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Abstract. To cope with machine learning problems where the learner
receives data from different source and target distributions, a new learn-
ing framework named domain adaptation (DA) has emerged, opening
the door for designing theoretically well-founded algorithms. In this pa-
per, we present SLDAB, a self-labeling DA algorithm, which takes its
origin from both the theory of boosting and the theory of DA. SLDAB
works in the difficult unsupervised DA setting where source and target
training data are available, but only the former are labeled. To deal with
the absence of labeled target information, SLDAB jointly minimizes the
classification error over the source domain and the proportion of margin
violations over the target domain. To prevent the algorithm from induc-
ing degenerate models, we introduce a measure of divergence whose goal
is to penalize hypotheses that are not able to decrease the discrepancy
between the two domains. We present a theoretical analysis of our al-
gorithm and show practical evidences of its efficiency compared to two
widely used DA approaches.

1 Introduction

In many learning algorithms, it is usually required to assume that the training
and test data are drawn from the same distribution. However, this assumption
does not hold in many real applications challenging common learning theories
such as the PACmodel [20]. To cope with such situations, a new machine learning
framework has been recently studied leading to the emergence of the theory of
domain adaptation (DA) [1,14]. A standard DA problem can be defined as a
situation where the learner receives labeled data drawn from a source domain
(or even from several sources [13]) and very few or no labeled points from the
target distribution. DA arises in a large spectrum of applications, such as in
computer vision [16], speech processing [11,18], natural language processing [3,5],
etc. During the past few years, new fundamental results opened the door for the
design of theoretically well-founded DA-algorithms. In this paper, we focus on
the scenario where the training set is made of labeled source data and unlabeled
target instances. To deal with this more complex situation, several solutions have
been presented in the literature (see, e.g., surveys [15,17]). Among them, instance
weighting-based methods are used to deal with covariate shift where the labeling
functions are supposed to remain unchanged between the two domains. On the
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(a) h- 1 (b) h2-

Fig. 1. Underlying principle of DASVM. (a): black examples are labeled source data
(circle or triangle). Squares are unlabeled target data. A first SVM classifier h1 is
learned from the labeled source data. Then, DASVM iteratively changes some source
data by semi-labeled target examples selected in a margin band (black source instances
in a dashed circle and target squares in a circle). (b): new hypothesis h2 learned using
the newly semi-labeled data. h2 works well on the source and satisfies some margin
constraints on the target.

other hand, feature representation approaches aim at seeking a domain invariant
feature space by either generating latent variables or selecting a relevant subset of
the original features. In this paper, we focus on a third class of approaches, called
iterative self-labeling methods. For example, in DASVM [4], a SVM classifier is
learned from the labeled source examples. Then, some of them are replaced by
target data selected within a margin band (to allow slight modifications of the
current classifier) but at a reasonable enough distance from the hyperplane (to
have a sufficient confidence in those unlabeled examples). A new classifier is then
learned using these newly semi-labeled target data (see Figures 1(a) and 1(b)).
The process is repeated until having only semi-labeled data in the training set.

In the context of self-labeling DA, DASVM has become during the past few
years a reference method. However, beyond algorithmic constraints due to the
resolution of many non trivial optimization problems, it faces an important lim-
itation: it is based on the strong assumption that, if a classifier h works well on
the source data, the higher the distance from h, the higher the probability for
an unlabeled sample to be correctly classified. It is worth noting that such an
assumption holds only if the underlying DA problem does not require to sub-
stantially move closer the source and target distributions. As suggested by the
theoretical frameworks presented in [1,14], a DA algorithm may have not only
to induce a classifier that works well on the source but also to reduce the di-
vergence between the two distributions. This latter condition essentially enables
us to have confidence in the ability of the hypothesis learned from the source
to correctly classify target data. It is important to note that DASVM has not
been designed for such a discrepancy reduction. In this paper, our objective is
to fill the gap between the iterative self-labeling strategy and these theoreti-
cal recommendations. We present a novel DA algorithm which takes its origin
from both the theory of boosting [7] and the theory of DA. Let us remind that
boosting (via its well known AdaBoost algorithm) iteratively builds a com-
bination of weak classifiers. At each step, AdaBoost makes use of an update
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rule which increases (resp. decreases) the weight of those instances misclassified
(resp. correctly classified) by previous classifiers. It is worth noting that boosting
has already been exploited in DA methods but mainly in supervised situations
where the learner receives some labeled target instances. In [6], TrAdaBoost
uses the standard weighting scheme of AdaBoost on the target data, while the
weights of the source instances are monotonically decreased according to their
margin. A generalization of TrAdaBoost to multiple sources is presented in
[21]. On the other hand, some boosting-based approaches relax the constraint
of having labeled target examples. However, they are proposed in the context of
semi-supervised ensemble methods, i.e. assuming that the source and the target
domains are (sufficiently) similar [2,12].

In this paper, we present SLDAB, a boosting-like DA algorithm which both
optimizes the source classification error and margin constraints over the unla-
beled target instances. However, unlike state of the art self-labeling DA methods,
SLDAB aims at also reducing the divergence between the two distributions in
the space of the learned hypotheses. In this context, we introduce the notion of
weak DA assumption which takes into account a measure of divergence. This
classifier-induced measure is exploited in the update rule so as to penalize hy-
potheses inducing a large discrepancy. This strategy tends to prevent the algo-
rithm from building degenerate models which would, e.g., perfectly classify the
source data while moving the target examples far away from the learned hy-
perplane (and thus satisfying any margin constraint). We present a theoretical
analysis of SLDAB and derive several theoretical results that, in addition to
good experimental results, support our claims.

The rest of this paper is organized as follows: notations and definitions are
given in Section 2; SLDAB is presented in Section 3 and theoretically analyzed
in Section 4; We discuss the way to compute the divergence between the source
and target domains in Section 5; Finally, we conduct two series of experiments
and show practical evidences of the efficiency of SLDAB in Section 6.

2 Definitions and Notations

Let S be a set of labeled data (x′, y′) drawn from a source distribution S over
X × {−1,+1}, where X is the instance space and {−1,+1} is the set of labels.
Let T be a set of unlabeled examples x drawn from a target distribution T over
X . Let H be a class of hypotheses and hn ∈ H : X → [−1,+1] a hypothesis
learned from S and T and their associated empirical distribution DS

n and DT
n .

We denote by gn ∈ [0, 1] a measure of divergence induced by hn between S and
T . Our objective is to take into account gn in our new boosting scheme so as to
penalize hypotheses that do not allow the reduction of the divergence between S
and T . To do so, we consider the function fDA : [−1,+1] → [−1,+1] such that
fDA(hn(x)) = |hn(x)| − λgn, where λ ∈ [0, 1]. fDA(hn(x)) expresses the ability
of hn to not only induce large margins (a large value for |hn(x)|), but also to
reduce the divergence between S and T (a small value for gn). λ plays the role of
a trade-off parameter tuning the importance of the margin and the divergence.
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Let T−
n = {x ∈ T |fDA(hn(x)) ≤ γ}. If x ∈ T−

n ⇔ |hn(x)| ≤ γ + λgn.
Therefore, T−

n corresponds to the set of target points that either violate the
margin condition (indeed, if |hn(x)| ≤ γ ⇒ |hn(x)| ≤ γ + λgn) or do not satisfy
sufficiently that margin to compensate a large divergence between S and T (i.e.
|hn(x)| > γ but |hn(x)| ≤ γ + λgn). In the same way, we define T+

n = {x ∈
T |fDA(hn(x)) > γ} such that T = T−

n ∪T+
n . Finally, from T−

n and T+
n , we define

W+
n =

∑

x∈T+
n

DT
n (x) and W−

n =
∑

x∈T−
n

DT
n (x) such that W+

n +W−
n = 1.

Let us remind that the weak assumption presented in [7] states that a classifier
hn is a weak hypothesis over S if it performs at least a little bit better than
random guessing, that is ε̂n < 1

2 , where ε̂n is the empirical error of hn over S
w.r.t. DS

n . In this paper, we extend this weak assumption to the DA setting.

Definition 1 (Weak DA Learner). A classifier hn learned at iteration n from
a labeled source set S drawn from S and an unlabeled target set T drawn from
T is a weak DA learner for T if ∀γ ≤ 1:

1. hn is a weak learner for S, i.e. ε̂n < 1
2 .

2. L̂n = Ex∼DT
n
[|fDA(hn(x))| ≤ γ] = W−

n < γ
γ+max(γ,λgn)

.

Condition 1 means that to adapt from S to T using a boosting scheme, hn

must learn something new at each iteration about the source labeling function.
Condition 2 takes into account not only the ability of hn to satisfy the margin γ
but also its capacity to reduce the divergence between S and T . From Def.(1),
it turns out that:

1. if max(γ, λgn) = γ, then γ
γ+max(γ,λgn)

= 1
2 and Condition 2 looks like the

weak assumption over the source, except the fact that L̂n < 1
2 expresses a

margin condition while ε̂n < 1
2 considers a classification constraint. Note that

if this is true for any hypothesis hn, it means that the divergence between
the source and target distributions is rather small, and thus the underlying
task looks more like a semi-supervised problem.

2. ifmax(γ, λgn) = λgn, then the constraint imposed by Condition 2 is stronger
(that is L̂n < γ

γ+max(γ,λgn)
< 1

2 ) in order to compensate a large divergence

between S and T . In this case, the underlying task requires a domain adap-
tation process in the weighting scheme.

In the following, we make use of this weak DA assumption to design a new
boosting-based DA algorithm, called SLDAB.

3 SLDAB Algorithm

The pseudo-code of SLDAB is presented in Algorithm 1. Starting from uniform
distributions over S and T , it iteratively learns a new hypothesis hn that veri-
fies the weak DA assumption of Def.(1). This task is not trivial. Indeed, while
learning a stump (i.e. a one-level decision tree) is sufficient to satisfy the weak
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Algorithm 1. SLDAB

Input: a set S of labeled data and T of unlabeled data, a number of iterations N ,
a margin γ ∈ [0, 1], a trade-off parameter λ ∈ [0, 1], l = |S|, m = |T |.
Output: two source and target classifiers HS

N and HT
N .

Initialization: ∀(x′, y′) ∈ S,DS
1 (x

′) = 1
l
, ∀x ∈ T,DT

1 (x) =
1
m
.

for n = 1 to N do
Learn a weak DA hypothesis hn by solving Problem (1).
Compute the divergence value gn (see Section 5 for details).

αn = 1
2
ln 1−ε̂n

ε̂n
and βn = 1

γ+max(γ,λgn)
ln

γW+
n

max(γ,λgn)W−
n

∀(x′, y′) ∈ S, DS
n+1(x

′) = DS
n(x

′). e
−αnsgn(hn(x′)).y′

Z′
n

.

∀x ∈ T , DT
n+1(x) = DT

n (x).
e−βnfDA(hn(x)).yn

Zn
,

where yn = sgn(fDA(hn(x))) if |fDA(hn(x))| > γ,
yn = −sgn(fDA(hn(x))) otherwise,
and Z′

n and Zn are normalization coefficients.
end for

∀(x′, y′) ∈ S, FS
N (x′) =

N∑

n=1

αnsgn(hn(x
′)),

∀x ∈ T, F T
N (x) =

N∑

n=1

βnsgn(hn(x)).

Final source and target classifiers: HS
N(x′) = sgn(FS

N(x′)) and HT
N(x) = sgn(F T

N (x)).

assumption of AdaBoost, finding an hypothesis fulfilling Condition 1 on the
source and Condition 2 on the target is more complicated. To overcome this
problem, we present in the following a simple strategy which tends to induce
hypotheses that satisfy the weak DA assumption.

First, we generate k
2 stumps that satisfy Condition 1 over the source and

k
2 that fulfill Condition 2 over the target. Then, we seek a convex combination

hn =
∑

k

κkh
k
n of the k stumps that satisfies simultaneously the two conditions of

Def.(1). To do so, we propose to solve the following convex optimization problem:

argmin
κ

∑

(x′,y′)∈S

DS
n(x′)

[
−y′ ∑

k

κksgn(h
k
n(x

′))

]

+

+
∑

x∈T

DT
n (x)

[
1−

(
∑

k

κkmarg(fDA(hk
n(x)))

)]

+

(1)

where [1−x]+ = max(0, 1−x) is the hinge loss, and marg(fDA(h
k
n(x))) returns

−1 if fDA(h
k
n(x)) is lower than γ (i.e. hn does not achieve a sufficient margin

w.r.t. gn) and +1 otherwise. Solving this optimization problem tends to fulfill
Def.(1). Indeed, minimizing the first term of Eq.(1) tends to reduce the empirical
risk over the source data, while minimizing the second term tends to decrease
the number of margin violations over the target data.

Note that in order to generate a simple weak DA learner, we start the process
with k = 2. If the weak DA assumption is not satisfied, we increase the dimension
of the induced hypothesis hn. Moreover, if the optimized combination does not
satisfy the weak DA assumption, we draw a new set of k stumps.
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Once hn has been learned, the weights of the labeled and unlabeled data are
modified according to two different update rules. Those of source examples are
updated using the same strategy as that of AdaBoost. Regarding the target
examples, their weights are changed according to their location in the space. If a
target example x does not satisfy the condition fDA(hn(x)) > γ, a pseudo-class
yn = −sgn(fDA(hn(x))) is assigned to x that simulates a misclassification. Note
that such a decision has a geometrical interpretation: it means that we exponen-
tially increase the weights of the points located in an extended margin band of
width γ + λgn. If x is outside this band, a pseudo-class yn = sgn(fDA(hn(x)))
is assigned leading to an exponential decrease of DT

n (x) at the next iteration.

4 Theoretical Analysis

In this section, we present a theoretical analysis of SLDAB. Recall that the good-
ness of a hypothesis hn is measured by its ability to not only correctly classify
the source examples but also to classify the unlabeled target data with a large
margin w.r.t. the classifier-induced divergence gn. Provided that the weak DA
constraints of Def.(1) are satisfied, the standard results of AdaBoost directly
hold on S. In the following, we show that the loss L̂HT

N
, which represents after

N iterations the proportion of margin violations over T (w.r.t. the successive
divergences gn), also decreases with N .

4.1 Upper Bound on the Empirical Loss

Theorem 1. Let L̂HT
N

be the proportion of target examples of T with a margin

smaller than γ w.r.t. the divergences gn (n = 1 . . .N) after N iterations of
SLDAB:

L̂HT
N
= Ex∼T [yF

T
N(x) < 0] ≤ 1

|T |
∑

x∼T

e−yFT
N(x) =

N∏

n=1

Zn, (2)

where y = (y1, . . . , yn, . . . , yN ) is the vector of pseudo-classes and FT
N(x) =

(β1fDA(h1(x)), . . . , βnfDA(hn(x)), . . . , βNfDA(hN (x))).

Proof. The proof is the same as that of [7] except that y is the vector of pseudo-
classes (which depend on λgn and γ) rather than the vector of true labels. �

4.2 Optimal Confidence Values

Theorem 1 suggests the minimization of each Zn to reduce the empirical loss
L̂HT

N
over T . To do this, let us rewrite Zn as follows:

Zn =
∑

x∈T−
n

DT
n (x)e

−βnfDA(hn(x))y
n

+
∑

x∈T+
n

DT
n (x)e

−βnfDA(hn(x))y
n

. (3)

The two terms of the right-hand side of Eq.(3) can be upper bounded as follows:
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Fig. 2. Upper bounds of the components of Zn for an arbitrary value γ = 0.5. When
x ∈ T+

n , the upper bound is obtained with |fDA| = γ (see the plateau fmin
DA ). When

x ∈ T−
n , we get the upper bound with max (γ, λgn), that is either γ when λgn ≤ γ (see

fmax1
DA ) or λgn otherwise (see fmax2

DA ).

– ∀x ∈ T+
n , DT

n (x)e
−βnfDA(hn(x))y

n ≤ DT
n (x)e

−βnγ .
– ∀x ∈ T−

n , DT
n (x)e

−βnfDA(hn(x))y
n ≤ DT

n (x)e
βnmax(γ,λgn).

Figure 2 gives a geometrical explanation of these upper bounds. When x ∈ T+
n ,

the weights are decreased. We get an upper bound by taking the smallest drop,
that is fDA(hn(x))y

n = |fDA| = γ (see fmin
DA in Figure 2). On the other hand, if

x ∈ T−
n , we get an upper bound by taking the maximum value of fDA (i.e. the

largest increase). We differentiate two cases: (i) when λgn ≤ γ, the maximum
is γ (see fmax1

DA ), (ii) when λgn > γ, Figure 2 shows that one can always find a
configuration where γ < fDA ≤ λgn. In this case, fmax2

DA = λgn, and we get the
upper bound with |fDA| = max (γ, λgn).

Plugging the previous upper bounds in Eq.(3), we get:

Zn ≤ W+
n e−βnγ +W−

n eβn max (γ,λgn) = Z̃n. (4)

Deriving the previous convex combination w.r.t. βn and equating to zero, we get
the optimal values for βn in Eq.(3)1:

∂Z̃n

βn
= 0 ⇒ max (γ, λgn)W

−
n eβn max (γ,λgn) = γW+

n e−βnγ

⇒ βn =
1

γ +max (γ, λgn)
ln

γW+
n

max (γ, λgn)W
−
n
. (5)

It is important to note that βn is computable if

γW+
n

max (γ, λgn)W
−
n

≥1 ⇔ γ(1−W−
n )≥max (γ, λgn)W

−
n ⇔W−

n <
γ

γ +max(γ, λgn)
,

1 Note that the approximation Z̃n used in Eq.(4) is essentially a linear upper bound
of Eq.(3) on the range [−1; +1]. Clearly, other upper bounds which give a tighter
approximation could be used instead (see [19] for more details).
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that is always true because hn is a weak DA hypothesis and satisfies Condition
2 of Def.(1). Moreover, from Eq.(5), it is worth noting that βn gets smaller as
the divergence gets larger. In other words, a hypothesis hn of weights W+

n and
W−

n (which depend on the divergence gn) will have a greater confidence than a
hypothesis hn′ of same weights W+

n′ = W+
n and W−

n′ = W−
n if gn < gn′ .

Let max (γ, λgn) = cn × γ, where cn ≥ 1. We can rewrite Eq.(5) as follows:

βn =
1

γ(1 + cn)
ln

W+
n

cnW
−
n
, (6)

and Condition 2 of Def.(1) becomes W−
n < 1

1+cn
.

4.3 Convergence of the Empirical Loss

The following theorem shows that, provided the weak DA constraint on T is
fulfilled (that is, W−

n < 1
1+cn

), Zn is always smaller than 1 that leads (from

Theorem 1) to a decrease of the empirical loss L̂HT
N
with the number of iterations.

Theorem 2. If HT
N is the linear combination produced by SLDAB from N weak

DA hypotheses, then lim
N→∞

L̂HT
N
= 0.

Proof. Plugging Eq.(6) into Eq.(4) we get:

Zn ≤ W+
n

(
cnW

−
n

W+
n

) 1
(1+cn)

+W−
n

(
W+

n

cnW
−
n

) cn
(1+cn)

(7)

=
(
W+

n

) cn
(1+cn)

(
W−

n

) 1
(1+cn)

(
c

1
(1+cn)
n + c

− cn
(1+cn)

n

)

=
(
W+

n

) cn
(1+cn)

(
W−

n

) 1
(1+cn)

(
cn + 1

c
cn

(1+cn)
n

)
= un × vn × wn, (8)

where un = (W+
n )

cn
(1+cn) , vn = (W−

n )
1

(1+cn) and wn =

(
cn+1

c

cn
(1+cn)
n

)
. Computing the

derivative of un, vn and wn w.r.t. cn, we get

∂un

∂cn
=

lnW+
n

(cn + 1)2
(
W+

n

) cn
(1+cn) ,

∂vn
∂cn

= − lnW−
n

(cn + 1)2
(
W−

n

) 1
(1+cn) ,

∂wn

∂cn
= − ln cn

(cn + 1)2
cn + 1

c
cn

(1+cn)
n

.

We deduce that

∂Zn

∂cn
= (

∂un

∂cn
× vn +

∂vn
∂cn

× un)× wn +
∂wn

∂cn
× un × vn
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=
(
W+

n

) cn
(1+cn) ×

(
W−

n

) 1
(1+cn) ×

(
cn + 1

c
cn

(1+cn)
n

)
× 1

(cn + 1)2
×
(
lnW+

n − lnW−
n − ln cn

)

=
(
W+

n

) cn
(1+cn) ×

(
W−

n

) 1
(1+cn) × c

−cn
(1+cn)
n

cn + 1
×
(
lnW+

n − lnW−
n − ln cn

)
.

The first three terms of the previous equation are positive. Therefore,

∂Zn

∂cn
> 0 ⇔ lnW+

n − lnW−
n − ln cn > 0 ⇔ W−

n <
1

cn + 1
,

that is always true because of the weak DA assumption. Therefore, Zn(cn) is a

monotonic increasing function over [1,
W+

n

W−
n
[, with:

– Zn < 2
√
W+

n W−
n (standard result of AdaBoost) when cn = 1,

– and lim
cn→W

+
n

W
−
n

Zn = 1.

Therefore, ∀n, Zn < 1 ⇔ lim
N→∞

L̂HT
N
< lim

N→∞

N∏

n=1

Zn = 0. �

Let us now give some insight about the nature of the convergence of L̂HT
N
. A

hypothesis hn is DA weak if W−
n < 1

1+cn
⇔ cn <

W+
n

W−
n

⇔ cn = τn
W+

n

W−
n

with

τn ∈]W
−
n

W+
n
; 1[. τn measures how close is hn to the weak assumption requirement.

Note that βn gets larger as τn gets smaller. From Eq.(8) and cn = τn
W+

n

W−
n

(that

is W−
n = τn

τn+cn
), we get (see Appendix 1 for more details):

Zn ≤
(
W+

n

) cn
(1+cn)

(
W−

n

) 1
(1+cn)

(
cn + 1

c
cn

(1+cn)
n

)
=

⎛

⎝ τ
1

1+cn
n

τn + cn

⎞

⎠ (cn + 1).

We deduce that

N∏

n=1

Zn = exp

N∑

n=1

lnZn ≤ exp

N∑

n=1

⎛

⎝ln

⎛

⎝

⎛

⎝ τ
1

1+cn
n

τn + cn

⎞

⎠ (cn + 1)

⎞

⎠

⎞

⎠

= exp
N∑

n=1

(
1

1 + cn
ln τn + ln(

cn + 1

τn + cn
)

)
.

Theorem 2 tells us that the term between brackets is negative (that is lnZn <
0, ∀Zn). Therefore, the empirical loss decreases exponentially fast towards 0
with the number of iterations N . Moreover, let us study the behaviour of lnZn
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w.r.t. τn. Since Zn is a monotonic increasing function of cn over [1,
W+

n

W−
n
[, it is also

a monotonic increasing function of τn over [
W−

n

W+
n
; 1[. In other words, the smaller

τn the faster the convergence of the empirical loss L̂HT
N
. Figure 3 illustrates this

claim for an arbitrarily selected configuration of W+
n and W−

n . It shows that
lnZn, and thus L̂HT

N
, decreases exponentially fast with τn.

5 Measure of Divergence

From DA frameworks [1,14], a good adaptation is possible when the mismatch
between the two distributions is small while maintaining a good accuracy on the
source. In our algorithm, the latter condition is satisfied via the use of a standard
boosting scheme. Concerning the mismatch, we inserted in our framework a
measure of divergence gn, induced by hn. An important issue of SLDAB is the
definition of this measure. A solution is to compute a divergence with respect
to the considered class of hypotheses, like the well-known H-divergence2 [1]. We
claim that such a divergence is not suited to our framework because SLDAB
rather aims at evaluating the discrepancy induced by a specific classifier hn. We
propose to consider a divergence gn able to both evaluate the mismatch between
the source and target data and avoid degenerate hypotheses.

For the first objective, we use the recent Perturbed Variation measure [8]
that evaluates the discrepancy between two distributions while allowing small
permitted variations assessed by a parameter ε > 0 and a distance d:

Definition 2 ([8]). Let P and Q two marginal distributions over X, let M(P,Q)
be the set of all joint distributions over X×X with P and Q. The perturbed vari-
ation w.r.t. a distance d : X × X → R and ε > 0 is defined by

PV (P,Q) = inf
μ∈M(P,Q)

Probaμ[d(P
′, Q′) > ε]

2 The H-divergence is defined with respect to the hypothesis class H by:
suph,h′∈H |Ex∼T [h(x) �= h′(x)]− Ex′∼S [h(x

′) �= h′(x′)]|, it can be empirically esti-
mated by learning a classifier able to discriminate source and target instances [1].
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Algorithm 2. Computation of P̂ V (S, T ) [8].

Input: S = {x′
1, . . . , x

′
n}, T = {x1, . . . , xm}, ε > 0 and a distance d

1. Define the graph Ĝ = (V̂ = (Â, B̂), Ê) where Â = {x′
i ∈ S} and B̂ = {xj ∈ T},

Connect an edge eij ∈ Ê if d(x′
i, xj) ≤ ε

2. Compute the maximum matching on Ĝ
3. Su and Tu are the number of unmatched vertices in S and T respectively
4. Output ˆPV (S, T ) = 1

2
(Su

n
+ Tu

m
) ∈ [0, 1]

over all pairs (P ′, Q′) ∼ μ s.t. the marginal of P ′ (resp. Q′) is P (resp. Q).

Intuitively two samples are similar if every target instance is close to a source
one w.r.t. d. This measure is consistent and the empirical estimate ˆPV (S, T )
from two samples S ∼ P and T ∼ Q can be efficiently computed by a maximum
graph matching procedure summarized in Algorithm 2. In our context, we apply
this empirical measure on the classifier outputs: Shn = {hn(x

′
1), . . . , hn(x

′
|S|)},

Thn = {hn(x1), . . . , hn(x|T |)} with the L1 distance as d and use 1−P̂ V (Shn , Thn).
For the second point, we take the following entropy-based measure:

ENT (hn) = 4× pn × (1 − pn)

where pn
3 is the proportion of target instances classified as positive by hn:

pn =
∑|T |

i=1[hn(xi)≥0]

|T | . For the degenerate cases where all the target instances have

the same class, the value of ENT (hn) is 0, otherwise if the labels are equally
distributed this measure is close to 1.

Finally, gn is defined by 1 minus the product of the two previous similarity
measures allowing us to have a divergence of 1 if one of the similarities is null.

gn = 1− (1− ˆPV (Shn , Thn))× ENT (hn).

6 Experiments

To assess the practical efficiency of SLDAB and support our claim of Section 2,
we perform two kinds of experiments, respectively in the DA and semi-supervised
settings. We use two different databases. The first one, Moons [4], corresponds
to two inter-twinning moons in a 2-dimensional space where the data follow a
uniform distribution in each moon representing one class. The second one is the
UCI Spam database4, containing 4601 e-mails (2788 considered as “non-spams”
and 1813 as “spams”) in a 57-dimensional space.

6.1 Domain Adaptation

Moons Database. In this series of experiments, the target domain is obtained
by rotating anticlockwise the source domain, corresponding to the original data.

3 True labels are assumed well balanced, if not pn has to be reweighted accordingly.
4 http://archive.ics.uci.edu/ml/datasets/Spambase

http://archive.ics.uci.edu/ml/datasets/Spambase
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Table 1. On the left: error rates (in%) on moons, the Average column reports the rate
averages along with average standard deviations. On the right: error rates on spams.

Angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ Average

SVM 10.3 24 32.2 40 43.3 55.2 67.7 80.7 44.2 ± 0.9
AdaBoost 20.9 32.1 44.3 53.7 61.2 69.7 77.9 83.4 55.4 ± 0.4
DASVM 0.0 21.6 28.4 33.4 38.4 74.7 78.9 81.9 44.6 ± 3.2
SVM-W 6.8 12.9 9.5 26.9 48.2 59.7 66.6 67.8 37.3 ± 5.3
SLDAB-H 6.9 11.3 18.1 32.8 37.5 45.1 55.2 59.7 33.3 ± 2.1
SLDAB-gn 1.2 3.6 7.9 10.8 17.2 39.7 47.1 45.5 21.6 ± 1.2

Algorithm Error rate (in%)

SVM 38
AdaBoost 59.4
DASVM 37.5
SVM-W 37.9
SLDAB-H 37.1
SLDAB-gn 35.8

We consider 8 increasingly difficult problems according to 8 rotation angles from
20 degrees to 90 degrees. For each domain, we generate 300 instances (150 of each
class). To estimate the generalization error, we make use of an independent test
set of 1000 points drawn from the target domain. Each adaptation problem is
repeated 10 times and we report the average results obtained on the test sample
without the best and the worst draws.

We compare our approach with two non DA baselines: the standard Ad-
aBoost, using decision stumps, and a SVM classifier (with a Gaussian kernel)
learned only from the source. We also compare SLDAB with DASVM (based on
a LibSVM implementation) and with a reweighting approach for the co-variate
shift problem presented in [9]. This unsupervised method (referred to as SVM-
W) reweights the source examples by matching source and target distributions
by a kernel mean matching process, then a SVM classifier is inferred from the
reweighted source sample. Note that all the hyperparameters are tuned by cross-
validation. Finally, to confirm the relevance of our divergence measure gn, we run
SLDAB with two different divergences: SLDAB-gn uses our novel measure gn
introduced in the previous section and SLDAB-H is based on the H-divergence.
We tune the parameters of SLDAB by selecting, threw a grid search, those able
to fulfill Def.( 1) and leading to the smallest divergence over the final combina-
tion FT

N . As expected, the optimal λ grows with the difficulty of the problem.
Results obtained on the different adaptation problems are reported in Table 1.

We can see that, except for 20 degrees (for which DASVM is slightly better),
SLDAB-gn achieves a significantly better performance, especially on important
rotation angles. DASVM that is not able to work with large distribution shifts
diverges completely. This behaviour shows that our approach is more robust
to difficult DA problems. Finally, despite good results compared to other algo-
rithms, SLDAB-H does not perform as well as the version using our divergence
gn, showing that gn is indeed more adapted to our approach.

Figure 4(a) illustrates the behaviour of our algorithm on a 20 degrees rotation
problem. First, as expected by Theorem 2, the empirical target loss converges
very quickly towards 0. Because of the constraints imposed on the target data,
the source error ε̂HS

N
requires more iterations to converge than a classical Ad-

aBoost procedure. Moreover, the target error εHT
N

decreases with N and keeps
dropping even when the two empirical losses have converged to zero. This con-
firms the benefit of having a low source error with large target margins.
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Fig. 4. (a): loss functions on a 20◦ task. (b): evolution of the global divergence.

Figure 4(b) shows the evolution throughout the iterations of the divergence

gn of the combination HT
n =

n∑

k=1

βkhk(x). We can see that our boosting scheme

allows us to reduce the divergence between the source and the target data.

Spams Database. To design a DA problem from this UCI database, we first
split the original data in three different sets of equivalent size. We use the first
one as the learning set, representing the source distribution. In the two other
samples, we add a gaussian noise to simulate a different distribution. As all
the features are normalized in the [0,1] interval, we use, for each feature n, a
random real value in [-0.15,0.15] as expected value μn and a random real value in
[0,0.5] as standard deviation σn. We then generate noise according to a normal
distribution N (μn, σn). After having modified these two samples jointly with the
same procedure, we keep one as the target learning set, the other as the test set.

This operation is repeated 5 times. The average results of the different al-
gorithms are reported in Table 1. As for the moons problem, we compare our
approach with the standard AdaBoost and a SVM classifier learned only from
the source. We also compare it withDASVM and SVM-W. We see that SLDAB
is able to obtain better results than all the other algorithms on this real database.
Moreover, SLDAB used with our divergence gn leads again to the best result.

6.2 Semi-supervised Setting

Our divergence criterion allows us to quantify the distance between the two
domains. If its value is low all along the process, this means that we are facing
a problem that looks more like a semi-supervised task. In a semi-supervised
setting, the learner receives few labeled and many unlabeled data generated from
the same distribution. In this series of experiments, we study our algorithm on
two semi-supervised variants of the Moons and Spams databases.
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Fig. 5. (a): error rate of different algorithms on the moons semi-supervised problem
according to the size of the training set. (b): error rate of different algorithms on the
spam recognition semi-supervised problem according to the size of the training set.

Moons Database. We generate randomly a learning set of 300 examples and
an independent test set of 1000 examples from the same distribution. We then
draw n labeled examples from the learning set, from n = 10 to 50 such that
exactly half of the examples are positives, and keep the remaining data for the
unlabeled sample. The methods are evaluated by computing the error rate on the
test set. For this experiment, we compare SLDAB-gn with AdaBoost, SVM
and the transductive SVM T-SVM introduced in [10] which is a semi-supervised
method using the information given by unlabeled data to train a SVM classifier.
We repeat each experiment 5 times and show the average results in Figure 5(a).

Our algorithm performs better than the other methods on small training sets
and is competitive to SVM for larger sizes. We can also remark that AdaBoost
using only the source examples is not able to perform well. This can be explained
by an overfitting phenomenon on the small labeled sample leading to poor gen-
eralization performances. Surprisingly, T-SVM performs quite poorly too. This
is probably due to the fact that the unlabeled data are incorrectly exploited,
with respect to the small labeled sample, producing wrong hypotheses.

Spams Database. We use here the same set up as in the semi-supervised
setting for Moons. We take the 4601 original instances issued from the same
distribution and split them into two sets: one third for the training sample and
the remaining for the test set used to compute the error rate. From the training
set, n labeled instances are drawn as labeled data, n varying from 150 to 300,
the remaining part is used as unlabeled data as in the previous experiment. This
procedure is repeated 5 times for each n and the average results are provided in
Figure 5(b).

All the approaches are able to decrease their error rate according to the size
of the labeled data (even if it is not significant for SVM and T-SVM), which
is an expected behaviour. SVM and even more AdaBoost (that do not use
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unlabeled data), achieve a large error rate after 300 learning examples. T-SVM
is able to take advantage of the unlabeled examples, with a significant gain
compared to SVM. Finally, SLDAB outperforms the other algorithms by at
least 10 percentage points. This confirms that SLDAB is also able to perform
well in a semi-supervised learning setting. This feature makes our approach very
general and relevant for a large class of problems.

7 Conclusion

In this paper, we have presented a new boosting-based DA algorithm called
SLDAB. This algorithm, working in the difficult unsupervised DA setting, itera-
tively builds a combination of weak DA learners able to minimize both the source
classification error and margin violations on the unlabeled target instances. The
originality of this approach is to introduce the use of a new distribution di-
vergence during the iterative process for avoiding bad adaptation due to the
production of degenerate hypotheses. This divergence gives more importance to
classifiers able to move closer source and target distributions with respect to
the outputs of the classifiers. In this context, we have theoretically proved that
our approach converges exponentially fast with the number of iterations. Our
experiments have shown that SLDAB performs well in a DA setting both on
synthetic and real data. Moreover, SLDAB is also general enough to work well
in a semi-supervised case, making our approach widely applicable.

Even if our experiments have shown good results, we did not prove yet that the
generalization error decreases. Such a result deserves further investigation but we
conjecture that this is true for SLDAB. Indeed, the minimization of the margin
violations on the target instances implies a minimization of our divergence in
the space induced by the classifiers βnhn. Classical DA frameworks indicate
that good generalization capabilities arise when a DA algorithm is able both to
ensure a good performance on the source domain and to decrease the distribution
mismatch, which is what SLDAB does. A perspective is then to show that the
specific divergence we propose is able to ensure good generalization guarantees
up to the ε used in the perturbed variation measure. Another one is to extend
our approach to allow the use of a small labeled target sample.
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Appendix 1
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