w∗)) [recursively applying (12)]

=
(∏

k<t (1− αk)
)
(φ0(w

∗)− φ0(w0) + φ0(w0)− L(w∗))

=
(∏

k<t (1− αk)
)
(φ0(w

∗)− φ0(w0) + L(w0)− L(w∗)) . ��

Proof of Lemma 3 We have α2
t =

∏
s≤t(1 − αs). Notice that this implies an

implicit relation α2
t+1 = (1− αt+1)α

2
t . To finish the proof, we show that αt−1 ≤

2/t. We have

1

αt+1
− 1

αt
=

αt − αt+1

αt αt+1
=

α2
t − α2

t+1

αt αt+1(αt + αt+1)
=

α2
t − α2

t (1− αt+1)

αt αt+1(αt + αt+1)
,

where the last equality follows from the implicit relation. Now, using the fact that

αt > αt+1 we get that
1

αt+1
− 1

αt
≥ α2

t αt+1

αt αt+1 2αt
= 1

2 . We also have α2
0/(1−α0) = 1,

and thus α0 = (
√
5 − 1)/2 < 1. Therefore, we get 1/αt−1 ≥ (t − 1)/2 + 1/α0 ≥

(t + 1)/2. This in turn implies that α2
t−1/2 ≤ 2/(t + 1)2, and the proof is

completed. ��
Proof of Lemma 4 The proof is very similar to the proof of Lemma 2.3 in [1].
The proof essentially works by first getting a first order expansion of the loss L
around the point wt+1, and then shifting the point of expansion to yt+1.

In order to get the expansion around wt+1, we will separately get expansions
for the smooth part F and the 1-norm parts of the loss. For the smooth part,
we first take the first order expansion around yt+1:

F(w) ≥ F(yt+1) + 〈∇F(yt+1),w − yt+1〉 . (32)

We will combine this with the expansion in (8) around the point yt+1 to get an
upper bound for the point wt+1. We have:

F(yt+1 + δ) ≤ F(yt+1) +
∑n

j=1

(
gjδj + (κLj/2)δ

2
j

)
,

32 I. Mukherjee et al.

where gj = ∇F(yt+1)j . Substituting wt+1 for yt+1 + δ we get

F(wt+1) ≤F(yt+1) + 〈∇F(yt+1),wt+1 − yt+1〉+∑n
j=1(κLj/2)(wt+1,j − yt+1,j)

2.

Subtracting the previous equation from (32) and rearranging

F(w) ≥F(wt+1) + 〈∇F(yt+1),w −wt+1〉 −
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

Next we get an expansion for the non-smooth 1-norm part of the loss. If ν
is a subgradient for the λ1‖·‖1 function at the point wt+1, then we have the
following expansion: λ1‖w‖1 ≥ λ1‖wt+1‖1 + 〈ν,w −wt+1〉 . Combining with
the expansion of the smooth part we get

L(w) ≥L(wt+1) + 〈∇F(yt+1) + ν,w−wt+1〉−
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

We will carefully choose the subgradient vector ν so that the jth coordinate of
ν +∇F(yt+1), i.e., νj + gj satisfies

νj + gj = κLj(wt+1,j − yt+1,j), (33)

matching the definition of ηt,j in (29). We will show how to satisfy (33) later,
but first we show how this is sufficient to complete the proof. Using this we can
write the above expansion as

L(w) ≥L(wt+1) + 〈ηt,w−wt+1〉 −
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

By shifting the base in the inner product term to yt+1 we can write it as

〈ηt,w −wt+1〉 = 〈ηt,w − yt+1〉+ 〈ηt,yt+1 −wt+1〉
= 〈ηt,w − yt+1〉+

∑n
j=1 κLj(wt+1,j − yt+1,j)

2.

Substituting this in the above, we get

L(w) ≥L(wt+1) + 〈ηt,w − yt+1〉+
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

Notice that the right side of the above expression is L̂t(w).
To complete the proof we need to show how to select ν so as to satisfy (33).

We will do so based on the optimality properties of wt+1. Recall that by choice

wt+1,j = Pgj
κLj

(yt+1,j) = yt+1,j+δ∗j , where δ
∗
j minimizes the function f

κLj
j defined

as in (4): f
κLj
j (δ) = gjδ + 1

2κLjδ
2 + λ1 |yt+1,j + δ| − λ1 |yt+1,j|, By optimality

conditions for the convex function f
κLj

j , we have gj + κLjδ
∗
j + νj = 0, for some

νj that is a subgradient of the λ1 |yt+1,j + ·| function at the point δ∗j , or in
other words, a subgradient of the function λ1 |·| at the point wt+1,j . Therefore
there exists a subgradient ν of the λ1‖·‖1 function at the point satisfying (33),
completing the proof.

	Parallel Boosting with Momentum
	1 Introduction
	2 Problem Setting
	3 Proximal Methods
	4 Accelerated Gradient Methods
	5 BOOM: A Fusion
	6 Experiments
	7 Conclusions
	References

