A Fast Approximation of the Weisfeiler-Lehman
Graph Kernel for RDF Data

Gerben K.D. de Vries

System and Network Engineering Group, Informatics Institute,
University of Amsterdam, The Netherlands
g.k.d.devries@uva.nl

Abstract. In this paper we introduce an approximation of the Weisfeiler-
Lehman graph kernel algorithm aimed at improving the computation
time of the kernel when applied to Resource Description Framework
(RDF) data. Typically, applying graph kernels to RDF is done by ex-
tracting subgraphs from a large RDF graph and computing the kernel on
this set of subgraphs. In contrast, our algorithm computes the Weisfeiler-
Lehman kernel directly on the large RDF graph, but still retains the sub-
graph information. We show that this algorithm is faster than the regular
Weisfeiler-Lehman kernel for RDF data and has at least the same per-
formance. Furthermore, we show that our method has similar or better
performance, and is faster, than other recently introduced graph kernels
for RDF.

Keywords: Resource Description Framework (RDF), Graph Kernels,
Weisfeiler-Lehman.

1 Introduction

Machine learning techniques have been widely used to populate the semantic
web, i.e. to create linked data. In contrast, there has been relatively little research
into learning directly from the semantic web. However, the amount of linked data
available is becoming larger and larger and provides interesting opportunities for
data-mining and machine learning.

Kernel methods [I2] are popular machine learning techniques for handling
structured data. To deal with data structured as graphs, graph kernels, such as
described in [3] and [4], have been developed.

The representation/storage format of the semantic web is the Resource De-
scription Framework (RDF). The RDF format essentially represents a graph.
Therefore, learning from RDF can potentially be accomplished using graph ker-
nel methods on RDF. Research on this is in its infancy and, to the best of our
knowledge, there currently exists one paper [5] on this topic. In [5] the authors
introduce two types of graph kernels, designed for RDF, and compare these to
general graph kernels in two tasks. The authors conclude that the introduced
kernels work better or just as well as the general graph kernels. For the applica-
tion of most of the graph kernels, instances are represented as (small) subgraphs
extracted from a larger RDF graph.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAT 8188, pp. 606-B2I] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

A Fast Approximation of the WL Graph Kernel for RDF Data 607

Graph kernel computation is in general slow, since it is often based on com-
puting some form of expensive (iso)morphism between graphs. In this paper we
present an approximation of the Weisfeiler-Lehman graph kernel [4] to speed up
the computation of the kernel on RDF data. This approximation exploits the
fact that the subgraph instances for RDF learning tasks are usually extracted
from the same large RDF graph. We test this kernel on a number of learning
tasks with RDF data and compare its performance to the graph kernels designed
for RDF described in [5].

Kernel methods have not been widely applied to RDF data. Earlier attempts
have been [6] and [7]. In [6] kernels are manually designed by selecting task rel-
evant properties and relations for the instances, and then incorporating these in
the kernel measure. Kernels are built from RDF using inductive logic program-
ming rules in [7]. The approach to learning from RDF using graph kernels is
more generally applicable than both these methods. Other attempts at learning
from semantic web data are based on description logic [8/9]. These approaches
are applicable to a smaller part of the semantic web, since not everything on
the semantic web is nicely formalized as description logic ontologies, whereas
nearly everything on the semantic web is available as RDF. Other specifically
tailored approaches for data-mining form the semantic web are, for instance,
using statistical relational learning [10].

The rest of this paper is structured as follows. Section 2 introduces our adap-
tion of the Weisfeiler-Lehman graph kernel for RDF data. We present our experi-
ments with this kernel in Sect. 3. Finally, we end with conclusions and suggestions
for future work.

2 Weisfeiler-Lehman Graph Kernel for RDF

In the following section we first briefly introduce RDF data. Then we define the
regular Weisfeiler-Lehman kernel for graphs. Finally we introduce our adaption
of this kernel to speed up computation on RDF data.

2.1 The Resource Description Framework

The Resource Description Framework (RDF) is the foundation for knowledge
representation on the semantic web. It is based on the idea of making statements
about resources in a subject-predicate-object form. Such expressions are dubbed
triples. The RDF speciﬁcatio defines a number of classes, for the subjects and
objects, and properties, for the predicates. Moreover, users can, and should add
their own classes and objects.

For example, suppose that we have an ontology about fruits, called fruit.
Then the RDF triple fruit:Pear-rdfs:SubClassOf-fruit:Fruit expresses the fact the the
class of Pear is a sub-class of the class of Fruit. And the triple fruit:elstar-rdf:type-
fruit:Apple expresses the fact that an elstar is an instance of the class Apple. The

!http://www.w3.org/standards/semanticweb/

http://www.w3.org/standards/semanticweb/

608 G.K.D. de Vries

colon notation is used to indicate from which ontology a class or property is
used, i.e. the class Pear comes from the example fruit ontology that we created
ourselves, but the property type is defined by the RDF standard. These nota-
tions are shorthands for full-fledged Universal Resource Identifiers (URI) that
uniquely identify the specific ontology used and where to find it, thereby forming
the backbone of the semantic web.

RDF resources, i.e. the uri:value type of statements, can occur as subject, pred-
icate and object in a triple. This means that they can be both vertex and edge
in a graph at the same time. Therefore, formally, RDF represents a hypergraph.
However, in practice interpreting RDF as an easier to handle directed multigraph
does not lead to problems for applying graph kernels.

RDF is used as a representation scheme for more expressive knowledge rep-
resentation formalisms such as the Web Ontology Language (OWL) and RDF
Schema (RDFS). Therefore, RDF triple-stores, such as SESAMEE, often include
a reasoning engine which allows the automatic derivation of new triples, using
these more expressive formalisms.

In machine learning/data-mining for RDF, arguably, the most straightforward
way to represent instances is as a set of RDF triples, or an RDF graph. For
example, for each fruit that is of rdf:type fruit:Apple or fruit:Pear we can collect the
RDF triples that describe properties of this fruit and then these sets of triples
are our instances, which we can use to train a classifier for apples and pears.

2.2 Regular Weisfeiler-Lehman Graph Kernel

The Weisfeiler-Lehman Subtree graph kernel, from now on the Weisfeiler-Lehman
kernel, is a state-of-the-art, efficient kernel for graph comparison introduced in
[11] and elaborated upon in [4]. The kernel computes the number of subtrees
shared between two graphs by using the Weisfeiler-Lehman test of graph iso-
morphism. The rewriting procedure underlying the Weisfeiler-Lehman kernel is
given in Algorithm [Il which is taken from [4]. The idea of the rewriting pro-
cess is that for each vertex we create a multiset label based on the labels of the
neighbors of that vertex. This multiset is sorted and together with the original
label concatenated into a string, which is the new label. For each unique string a
new (shorter) label is introduced and this replaces the original vertex label. Note
that the sorting of the strings in step 3 is not necessary, but provides a simple
way to create the label dictionary f. The rewriting process can be efficiently
implemented using counting sort, for which details are given in [4].

Using the rewriting techniques of Algorithm [Ilit is straightforward to define
a kernel, given in in Definition [l

Definition 1. Let G, = (V, E,l,,) and G, = (V', E’',l,) be the n-th iteration
rewriting of the graphs G and G’ using Algorithm [l and h the number of itera-
tions. Then the Weisfeiler-Lehman kernel is defined as:

2 http://www.openrdf .org/

http://www.openrdf.org/

A Fast Approximation of the WL Graph Kernel for RDF Data 609

Algorithm 1. Weisfeiler-Lehman Relabeling

Input graphs G = (V, E,{),G' = (V', E’,£) and number of iterations h

Output label functions lp to I

Comments M, (v) are sets of labels for a vertex v and N(v) is the neighborhood of v

— forn=0¢toh
1. Multiset-label determination
— for eachv eV
— if n=0, Mp(v) =lo(v) = £(v)
—ifn >0, Mp(v) = {ln-1(u)|u € N(v)}
2. Sorting each multiset
— for each M, (v), sort the elements in My, (v), in ascending order and con-
catenate them into a string s (v)
— for each s,(v), if n > 0, add l,,—1(v) as a prefix to s,(v)
3. Label compression
— for each sn(v)
— sort all strings s, (v) together in ascending order
— map each string s,(v) to a new compressed label, using a function
f: X" = X, such that f(s,(v)) = f(sn (V")) iff s,(v) = s, (V)
4. Relabeling
— for each sn(v), set ln(v) = f(sn(v))

h

k(;VL(Gv G/) = Z ks (G, ng)) (1)

n=0

where
ks(V B0, (V! ELD)) =00) 6(1(w), I'(v) (2)
veV v eV’

Here 6 is the Dirac kernel, which tests for equality, it is 1 if its arguments are
equal, and 0 otherwise.

Essentially this kernel counts the common vertex labels in each of the iterations
of the graph rewriting process.

Instead of computing the Weisfeiler-Lehman relabeling on pairs of graphs, as
in Algorithm[I] it can just as easily be computed on a set of graphs. Furthermore,
the label dictionary f can be used to construct a feature vector for each graph.
Then the kernel can be computed by taking the dot product of these feature
vectors, which speeds up the computation of the kernel. See [4] for more details.

2.3 Fast Weisfeiler-Lehman for RDF

Since graph kernels compute a similarity between graphs, the most immediate
approach to apply graph kernels to RDF is to extract subgraphs for the instances
that we are interested in and to compute the kernel on these subgraphs. This
approach is followed in [5] for most of the kernels. The intuition is that these

610 G.K.D. de Vries

subgraphs contain properties of the instances and that they say something about
the position of the instances in the larger graph. However, the subgraphs are
derived from the same underlying RDF graph and since they are instances of
a similar concept they often have a number of vertices and edges in common.
Potentially it can be more efficient to do the kernel computation directly on the
larger underlying RDF graph.

In this section we introduce an approximation of the Weisfeiler-Lehman kernel
designed for RDF data. We could just apply the Weisfeiler-Lehman relabeling
as we have defined it above to the underlying RDF graph and then count the re-
sulting labels in the neighborhood up to a certain depth for each instance vertex.
However, by the nature of the relabeling process this means that vertices/edges
on the border of the neighborhood are influenced by vertex/edges outside of
the neighborhood. This means that the subgraph perspective for each instance
is essentially gone, and that interesting information about the position of the
instance in the graph is lost. We deal with this problem by tracking for each
vertex and edge in the graph at what depth it occurs in the subgraphs of the
instances.

First we define, in Definition 2] the type of graph that we apply the relabeling
process to.

Definition 2. A Weisfeiler-Lehman RDF graph is a graph G = (V, E, 1), where
V is a set of vertices, E a set of directed edges, and 1l : (VUE)xN — X a

labeling function from vertices V' or edges E and a depth index j € N to a set of
labels X.

This graph is a directed multigraph with a special labeling function, which gives
the label for a vertex or edge given an index j. This index j indicates the depth
at which this vertex or edge was encountered in the extraction of the subgraph.

We will also need our variant of neighborhoods of vertices and edges, as given
in Definition Bl

Definition 3. The neighborhood N(v) = {(v',v) € E} of a vertex is the set of
edges going to the vertex v and the neighborhood N((v,v")) = {v} of an edge is
the vertex that the edge comes from.

The graph extraction algorithm, given in Algorithm] creates an RDF graph,
as given in Definition 2] for a set of instances I. For each instance i a subgraph
up to depth d is extracted from the RDF dataset and this subgraph is added to
the total graph G that the algorithm is building. Thus, vertices and edges are
only added if they have not been added to the graph already (which is recorded
using the vMap and eMap datastructures). For each vertex and edge encountered
during the extraction process a label is saved (in ¢) for the depth j at which the
vertex or edge is encountered. For example, if a vertex v would only occur at
depths 1 and 2 in all of the extracted subgraphs, then we would have £(v,1) = o
and £(v,2) = o. Next to the graph G we also construct mappings V; and &; for
each instance i, which records which vertices and edges belong to the subgraph
of instance 7 and at which depth.

A Fast Approximation of the WL Graph Kernel for RDF Data 611

Algorithm 2. Graph Creation from RDF

Input a set of RDF triples R, a set of instances I and extraction depth d

Output a Weisfeiler-Lehman RDF graph G = (V, E, £), mappings V; from vertices to
integers and &; from edges to integers for each instance 1.

1. Initialization
— for each i € I:
— add a vertex v to V, set £(v,d) = € and set vMap(i) = v
2. Subgraph Extraction
— for each i € I:
— searchFront = {i}
—forj=d—1to0
— newSearchFront = ()
— for each r € searchFront:
— triples = {(r,p,0) € R}
— for each (s, p,0) € triples:
— add o to newSearchFront
— if vMap(o) is undefined, add vertex v to V and set vMap (o) = v
— set (vMap(0),j) = o
— if Vi(vMap(0)) is undefined, set V;(vMap(0)) = j
— if eMap(s,p,0) is undefined, add edge e to E and set
eMap(s,p,0) = e
— set {(eMap(s,p,0),j) =p
— if &(eMap(s,p,0)) is undefined, set & (eMap(s,p,0)) =j
— searchFront = newSearchFront

Algorithm[3 describes the Weisfeiler-Lehman relabeling for graphs constructed
using Algorithm Pl There are two main differences compared to the standard
Weisfeiler-Lehman algorithm of Algorithm [The first difference is the extension
to directed edges with labels, which is relatively straightforward. The second
difference is in the construction of the multisets M,,, which are now constructed
for a vertex/edge with a depth index j. For the vertices these multisets are
constructed using the labels of the edges at depth j — 1, and for the edges with
labels of the vertices of depth j. Furthermore, a vertex label at depth 0 is never
rewritten.

Definition 4. Let G be a Weisfeiler-Lehman RDF graph, created using Algo-
rithm[d and rewritten for h iterations using Algorithm[3, and ly to I, the resulting
label functions. Then we compute a kernel between two instances 1,7 € I, as:

h
. n+1l ,
%LVLRDF(%Z/) = h+1 5,RDF((Vivgi)a(Vi'vgi’))v (3)
n=0

where

612 G.K.D. de Vries

Algorithm 3. Weisfeiler-Lehman Relabeling for RDF

Input a Weisfeiler-Lehman RDF graph G = (V, E, {), subgraph depth d and number
of iterations h

Output label functions lp to [, and label dictionary f

— forn=0toh
1. Multiset-label determination
— foreachveVandee Eand j=0tod

— if n =0 and £(v, j) is defined, set My (v, j) = lo(v,) = £(v,)

— if n =0 and #(e, j) is defined, set M, (e,) = lo(e, j) = £(e, j).

— if n > 0 and £(v, j) is defined, set M, (v,j) = {ln—1(u,j)|u € N(v)}

— if n > 0 and £(e, j) is defined, set M, (e,j) = {ln—1(u,j + 1)|lu € N(e)}

2. Sorting each multiset
— for each M, (v, j) and My (e, j), sort the elements in My (v, 7), resp. My (e, j),
in ascending order and concatenate them into a string sn(v,j), resp.
S’ﬂ(evj)
— for each s, (v,j) and sn(e,j), if n > 0, add ln—1(v,J), resp. ln—1(e,7), as a
prefix to s, (v,), resp. sn(e,j)
3. Label compression
— for each sn(v,7) and sn(e,7), map sn(v,j), resp. sn(e,j), to a new com-
pressed label, using a function f : X* — X such that f(sn(v,j)) =
f(Sn('U/,j)) iff S”(Uvj) = S”(U/vj)a resp. f(sﬂ(eh?)) = f(s’ﬂ(elvj)) iff
S’ﬂ(evj) = S’ﬂ(e/vj)
4. Relabeling
— for each sn(v,j) and sn(e,j), set ln(v,j) = f(sn(v,j)) and ln(e,j) =
f(sn(e;4))

Ky rpe((Vi &), Vi &) = > > 6(ln(v,d), 1(v, d"))

(v, d)eV; (v/,d)EV,

Y Y dlledl@d) . @)

(e,d)€&; (e/,d") ey

Here 6 is the Dirac kernel, which tests for equality, it is 1 if its arguments are
equal, and 0 otherwise.

This kernel is very similar to the regular definition of the Weisfeiler-Lehman
Subtree kernel. Ones difference is that instances are not represented by their
graphs but by the two maps V; and &;. Furthermore, there is an added part to
sum over all the edges. Like the regular Weisfeiler-Lehman Subtree kernel, this
kernel is an instance of a convolution kernel [12]. We have added the factor ZE
to put more weight on higher iterations, to weigh more complicated structural
similarity more heavily.

The resulting kernel kwrrpr is an approximation of kwy, (provided that we
add edge relabeling to the algorithm). Differences occur when there are cycles
in the subgraph. For instance, let vertex v; have a label o; at depth 3 and v;
has an edge to vy. Vertex vs has a label 0o at depth 2 and has an edge back to

A Fast Approximation of the WL Graph Kernel for RDF Data 613

v1. Therefore v; will have a label o3 at depth 1. During the relabeling, the label
o3 will (eventually) be combined with label o2 and label oo will be combined
with 01 (not oz, which seems more intuitive). In the regular Weisfeiler-Lehman
variant, there would be no labels at different depths, so 03 would be combined
with oo and vice versa.

In [4] it is shown that the runtime for the relabeling algorithm on a set of
graphs is O(Nhm), where N is the number of graphs, h is the number of itera-
tions and m is the number of vertices (and edges) per graph. For our relabeling
method we do not have N graphs, but we do introduce depth d labels per ver-
tex/edge. Our larger graph has a number of vertices and edges k. Since our
algorithm is essentially regular Weisfeiler-Lehman with the addition of multiple
labels per vertex/edge, the runtime complexity for our relabeling algorithm is
O(hkd). As for the regular Weisfeiler-Lehman Subtree kernel we can create fea-
ture vectors for each instance, using the label dictionary f. Hence, in situations
with kd < Nm, our algorithm will be faster. This scenario is typical for the
RDF use-case, where the subgraphs for each instance share a (large) number of
vertices and edges, which means Nm > k given large enough NN, and therefore
kd < Nm if d < N. The same bounds hold for the space complexity as for
the runtime complexity. Therefore, in situations with kd < Nm, our algorithm
requires less memory than regular Weisfeiler-Lehman on a set of graphs.

3 Experiments

In this section we present a number of experiments with the Weisfeiler-Lehman
for RDF (WL RDF) kernel presented above. The goal of these experiments is
to compare the prediction performance of this kernel to the regular Weisfeiler-
Lehman (WL) kernel, adapted to handle edge labels and using the same iteration
weighting. For comparison we use three prediction tasks using RDF data. Since
the WL RDF kernel is intended to be a faster variant of the WL kernel we also
compare the runtimes.

Furthermore, we compare the WL RDF kernel with the kernels designed for
RDF in [5]. These kernels are the efficient Intersection SubTree (IST) and In-
tersection Partial SubTree (IPST) kernels and the inefficient Intersection Graph
Walk (IGW) and Intersection Graph Path (IGP) kernels. The intersection sub-
tree kernels are based on counting the number of (partial) subtrees in the inter-
section tree of two graphs. The intersection graph kernels count the number of
paths/walks in the intersection graph of two graphs.

Like we did for the WL RDF kernel, [5] compute the IST and IPST kernels
directly on the RDF graph. For the WL, IGW and IGP kernels subgraphs have
to be extracted. For each kernel we test 3 extraction depths (1,2,3) and we also
test with and without RDFS inferencing by the triple-store. RDF'S inferencing
potentially derives new triples based on logical relations between the concepts
defined in the RDF. We test these different settings to see the influence of larger
subgraphs on the prediction performance.

614 G.K.D. de Vries

All of the kernels and experiments where implemented in Java and the code is
available online The Java version of the LibSVM [13] support vector machine
library was used for prediction with the kernels and the SESAMH] triple-store
was used to handle the RDF data and do the RDFS inferencing. The experiments
where run on an AMD X6 1090T CPU with 16 GB RAM.

3.1 Affiliation Prediction

For our first experiment we repeat the affiliation prediction task introduced in
[6] and repeated in [5]. This experiment uses data of the semantic portal of the
ATFB research institute modeled in the SWRC ontology [14], which models key
concepts in a research community. The data contains 178 persons that belong to 1
of 5 research institutes. Furthermore it contains information about publications,
students, etc. One institute contains only 4 members, which we ignore. The goal
of the prediction task is to predict the affiliation for the remaining 174 instances.
Since we know the affiliations, for training purposes the affiliation relation (and
its inverse the employs relation) are removed from the RDF for each instance.
Also we set the label of the root vertex for each instance to an identical special
root label (like in [5]), since the original URI is unique for each instance.

For the Weisfeiler-Lehman kernels we test the h settings: 0,2,4,6. The two
intersection graph kernels have a maximum path length parameter, which we
also call h, for which we test 1,2 All the four kernels from [5] have a discount
factor parameter A\ and are tested with the setting reported to give the best
results.

For each kernel we use the C-SVC support vector machine algorithm from
LibSVM to train a classifier to predict the affiliation. Per kernel we do a 10-fold
cross-validation which is repeated 10 times. Within each fold the C' parameter is
optimized from the range: {1073,1072,0.1, 1, 10, 102, 103} by doing 10-fold cross-
validation. We also weigh the different classes with the inverse of their frequency.
All kernels are normalized.

Table [T presents the average accuracy and F18 scores. The best scores, and
the scores that have no significant difference with these scores under a Student
t-test with p < 0.05, are indicated using a bold type face.

The best performance is achieved by our Weisfeiler-Lehman RDF kernel vari-
ant, showing slightly better scores than regular Weisfeiler-Lehman in the ‘3,f’
setting. The performance of the intersection graph kernels comes close to the
WL kernels, but the intersection tree kernels clearly show worse performance.
Increasing extraction depth increases performance for all the tested kernels but
the intersection trees. Adding inferencing only benefits the WL-kernels.

The Weisfeiler-Lehman kernel under the h = 0 setting can be considered
as a baseline method, because it is essentially a ‘bag-of-labels’ kernel, where

3 https://github.com/Data2Semantics/d2s-tools

4 http://www.openrds .org/

5
Higher settings take a very large amount of computation time and/or run out of
memory.

5 This is the average of the F1 scores for each class.

https://github.com/Data2Semantics/d2s-tools
http://www.openrdf.org/

A Fast Approximation of the WL Graph Kernel for RDF Data 615

Table 1. Results for the affiliation prediction experiments. 1,2,3 indicate the subgraph
depth and ‘f” indicates that inferencing was applied.

acc. F1 acc. F1 acc. F1 acc. F1
Weisfeiler-Lehman RDF
h = =2 h = h =
1 0.84 0.67 0.84 0.67 0.84 0.67 0.84 0.67
2 0.83 0.66 0.87 0.72 0.86 0.70 0.86 0.70
3 0.85 0.71 0.89 0.79 0.89 0.77 0.88 0.76
1,f 0.79 0.59 0.79 0.59 0.79 0.59 0.79 0.59
2,f 0.57 0.35 0.84 0.66 0.81 0.62 0.81 0.61
3,f 0.73 0.56 0.91 0.81 0.90 0.80 0.90 0.79
IntersectionSubTree, A =1 IntersectionPartialSubTree, A = 0.01
1 0.83 0.64 0.81 0.61
2 0.82 0.61 0.81 0.61
3 0.82 0.61 0.79 0.60
1,f 0.81 0.61 0.79 0.58
2,f 0.79 0.58 0.78 0.58
3,f 0.81 0.61 0.78 0.58
Weisfeiler-Lehman
h=0 h = h=4 h =
1 0.83 0.66 0.84 0.67 0.84 0.67 0.84 0.67
2 0.87 0.74 0.84 0.67 0.78 0.54 0.75 0.48
3 0.86 0.72 0.88 0.77 0.88 0.75 0.86 0.71
1,f 0.79 0.60 0.79 0.60 0.79 0.60 0.79 0.60
2,f 0.58 0.36 0.83 0.64 0.79 0.57 0.73 0.47
3,f 0.73 0.56 0.89 0.78 0.89 0.77 0.87 0.72
IntersectionGraphPath, A = 1 IntersectionGraphWalk, A = 1
h=1 h=2 h=1 h =2
1 0.84 0.65 0.84 0.65 0.84 0.64 0.84 0.64
2 0.82 0.61 0.80 0.59 0.82 0.61 0.80 0.59
3 0.88 0.76 0.90 0.77 0.89 0.76 0.89 0.77
1,f 0.81 0.61 0.81 0.61 0.81 0.61 0.81 0.61
2,f 0.79 0.58 0.75 0.51 0.79 0.58 0.71 0.48
3,f 0.88 0.76 0.88 0.76 0.88 0.76 0.88 0.75

no rewriting is performed. We can see that already quite good performance is
achieved using this baseline.

3.2 Lithogenesis Prediction

We perform the next prediction experiment on the RDF dataset from the British
Geological Surveyﬂ, which contains information about geological measurements
in Britain. This dataset was chosen because it is at least a factor 10 larger than
the affiliation prediction set and has some potential nice properties to predict.
The things that are measured by this survey are called ‘Named Rock Units’,
which have a number of different properties. One of these is the lithogenesis
property, for which the two largest classes have 93 and 53 instances. In this
experiment we try to predict for these 146 instances which of these two classes it
belongs too. Again we remove triples related to these properties from the dataset
and set the labels of the root vertices to the same special root label.

"http://data.bgs.ac.uk/

http://data.bgs.ac.uk/

616 G.K.D. de Vries

The setup for this experiment is the same as for the affiliation prediction task.
The results are presented in Table

The results of this experiment are similar to the results for affiliation predic-
tion. Again the best scores are achieved by the WL RDF kernel under the ‘3.f’
setting. However, the intersection graph path kernel achieves a similar accuracy
score and the intersection subtree kernel scores are closer to WL RDF kernel.
Increasing the subgraph depth improves the performance for all kernels. The
performance of the ‘bag-of-labels’ baseline is similar to the affiliation prediction
task.

3.3 Runtimes

To test the differences in runtimes between the kernels we measure the runtimes
for the computation of each of the kernels on the two datasets above under
the highest extraction setting (depth 3 and inferencing on). We measure these
runtimes for different fractions of the dataset, from 0.1 to 1. The computation
times of the two intersection tree kernels are nearly identical, so we only include

Table 2. Results for the lithogenesis prediction experiments. 1,2,3 indicate the sub-
graph depth and ‘f” indicates that inferencing was applied.

acc. F1 acc. F1 acc. F1 acc. F1
Weisfeiler-Lehman RDF
h=0 h =2 h=4 h=6
1 0.79 0.62 0.79 0.62 0.79 0.62 0.79 0.62
2 0.87 0.75 0.88 0.77 0.88 0.76 0.88 0.77
3 0.86 0.73 0.87 0.75 0.88 0.76 0.88 0.77
1,f 0.78 0.61 0.78 0.61 0.78 0.61 0.78 0.61
2,f 0.82 0.66 0.88 0.76 0.87 0.75 0.87 0.75
3,f 0.88 0.75 0.89 0.78 0.91 0.82 0.91 0.82
IntersectionSubTree, A = 1 IntersectionPartialSubTree, A = 0.01
1 0.79 0.63 0.81 0.65
2 0.85 0.71 0.82 0.66
3 0.86 0.73 0.82 0.67
1,f 0.78 0.60 0.79 0.62
2,f 0.84 0.70 0.80 0.63
3,f 0.85 0.72 0.80 0.64
Weisfeiler-Lehman
h=0 h = h=4 h=6
1 0.79 0.62 0.79 0.62 0.79 0.63 0.79 0.63
2 0.88 0.77 0.86 0.73 0.85 0.70 0.84 0.69
3 0.86 0.73 0.87 0.75 0.87 0.75 0.88 0.76
1,f 0.78 0.61 0.78 0.61 0.78 0.61 0.78 0.61
2.f 0.82 0.65 0.85 0.72 0.85 0.71 0.85 0.71
3,f 0.88 0.75 0.88 0.77 0.88 0.76 0.88 0.77
IntersectionGraphPath, A = 1 IntersectionGraphWalk, A = 1
h=1 h=2 h=1 h =2
1 0.81 0.66 0.82 0.67 0.79 0.62 0.80 0.63
2 0.86 0.72 0.86 0.72 0.86 0.73 0.86 0.72
3 0.88 0.76 0.88 0.76 0.88 0.76 0.87 0.75
1,f 0.80 0.64 0.81 0.64 0.77 0.60 0.77 0.60
2.f 0.85 0.71 0.85 0.72 0.84 0.70 0.85 0.71
3,f 0.90 0.80 0.90 0.79 0.90 0.79 0.89 0.78

A Fast Approximation of the WL Graph Kernel for RDF Data 617

250000 T T
WL RDF ——
IST
WL —%— o
200000 - qw ,/

150000 JZ/E i

100000 |- // b

running time (s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of dataset

Fig. 1. Runtimes for the kernels: Weisfeiler-Lehman for RDF (WL RDF), Intersec-
tion SubTree (IST), Weisfeiler-Lehman (WL) and Intersection Graph Walk (IGW), for
different fractions of the affiliation prediction dataset.

25000

T
WL RDF —+—

IsT /j
WL —%—
20000 - oW o Z(/ g
w /B/ /
o 15000 Vs _
£ /
= /
g A
€ 10000 g
2 _

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of dataset

Fig. 2. Runtimes for the kernels: Weisfeiler-Lehman for RDF (WL RDF), Intersec-
tion SubTree (IST), Weisfeiler-Lehman (WL) and Intersection Graph Walk (IGW), for
different fractions of the lithogenesis prediction dataset.

the IST kernel. The same is true for the two intersection graph kernels, so we
only include the IGW kernel. The intersection subtree kernel is implemented as
described in [5]. For the regular WL kernel and IGW kernel, the extraction of
the subgraphs was also included, however this was only a small factor in the
overall computation time.

Figure [l presents the results for the four kernels on the affiliation prediction
dataset. The results for the lithogenesis dataset are presented in Fig.

Both figures show similar results: the IGW kernel is the slowest by a large
margin and as the datasets grow larger, the WL RDF kernel becomes more

618 G.K.D. de Vries

efficient. The differences in runtimes between the WL RDF kernel and regular
WL are in line with our expectations: as the amount of instances N become
larger, WL RDF becomes more efficient on RDF datasets than regular WL.

3.4 Geological Theme Prediction

For the two most efficient kernel types, WL RDF and IST/IPST, we performed
another experiment on the British Geological Survey data. All of the ‘Named
Rock Units’, around 12000 instances, have an associated geological theme. In
this experiment we try to predict that theme, which has two major classes, one
with 10020 instances and the other with 1377. We try to predict whether an
instance belongs to one of these two classes.

The setup for this experiment is similar to the two prediction tasks presented
above. However, we do not repeat the experiment 10 times for the full dataset,
but we take 10 random 10% subsets of the full dataset. The results are pre-
sented in Table [3l Again bold type face indicates the best scores. This time a
MannWhitney U test with p < 0.05 was used as a significance test, since the
resulting scores did not fit a normal distribution.

As in the previous experiments, the Weisfeiler-Lehman RDF kernel shows
the best performance. Almost perfect scores are achieved. However, the inter-
section subtree kernels and the ‘bag-of-labels’ baseline come very close to this
performance. For the tree kernels it holds that increasing the extraction depth
increases performance.

3.5 No Labels

The ‘bag-of-labels’ baseline, shows already good performance in the three tasks.
To test whether this is due to the fact that the graph structure provides little
information and to see if the graph kernels can exploit structure information, we

Table 3. Results for the theme prediction experiments. 1,2,3 indicate the subgraph
depth and ‘f” indicates that inferencing was applied.

acc. F1 acc. F1 acc. F1 acc. F1
Weisfeiler-Lehman RDF
h=0 h=2 h = h=6
1 0.90 0.69 0.93 0.79 0.96 0.85 0.96 0.84
2 0.94 0.78 0.97 0.89 0.95 0.85 0.97 0.91
3 0.98 0.89 1.0 0.98 1.0 0.98 0.99 0.98
1,f 0.88 0.66 0.94 0.79 0.96 0.84 0.96 0.85
2.f 0.88 0.65 0.92 0.79 0.98 0.91 0.95 0.88
3,f 0.74 0.44 1.0 0.98 0.99 0.98 1.0 0.98
IntersectionSubTree, A = 1 IntersectionPartialSubTree, A = 0.01
1 0.93 0.79 0.88 0.68
2 0.96 0.89 0.97 0.88
3 0.98 0.93 0.97 0.88
1,f 0.94 0.84 0.94 0.78
2.f 0.97 0.91 0.97 0.86
3,f 0.99 0.96 0.98 0.92

A Fast Approximation of the WL Graph Kernel for RDF Data 619

Table 4. Results for the affiliation prediction experiments with vertex and edge la-
bels removed. 1,2,3 indicate the subgraph depth and ‘f’ indicates that inferencing was
applied.

acc. F1 acc. F1 acc. F1 acc. F1
Weisfeiler-Lehman RDF
h=0 h=2 h = h =
1 0.14 0.07 0.61 0.40 0.63 0.41 0.63 0.41
2 0.48 0.23 0.61 0.40 0.62 0.42 0.64 0.44
3 0.43 0.24 0.87 0.75 0.89 0.77 0.88 0.75
1,f 0.11 0.06 0.51 0.31 0.51 0.31 0.51 0.31
2,f 0.26 0.12 0.57 0.36 0.60 0.39 0.61 0.40
3,f 0.18 0.09 0.85 0.70 0.87 0.74 0.88 0.75
IntersectionSubTree, A =1 IntersectionPartialSubTree, A = 0.01
1 0.11 0.06 0.11 0.06
2 0.22 0.09 0.11 0.06
3 0.23 0.10 0.16 0.07
1,f 0.11 0.06 0.11 0.06
2,f 0.23 0.10 0.12 0.06
3,f 0.23 0.10 0.25 0.09
Weisfeiler-Lehman
h=0 h=2 h=4 h=6
1 0.14 0.07 0.50 0.24 0.51 0.25 0.50 0.24
2 0.48 0.23 0.47 0.25 0.46 0.24 0.46 0.24
3 0.43 0.24 0.59 0.37 0.72 0.51 0.72 0.49
1,f 0.11 0.06 0.32 0.17 0.33 0.17 0.33 0.17
2,f 0.29 0.15 0.53 0.33 0.51 0.29 0.52 0.29
3,f 0.16 0.08 0.57 0.37 0.73 0.54 0.71 0.50
IntersectionGraphPath, A =1 IntersectionGraphWalk, A = 1
h=1 h=2 h=1 h =2
1 0.11 0.06 0.11 0.06 0.45 0.26 0.46 0.26
2 0.48 0.20 0.44 0.24 0.47 0.26 0.36 0.20
3 0.48 0.20 0.45 0.24 0.55 0.34 0.52 0.31
1,f 0.11 0.06 0.11 0.06 0.47 0.27 0.46 0.26
2,f 0.42 0.18 0.45 0.26 0.47 0.27 0.38 0.19
3,f 0.33 0.16 0.45 0.26 0.51 0.31 0.33 0.16

repeat the affiliation prediction experiment. This time we remove all the label
information after the creation of the graph/subgraphs. Each label is replaced by
the same dummy label. The rest of the experimental setup is identical to the
affiliation prediction experiment. Results are given in Table [l

Again, the Weisfeiler-Lehman RDF kernel shows the best performance. What
is even more striking is that a performance close to the performance on labeled
graphs can be achieved. The regular WL kernel also does reasonably well, how-
ever, the intersection graph and the intersection subtree kernel show very poor
performance. These kernels are clearly not designed for unlabeled graphs and do
not exploit graph structure as the WL kernels do.

4 Conclusions and Future Work

We presented an approximation of the Weisfeiler-Lehman Subtree kernel which
speeds up computation on RDF graphs by computing the kernel on the under-
lying RDF graph instead of extracted subgraphs. The kernel shows performance

620 G.K.D. de Vries

that is better than the regular Weisfeiler-Lehman kernel applied to RDF. Also it
is increasingly more efficient as the number of instances grows. This efficiency is
achieved by exploiting the fact that the RDF instance subgraphs share vertices
and edges in the underlying large RDF graph.

Furthermore, the presented kernel is faster and shows better classification
performance than the intersection subtree and intersection graph kernels, which
were recently introduced specifically for RDF data. When we remove the label
data, then the Weisfeiler-Lehman for RDF still has relatively good classification
performance on just the graph structure, whereas the intersection subtree and
intersection graph kernels cannot use the structure information very well.

The performance difference between the presented approximation of the WL
Subtree kernel and the regular version requires further investigation. However,
we have observed that the computed feature vectors for WL RDF are shorter
than for regular WL. Thus, our approximation probably leads to more shared
features between instances, which can result in better generalization and less
overfitting.

The presented kernel can be used in any machine learning situation where
subgraphs derive from an underlying larger graph. It is particularly well-suited
to RDF because the extracted subgraphs share a large number of vertices and
edges. As future work it would be interesting to apply the kernel to other similar
situations.

Another direction for future research is the application of the presented kernel
to extremely large RDF datasets with 100 millions of triples or more, since it
has the potential to scale well. For datasets with more instances, the computed
feature vectors can be used directly with large scale linear SVM methods, such
as LibLINEAR [15], which is not possible with the intersection subtree and in-
tersection graph kernels. We also wish to investigate extensions of the Weisfeiler-
Lehman kernel using label comparisons other the than the Dirac-kernel.

Acknowledgments. This publication was supported by the Dutch national
program COMMIT. We express our gratitude to the anonymous reviewers for
their helpful comments. We thank the authors of [5] for the AIFB dataset.

References

1. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

2. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

3. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R.I., Borgwardt, K.M.: Graph
kernels. Journal of Machine Learning Research 11, 1201-1242 (2010)

4. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 2539-2561 (2011)

5. Losch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for RDF data. In: Simperl,
E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS,
vol. 7295, pp. 134-148. Springer, Heidelberg (2012)

10.

11.

12.

13.

14.

15.

A Fast Approximation of the WL Graph Kernel for RDF Data 621

Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In:
Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 58-71. Springer,
Heidelberg (2007)

Bicer, V., Tran, T., Gossen, A.: Relational kernel machines for learning from
graph-structured RDF data. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia,
B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS,
vol. 6643, pp. 47-62. Springer, Heidelberg (2011)

Fanizzi, N., d’Amato, C.: A declarative kernel for ALC concept descriptions. In:
Esposito, F., Ras, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS
(LNAI), vol. 4203, pp. 322-331. Springer, Heidelberg (2006)

Fanizzi, N., d’Amato, C., Esposito, F.: Statistical learning for inductive query
answering on OWL ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp.
195-212. Springer, Heidelberg (2008)

Rettinger, A., Nickles, M., Tresp, V.: Statistical relational learning with formal
ontologies. In: Buntine, W., Grobelnik, M., Mladeni¢, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 286-301. Springer, Heidelberg
(2009)

Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Bengio,
Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) NIPS, pp.
1660-1668. Curran Associates, Inc. (2009)

Haussler, D.: Convolution kernels on discrete structures. Technical Report UCS-
CRL-99-10, University of California at Santa Cruz, Santa Cruz, CA, USA (1999)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1-27:27 (2011), Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The SWRC ontology
- semantic web for research communities. In: Bento, C., Cardoso, A., Dias, G. (eds.)
EPIA 2005. LNCS (LNAI), vol. 3808, pp. 218-231. Springer, Heidelberg (2005)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A li-
brary for large linear classification. Journal of Machine Learning Research 9, 1871—
1874 (2008)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	A Fast Approximation of the Weisfeiler-Lehman Graph Kernel for RDF Data
	1 Introduction
	2 Weisfeiler-Lehman Graph Kernel for RDF
	2.1 The Resource Description Framework
	2.2 Regular Weisfeiler-Lehman Graph Kernel
	2.3 Fast Weisfeiler-Lehman for RDF

	3 Experiments
	3.1 Affiliation Prediction
	3.2 Lithogenesis Prediction
	3.3 Runtimes
	3.4 Geological Theme Prediction
	3.5 No Labels

	4 Conclusions and Future Work
	References

