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Abstract. We propose a decision-theoretic sparsification method for
Gaussian process preference learning. This method overcomes the loss-
insensitive nature of popular sparsification approaches such as the Infor-
mative Vector Machine (IVM). Instead of selecting a subset of users and
items as inducing points based on uncertainty-reduction principles, our
sparsification approach is underpinned by decision theory and directly
incorporates the loss function inherent to the underlying preference learn-
ing problem. We show that by selecting different specifications of the loss
function, the IVM’s differential entropy criterion, a value of information
criterion, and an upper confidence bound (UCB) criterion used in the
bandit setting can all be recovered from our decision-theoretic frame-
work. We refer to our method as the Valuable Vector Machine (VVM)
as it selects the most useful items during sparsification to minimize the
corresponding loss. We evaluate our approach on one synthetic and two
real-world preference datasets, including one generated via Amazon Me-
chanical Turk and another collected from Facebook. Experiments show
that variants of the VVM significantly outperform the IVM on all
datasets under similar computational constraints.

1 Introduction

Preference learning has become an important subfield in machine learning tran-
scending multiple disciplines such as economics, operations research and social
sciences. A wide range of applications in areas such as recommender systems,
autonomous agents, human-computer interaction and e-commerce has moti-
vated machine learning researchers to investigate flexible and effective ways to
construct predictive preference models from preference observations. This is a
challenging problem since complex relations between users and their preferred
products (items) must be uncovered. Furthermore, flexible and principled ways
to handle uncertainty over the users’ preferences are required in order to balance
what the system knows. To address these challenges, non-parametric Bayesian
approaches based on Gaussian processes (GPs) have shown to be effective in

* NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part IT, LNATI 8189, pp. 515-F30] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



516 M.E. Abbasnejad, E.V. Bonilla, and S. Sanner

real applications [1I2I3J4]. However, one of the major limitations of preference
learning approaches based on GPs is their poor scalability when dealing with a
large number of users and items.

Scalability issues in GPs are not exclusive to preference learning and they are
common in other settings such as regression and classification. It is customary
in these settings to adopt sparsification approaches, where a subset of training
examples is selected as inducing points, considerably reducing the time com-
plexity of posterior approximation and prediction [56J7]. A popular approach to
GP sparsification is the Informative Vector Machine [8], where inducing points
are selected according to an information-theoretic criterion. A key characteristic
of the IVM is that it can be embedded naturally in sequential algorithms such
as Assumed Density Filtering [9] or Expectation Propagation [10]. These algo-
rithms provide efficient computation of the quantities of interest (i.e., posterior
variances) to be used by the IVM’s sparsification criterion.

Nevertheless, the IVM’s purely entropic sparsification criterion fails at ad-
dressing the varying loss functions that may be of interest to the final decision-
theoretic task — especially those tasks that naturally arise in preference learning.
For example, we might be interested in (a) optimizing the utility of the best rec-
ommendation, (b) giving a ranking of all items (or a subset), or (c) correctly
classifying all pairwise preferences. In each case we seek to optimize a loss for a
different decision-theoretic task and when we need to approximate in a Bayesian
setting, it is important that our approximation is loss-calibrated [11]. We note
that the uncertainty reduction principle inherent to the IVM approximation is
not loss-calibrated for all tasks (a)—(c).

In this paper, we continue to bridge the gap between decision theory and
approximate Bayesian inference [I1] in a direction that leverages the efficiency
of the IVM approach for GP sparsification, while overcoming its loss-insensitive
approximation. We show that the IVM’s differential entropy criterion, a value
of information criterion, and an upper confidence bound [12] criterion can all be
recovered in our framework by specifying the appropriate loss.

An additional important aspect of the preference learning problem that dis-
tinguishes it from standard machine learning settings is that the complexity of
making predictions does not directly depend upon the number of observations
(i.e. preference relations), but rather the number of users and items. Our method
takes this into consideration and adopts an item-driven sparsification strategy
that retains the items that best encode the users’ preferences. Our experiments
show that this is an effective way of reducing the complexity of inference in
preference learning with GPs while addressing the objective function of interest
directly. We refer to our generic method as the Valuable Vector Machine (VVM)
since it incorporates the loss function directly into its sparsification mechanism.

The rest of this paper is organized as follows: we outline the use of GPs for
multi-user preference learning and prediction in Section ] followed by our our
proposed VVM sparsification framework in Section Bl and empirical evaluation
in Section [l We differentiate our approach from related work in Section Bl and
conclude in Section
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2 GPs for Preference Learning

In this section, we define a general approximation framework for Bayesian pref-
erence learning via Gaussian Processes that we will adapt to the loss-calibrated
setting in the next section.

Let U = {uj,us,...,u,} be a set of n users and let X = {x1,x2,...,X;m}
be a set of m items and denote the set of observed preferences of each user
u € U with D" = {x; > x;} where 1 < i < m and 1 < j < m. Given the
preferences D" for u, satisfaction of the von Neumann-Morgenstern axioms [I3]
justify the existence of utilities f* € R for each item x; € X s.t. x; > x; € D
it f;* > f;'. In order to model the distribution over these utilities, we build upon
the model proposed by [2]. We denote a latent utility vector f for all users and

items with £ = [f1*, f3', ..., f%]7. Then, we can define the likelihood over all
the preferences given the latent functions as:
@) =TI I pea=xilf ) (1
uelU x; X epDu
with el = (707, ®

where ®(z) = [*_ N (y)dy and N(y) is a zero-mean Gaussian distribution with
unit variance. In this model, p(f) is the prior over the latent utilities f and
is defined via a GP with zero-mean function and a covariance function that
factorizes over users and items [2]. Therefore:

p(f) =N(f;0,K), K=K.,®K,, (3)

where K is the kernel matrix composed of the Kronecker product of the kernel
matrix over the users K, and the kernel matrix over the items K,. One inter-
esting feature of this model is the inherent transfer of preferences across users
through the correlated prior, which will subsequently help the prediction on
those users for which there are not many preferences recorded. Additionally, as
we shall see later, having a fully factorized likelihood across users and items will
facilitate the application of sequential approximate posterior inference methods
such as Fzpectation Propagation (EP) [10].
The posterior of the latent functions f given all the preferences is:

L p()p(DIf), )

pfD) =,

with Z being the normalizer. This posterior is analytically intractable due to the
non-Gaussian nature of the likelihood. Therefore, we need to resort to approxi-
mations. Here we use EP which approximates the posterior p(f|D) by a tractable
distribution ¢(f). EP assumes that each likelihood term p(x; = x;|f}, f}') can be
approximated by a distribution ¢(f}, fj“) such that the approximated posterior
q(f) factorizes over q(f}", f}'). Then EP iteratively approximates each q(f}, f}')
in turn by dividing it out from the approximated posterior ¢(f) (obtaining the
cavity distribution), multiplying in the true likelihood p(x; > x;|f, f}'), and
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projecting the result back to its factorized form by matching its moments to an
updated g(f*, f;‘). This overall procedure is motivated by the aim to minimize
the KL—divergence between the true posterior p(f|D) and its approximation

q(f).
In the preference learning case we detailed earlier, we can approximate the
posterior with a Gaussian:

«="oe) [T T et =Nt ). (5)
Z uelU {{i,j}|x;>x; €D}

We are interested in locally approximating each likelihood term in Equation

[ as:

p(xi >Xj|fiu>fjp) %q( Z_U,fP) (6)
= ZigN U 55 agig) P i)
where N(fi“,f;‘;ﬁu’[i’j], ﬁu’[i,j]) denotes the local two-dimensional Gaussian
over [f*, f*]" with mean Py [;,5) and covariance 5311,[2‘,3‘] corresponding to items
7 and j.
Hence we can approximate the posterior as:

a® = o® [T TI ot £ = Nt 2 (7)

uelU {i,j}€D
~ 71 ~
where P i j] = 2u,fig) i, j]p‘u,[i,j] (8)
—1 _
Bt = Kl + Zuiig): 9)

This means that in order to determine the parameters of our approximate pos-
terior, we need to compute estimates of the local parameters @i and X. To show
these updates, we need to define additional distributions: (a) the cavity distribu-
tion which we will denote with the backslash symbol “\” and (b) the unnormalized
marginal posterior, which we will denote with the hat symbol “~ 7.

Here we only show how to compute the parameters necessary to estimate the
posterioﬂ. We iterate through the following steps:

1. Update the Cavity Distribution: The cavity distribution ¢\ (£}, f}')
results from multiplying the prior by all the local approximate likelihood terms
except q(f}', f}') and marginalizing all latent dimensions except f}* and f}*. This
is done in practice simply by removing the current approximate likelihood term
from the approximate posterior. Hence we obtain:

Q\( iuvf;‘l) :N( i gu’li\u[,g] Z\u [z]]) (10)
-1

Pyafig) = D) (B Bafig) = Zujig)fu,ig) (11)

-1 e N
Iaig) = (T~ Tugig) (12)

! Similar updates for the single user case are given in [I].
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2. Update the Unnormalized Marginal Posterior : This results from find-
ing the unnormalized Gaussian that best approximates the product of the cavity
distribution and the exact likelihood:

a(fi's fi') = p(xi = x5 £ ) (fi'5 f5) (13)

)= Z_IN(fiuyfjl'l;[l'u,[i,j]:2u7[i,j]) with (14)
Z = d(ri;) (15)
P fig) = Pafig) T 2wl W i) (16)
i) = Buli) (17)
= il (W fig] W i) P W i1 11 ) B il

where

W — N(rij) 1
wl] D(rij)(a? +tr(X\y i 12))
o P L Tij
T a2 tr(Bapgle)’ 7 a2 (D la)
and 1p = [11] , 1p= {11 11] : (18)

3. Update the Local Factor Approximation: by performing moment match-
ing, we can calculate the corresponding parameters in g(f", f}‘) as:

- a1

~ A —1

P fig) = 2 id) (Zufig) i) — a1 H\w lig)

< R S -1 -1

Zu,[z‘,j] = (Zu,[i,j] - Z\U,[i,j]) : (19)

At each iteration once we have local factor parameters fi and X, we can compute
the parameters of the full posterior approximation using [l We iterate through
all the factors and update the local approximations sequentially.

2.1 Prediction

Given a pair of items x7, x4 for a particular user, we will be able to determine
the predictive distribution over the latent utility functions as:

p(f7. F51D) = / p(f7, 5 |D)p(ED)dE=N (", C*) (20)
with p* =K*(K+ %) p (21)
C'=3 -K'"(K+ %) 'K, (22)

where X is the 2 x 2 kernel matrix built from the item pair x} and x}5; K* =
K} ® K7 that represents the kernel matrix of the test user and items with all the
users and items in the training set; K7 is the 1 x n kernel matrix of the queried
user with other users; and K7, is the 2 x m kernel matrix of the queried pair of
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items with other items. Subsequently, their preference for a user is determined
by integrating out the latent utility functions:

p(xi > x3[D) = / / p(; = 33117, 3. DYp(f1 £3|D)dfs dfs

BT — 5
=& . 23
(042 + CT,I + 03,2 - QCT,2> ( )

We see that the mean and covariance of the predictive distribution require the in-
version of a (possibly) very large matrix. This matrix is, in general, of dimensions
nm X nm. Even though the inverse matrix can be reused for multiple query points,
this is intractable for any real application. Hence, we will focus on how to spar-
sify this matrix by selecting a subset of inducing items. Note the main difference
with other machine learning settings where there is a one-to-one correspondence
between the number of observations and the dimensionality of the corresponding
matrix. In our case, the observations (preference relations) affect the dimension-
ality of this matrix only indirectly and we are more concerned with the number of
users and items. More importantly, as we shall see in the following section, we will
make use of decision theory for sparsification. Our method, which we will refer to
as the Valuable Vector Machine (VVM), selects the most useful items during spar-
sification so as to minimize the loss inherent to the preference learning problem.
Therefore, the prediction time which is cubic in the number of items is improved
in VVM over the case where all items are used.

Since our focus is on improving prediction time and this scales cubically with
the number of items we need to obtain a risk-sensitive posterior approximation.
EP is well-suited for this case because it considers all data efficiently and locally.

2.2 Optimizing the Kernel Hyper-parameters

One of the inherent advantages of GPs over other non-Bayesian kernel methods
is its capability of optimizing the hyper-parameters. This can be easily done
by maximizing the marginal likelihood in a gradient descent algorithm. The
marginal likelihood can be obtained from the normalizer Z in Equation [ as:

7= / o T TI (e e (24)

uel {i,j}eD

where both p(f) and q(f}, f}') are Gaussian distributions and their product
produces an unnormalized Gaussian distribution. Therefore, the log likelihood
is:

. 1 1 -
log(Z) = — 2['LT(K +32) - 5 logdet(K + %) — Z log 27 (25)

The derivative of the marginal likelihood with respect to the kernel hyper-
parameters can be used in a gradient descent algorithm to optimize the kernel.
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Table 1. Loss and corresponding risk to minimize for VVM variants. Let ¢(f) := gg (f)
and a € {x}'}.

Algorithm IVM (item) VVM-VOI VVM-UCB
Loss Type Log loss Regret Risk-seeking
L(f,a,u) —log(q(f")) —ILfF>F*71(f=f"") —exp(Bf),8>0
Riskc (S xi,w)  Hq(F")  ou,x0) [ed(e) + N(0)] 1+ Bpu(u,x;) + & 52(u,x,)
Selection Time O(1) O(nlogn) O(1)

3 Decision-Theoretic Sparsification

To recap, our multi-user preference learning objective is to approximate a pos-
terior q(f) = N(f; u, X) over latent utilities £ = [f1, f3'*,..., f2]7 for users
u € U and items x; € X. In the previous section, we showed how to learn ¢(f)
from preference data by EP; in this section due to computational considera-
tions, we wish to sparsify this Gaussian posterior in a loss-calibrated manner.
We note that in the special case of GP-based preference learning, there are at
least two different ways one might approach sparsification: observation-driven
sparsification and item-driven sparsification.

3.1 Sparsification

Observation-Driven Sparsification. In this approach, we incrementally se-
lect a subset of observations (in this case preferences) in order to approximate
the posterior ¢(f) . More formally, recall that D" = {x; > x;} and let D’ C D be
a subset of selected preferences. Observation-driven sparsification simply chooses
the data subset D’ according to some criterion to obtain a posterior approxima-
tion ¢p (f) =~ p(f|D’) (e.g., via EP as outlined in the last section).

As a concrete example, the original Informative Vector Machine [§] initializes
D’ to a small random subset and then incrementally builds D' := D" U {d*} for
the d* that maximizes information gain

d* = arg max H(QD’U{d} (f)) — H(gp (£)), (26)
dED\D’

where ¢p/(f) =~ p(f|D’') and gpugay(f) = p(f|D" U {d}). This repeats until
the desired level of observation sparsity has been reached. Since D’ is fixed
at each iteration and thus H(gp/(f)) is a constant, each incremental selec-
tion in the IVM is equivalent to choosing the d* that maximizes entropy, i.e.,

d* = arg maXdeD\D, H(QD’U{d}(f))

Item-Driven Sparsification: Valuable Vector Machine. Inclusion of a
preference observation entails a 2-dimensional update to our GP posterior; how-
ever, since preferences may overlap, there is not a direct relationship between
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the number of included preferences and the dimensionality of the posterior and
hence the computational complexity of prediction described in section 211 A
more direct way to control the sparsity level of our Gaussian posterior is to
simply retain the items for users (equivalently dimensions f* of our Gaussian
posterior) that minimizes some criterion.

This item-driven approach underlies the Valuable Vector Machine (VVM)
that we propose in this paper for different decision-theoretic settings. First we
introduce some notation. Let S” C .S = {(x;,u)} be a selected subset of user-item
pairs corresponding to latent utility dimensions f* of f with cardinality |S’|. Let
q(fis) = N(fis; Hiss Xsr,s1) where fis) and pg respectively represent the
subvectors of f and p for selected dimensions S’ (i.e. selected users and items
in set S’) and X[g ¢ the corresponding submatrix of X. Motivated by the
observation-driven IVM, after running EP, let us incrementally select dimensions
s* € S of our Gaussian posterior to retain so that initializing S’ = ), at each
iteration we update S’ := S’ U {s*} to obtain an improved posterior gg/(f) until
some dimensionality limit has been reached.

In decision theory, our objective is to select an action a* € A from a possible
space of actions A so as to minimize the expectation of some loss L(a) w.r.t.
uncertainty (in this case utility uncertainty over f), i.e. a* = argmin, EfL(f, a).
Our specific task at each iteration of the VVM is to propose an item-user di-
mension x}* for inclusion in the posterior — hence the action space A = {x;} —
and to select the item s* that minimizes expected loss (risk)

s* = argmin Riskc (S, x;,u);
(xi,u)eS\S’
where Riskz(S',xi,u) := Eengg, [L(F,%;,0)], (27)

and S” = S’ U{x}. In the following, we will detail choices of loss functions
and their respective Risk,(S’,x;,u) yielding the VVM variants as summarized
in Table [0 and its corresponding method in Algorithm [l

In each iteration, VVM selects the action (i.e. item) that minimizes the ex-
pected loss for each user until desired predefined dimensionality is reached. Our
experiments with a variable number of items per user led to worse performance
since it often overemphasizes item selection for the noisiest users. Hence, we
found that a constant number of items enforces fairness of GP modeling effort
per user.

It should also be noted that the greedy selection here is fairly general and
in special cases such as submodular losses, one can prove further convergence
guarantees [14].

3.2 Loss Functions and Risk

Log Loss and IVM. Log-loss is appropriate when we want to maximize the
log posterior over all preferences. Here we see that we can actually recover an
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Algorithm 1. Valuable Vector Machine

input: X,U,D,r // r is the percentage of items selected for each user
while not converged do
for x; > x; € D do
L. Update the cavity distribution ., ; j, Z\u,[i,;) from Equation [Tl and
2. Update the unnormalized marginal posterior ﬂ,ﬁ‘ from Equation [T6] and [I7]
3. Update the local factor approximation f, 3 from Equation
5. Update g and X' from Equation [7}
end for
end while
for each u € U // Selection of best items for each user do
S™ ={} //The user u’s subset
while |S™| < r do
X; =argming, c x x;¢ s Riskc(S',xi,u)// Table[d
S =S5"u{x;}
end while
S=5us™
end for
return H(sys Xs,5] // Subset of posterior parameters

item-based variant of the IVM when using log-loss. Specifically, letting q(f})
refer to the marginal of ¢(f) over f* then

Risk (S, x5 1) = / ~ a5 (F)log g (F))dF
— Hgs (/™). (28)

which corresponds to the entropic criterion used by the IVM. Recall that the sec-
ond entropy term in the standard IVM information gain calculation is constant
and can be omitted as noted for (26)).

Valuable Vector Machine — Value Of Information (VVM-VOI). In the
case that our end objective is to predict or recommend the best item x; for user
u, the loss we might consider minimizing is the regret, I[f* — f** > 0](f*— f**)
where we could define f"* = argmax; f"; in words, we want to minimize how
much utility we lose for recommending a suboptimal item. In expectation, we
might simply fix f** = max;E,, [f{*] (the best current item in expectation)
where expected loss minimization leads us to the following risk:

Risk (S, x:,u) = / I8 > PN — ) as (F0)df

= g(u, x) [c®(c) Jr/\/(c)l (29)
VoI

where gs (f) = N(f2; n(u,x),0%(u,x)) and ¢ = ) g s precisely

o(u,x)
the statement of Value of Information (VOI) [15] under a Gaussian assumption
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fu.*

u _ sugx
[

i\

Fig. 1. Nllustration of Value of Information: it is the product of the shaded area under
the normal curve when the utility is higher than the optimal value and the linear
function of their difference. This value corresponds to the expectation of the difference
of the utility of the item and the optimal under the shaded mass. As it is observed, fi'
has negligible mass above f™* point, therefore the item corresponding to f3' is selected.

of uncertainty — quite simply, the more probability mass an item utility has in
its tail above the best item in expectation, the higher its chance of being the
best item — hence the higher VOI associated with selecting this item in S”.

Valuable Vector Machine — Upper Confidence Bound (VVM-UCB).
It is well-known that a concave or convex valuation of underlying utility respec-
tively encourages risk-averse or risk-seeking behavior w.r.t. utility uncertainty.
Risk-seeking behavior from a convex utility function will encourage including
“potentially optimal” items according to how uncertain we are regarding their
utility function value. A natural convex utility transformation is exp(8fy), which
leads to the following risk

(oo}

Riskc (S, xi,u) = */ qs (i) exp(Bf:)df:

o )
= [ ante (1o ) ar

~14p-UCB(u,x)

—2

where UCB(u,x;) = p(u,x;) + 'ga (u,x3). (30)

where 52 (u,x;) = Eqg., [fiuz]. Here, we first replaced exp(Sf*) with its Taylor
expansion and approximated it by truncating third-order terms and above. When
doing this, we see that the dimension x} selected by the VVM will be the one
with the greatest Upper Confidence Bound (UCB) [16] used in bandit problems,
where larger 8 > 0 encourages more risk-seeking behavior.

4 Empirical Evaluation

In this section we evaluate the performance of our algorithms (VVM-VOI and
VVM-UCB) compared to the IVM and the full GP, i.e. a GP-preference model
that does not use sparsification, in terms of two losses: the 0/1 loss and
recommendation loss. The 0/1 loss is the percentage of incorrectly predicted
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preferences and the recommendation loss is the proportion of items that are in-
correctly predicted as the best for recommendation. In other words, if the set
of items that a user considers to be the best (as induced by her preferences) is
denoted by T" and the predicted set of best items is T, the recommendation loss
is |Z;| % 100, where m is the number of items and T' = {x € T*|x ¢ T'}. We report
the results as a function of the proportion of items selected for sparsification.

Our experimental rationale is to exhibit how different risk-sensitive sparsifica-
tions perform across two different important losses related to preference learning
compared to IVM. As such, we use IVM in its original form that works with ADF
since it was argued by [I7] that it performs better than running full EP, which we
observed as well. Hence we chose the IVM variant that offered best performance
and compared it against VVM.

We consider three datasets: a synthetic dataset and two real-world datasets.
The synthetic experiment assesses the effectiveness of our approach in a con-
trolled setting and the real-world datasets include users’ preferences over cars
that we have collected using Amazon Mechanical Turk and a Facebook dataset
that we have obtained via an in-house application that collects user preferences
over web links.

In all these datasets we are given a set of users and items and their corre-
sponding features along with each user’s preferences over item pairs. For each
user and item we augment their feature vectors with their ID index (this is a
common practice in collaborative filtering) and transform their categorical fea-
tures into binary variables. We split each user’s set of preferences into 60% for
training and 40% for testing.

We use the squared exponential covariance kernel with automatic relevance
determination (ARD) (see [18], Page 106) for both users and items and optimize
the hyper-parameters by maximizing the marginal likelihood under the EP ap-
proximation as detailed in section Finally, we have set a = 3 (see Equation
@) and 8 =1 (see Equation (B0)) for all experiments on all datasets.

4.1 Datasets

Synthetic Dataset: In this experiment we created a synthetic dataset where the
utility function value for each item is known beforehand and is subsequently used
to generate users’ preferences. A set of hypothetical users and items are created
and identified by their IDs. For each user, items are randomly split into two sets
to indicate the ones that are liked (with a constant utility value of 10) and disliked
(with a constant utility value of 5). From these utility functions we generate full
sets of preferences for 10 items and 50 users. Consequently, for each user, 5 items
have higher utility value and are naturally preferred to the other half.

Facebook Data: This dataset has been created using a Facebook App that
recommends web links to users every day. The users may give their feedback
on the links indicating whether they liked /disliked them. At its peak usage, 111
users had elected to install the Facebook app developed for this project. We also
collected user information consisting of ID, age and gender and the link features
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including count of link’s total “likes”, count of link’s “shares” and count of total
link comments. The Facebook App recommended three links per day to avoid
position bias and information overload. The preference set is built such that the
links that are liked are considered preferred to the ones disliked in the batch of
three recommended each day. We used 20% of users with the highest number of
preferences over 50 links commonly recommended to all users.

Car Preference Dataset Using Amazon Mechanical Turk: We set up
an experiment using Amazon Mechanical Turk? (AMT) to collect real pair-wise
preferences over users. In this experiment users are presented with a choice of
a car over another based on their attributes. The car attributes used are (1)
body type: sedan, SUV, hatchback, (2) engine capacity: 2.5L, 3.5L, 4.5L, etc,
(3) transmission: manual, automatic, (4) fuel consumption: hybrid, non-hybrid,
and (5) engine/transmission layout: all-wheel-drive (AWD), forward-wheel-drive
(FWD). The dataset has been collected so that 20 unique cars (items) are con-
sidered but users are required to answer only 20% of all 190 possible pair-wise
preferences. We targeted US users mainly to have a localized preference dataset.
For all 60 unique users that participated in this experiment, a set of attributes
in terms of general questions (age range, education level, residential region and
gender) has been collected as user features.

4.2 Results

We evaluate our algorithms in a cross-validation setting using 60% of preferences
for training and 40% for testing and repeated each experiment 40 times. Results
are averaged over the number of test users. We analyze the performance of the
algorithms as a function of the level of sparsification, as given by the percentage
of items selected for inference. The larger the percentage of items selected, the
smaller level of sparsification and the closer the algorithms are to the Full-GP
method. The performances of the different algorithms on all datasets using the
recommendation loss and the 0/1 loss are shown in Figure

Figuresandshow the results on the synthetic dataset. Because of the
clear distinction between the items that are preferred for each user, all algorithms
perform very well when using at least 40% of the items. While IVM and VVM-
VOI have very similar performance, VVM-UCB’s performance is outstanding,
requiring only a very small number of items to achieve perfect prediction.

As seen in Figures and on the Facebook dataset both VVM-VOI
and VVM-UCB outperform (or have equal performance to) IVM when using at
least 30% of the items.

It is interesting to note here that the risk-seeking behavior of VVM-UCB
leads to a better approximation of the Full-GP which is particularly visible
in the Facebook dataset where the number of items are larger. We conjecture
that the excellent performance of VVM-UVB with this larger number of items is
because it manages to quickly find and refine the set of highest value items, more
effectively than even VVM-VOI. This simultaneously lowers recommendation

2 http://mturk. com
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Fig. 2. Performance of the sparsification methods in terms of the recommendation
loss (the proportion of items that are incorrectly predicted as the best item for rec-
ommendation) in the first column and the 0/1 loss (percentage of wrongly predicted
preferences) in the second, as a function of the proportion of items selected for spar-
sification. The larger the number of items the lower the level of sparsification and the
closer the algorithms are to the Full-GP method.

loss by finding a near-optimal item and 0/1 loss since the best items can then

be identified with certainty in most pairwise comparisons.

Figures and [2(f)| show the results on the AMT Car dataset. In this
dataset, where true preferences have been collected, VVM-VOI and VVM-UCB

consistently outperform IVM. Similar to the Facebook results, we conjecture that
VVM-VOTI’s and VVM-UCB’s better performance than the IVM (most notably
on 0/1 loss where all preferences matter) stems from the fact that they both
select the potentially best items first and this helps identify the dominant item
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in all pairwise preferences. However it seems that identifying the single best item
among the potentially best items is difficult in this particular dataset, requiring
a large proportion of data to identify the best item with high accuracy.

It is interesting to mention that while VVM-VOI and VVM-UCB outperform
IVM in most cases when using the recommendation loss, a similar trend is seen
when using the 0/1 loss. Although this result may look unexpected, it is impor-
tant to emphasize that neither the VVM or the IVM are designed to optimize
the 0/1 loss. In fact, the risk-seeking nature of the VVM-UCB loss, as a conse-
quence of the exponential transformation of the utility functions, may be better
aligned with the 0/1 loss than the entropic criterion used by the IVM.

Another issue worth mentioning is the computational cost of running the differ-
ent approximation algorithms. As a reference of the time spent by our algorithms
compared to the Full-GP (where no sparsification is done), Figure[Blshows the pre-
diction time for an indicative experiment. We see that — while IVM and VVM-
UCB may enjoy very similar prediction time and similar structure in the posterior
— sparsification improves prediction time significantly and that all approximation
algorithms have roughly the same computational cost. Small variations as that ob-
served when using 80% of the items can be explained by the different sparsity prop-
erties of the posterior covariance obtained when selecting a distinct subset of items.

———————————————— R e -1
90
--o-Full GP
—— VM
8o —s— VVM-VO
= VVM-UCI
£70
=
60
50 ‘ ‘ ‘ ‘
20 30 40 50 60

Percentage of items selected

Fig. 3. Average prediction time for inference with 200 users and 10 items. The number
calculated as the time consumed to make a series of predictions on the preferences of
the test set.

5 Related Work

Probabilistic models for utility functions in preference learning and elicitation
have previously been proposed in the machine learning community (e.g. [T920]).
Extensions to non-parametric models have also been developed. In particular,
[21] proposed a preference learning framework based on Gaussian processes and
[22] used this framework for active learning with discrete choice data. Multi-
user GP-based preference models have been given by [23] and [2]. Our method
builds upon the model proposed by [2], where the Laplace method was used to
approximate the posterior.

In standard machine learning settings, low-rank approximations to the Gram
matrix are commonly used by practitioners and researchers (see e.g. Chapter 8
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of [I8]) to deal with large datasets. A unifying framework in which most of these
approximations can be formulated has been given by [24]. This framework in-
cludes the fully independent training conditional (FITC) approximation, which
makes better use of all the data and can be combined with our approach to
approximate the covariance at a higher cost. The work proposed in [7] consid-
ers sparsification approaches where the inducing points are latent variables and
their values are optimized within a consistent probabilistic latent variable model.
However, none of these algorithms addresses the sparsification problem from a
decision-theoretic perspective.

Our approach is analogous to the IVM in that we borrow ideas from active
learning in order to carry out sparsification during approximate inference. For
example, upper confidence bounds (UCB) are used in [I2] for GP optimization
within the bandit setting. We note that, unlike this latter experimental design
scenario, in our sparsification framework we see the data beforehand and decide
to include it in our approximation afterwards.

An information theoretic active learning algorithm for classification and pref-
erence learning is proposed in [25]. In the preference learning case, this method
exploits the reduction of the preference learning problem to a classification set-
ting [26]. This work is complementary to ours in that we can use it along with the
FITC approximation in order to devise more effective decision-theoretic sparsi-
fication methods for multi-user preference learning. We leave the study of such
an approach for future work.

The most relevant work to ours has been proposed in [I1] where the use of loss
functions in Bayesian methods is considered by formulating an EM algorithm
that alternates between variational inference and risk minimization. We take
the idea of bridging the gap between decision theory and approximate Bayesian
inference [11] in a direction that leverages the efficiency of the IVM approach
for GP sparsification, while overcoming its loss-insensitive approximation.

6 Conclusion

We proposed a decision-theoretic sparsification method for Gaussian process pref-
erence learning. We referred to our method as the valuable vector machine (VVM)
to emphasize the importance of considering a loss-sensitive sparsification approach.
We show that the IVM’s differential entropy criterion, a value of information crite-
rion, and an upper confidence bound (UCB) criterion can all be recovered in a gen-
eralized decision-theoretic framework by specifying the appropriate loss. Overall,
our approach contributes to the goal of bridging the gap between decision theory
and approximate Bayesian inference in the context of loss-sensitive sparsification
approaches for efficient Gaussian Process preference learning.
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