
Relevant Subsequence Detection
with Sparse Dictionary Learning

Sam Blasiak, Huzefa Rangwala, and Kathryn B. Laskey

George Mason University, Fairfax, VA 22030, USA
sblasiak@masonlive.gmu.edu, rangwala@cs.gmu.edu, klaskey@gmu.edu

Abstract. Sparse Dictionary Learning has recently become popular for
discovering latent components that can be used to reconstruct elements
in a dataset. Analysis of sequence data could also benefit from this type
of decomposition, but sequence datasets are not natively accepted by the
Sparse Dictionary Learning model. A strategy for making sequence data
more manageable is to extract all subsequences of a fixed length from
the original sequence dataset. This subsequence representation can then
be input to a Sparse Dictionary Learner. This strategy can be problem-
atic because self-similar patterns within sequences are over-represented.
In this work, we propose an alternative for applying Sparse Dictionary
Learning to sequence datasets. We call this alternative Relevant Subse-
quence Dictionary Learning (RS-DL). Our method involves constructing
separate dictionaries for each sequence in a dataset from shared sets
of relevant subsequence patterns. Through experiments, we show that
decompositions of sequence data induced by our RS-DL model can be
effective both for discovering repeated patterns meaningful to humans
and for extracting features useful for sequence classification.

1 Introduction

Sparse Dictionary Learning has recently become popular for discovering latent
components that can be used to reconstruct elements in a dataset. It has seen
particular success in computer vision where it has been incorporated into solu-
tions for problems in image reconstruction, in-painting, and classification [1–6].

Sparse Dictionary Learning’s success in computer vision makes it a promising
candidate as an algorithm for discovering patterns in sequence data. Sequence
data, however, is not natively accepted by the Sparse Dictionary Learning model:
sequences can be of variable length and patterns within sequences are not asso-
ciated with a fixed set of indices. These patterns can occur at any point within
a sequence and can be repeated multiple times. A strategy for making sequence
data more manageable is to extract all subsequences of length K from the orig-
inal dataset and use these as input to a Sparse Dictionary Learning algorithm.
This strategy poses a problem, however, because self-similar patterns within
sequences are over-represented.

In this work, we propose an alternative to this standard subsequence dataset
approach, which we call Relevant Subsequence Dictionary Learning (RS-DL).
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Our method involves constructing separate dictionaries for each sequence in a
dataset from shared “relevant subsequence patterns.” This structured dictionary
can be used to pick out shared information from sets of sequences and can be
learned using standard optimization methods. An important contribution of our
work is in showing how to efficiently run the LARS algorithm given our relevant
subsequence dictionary structure.

To show the utility of the RS-DL model, we run experiments on several types
of sequence data. Running our algorithm on synthetic sets of sequences with
discrete-valued elements, continuous electrocardiogram data, and text datasets,
we show that our RS-DL model is effective for discovering repeated patterns
meaningful to humans (also called motifs). We also show that RS-DL is effective
for classification. To do so, we use RS-DL to extract features from time-series
data and show that these features can reduce classification error compared to
standard methods.

2 Background: Sparse Dictionary Learning

Sparse Dictionary Learning is a method of decomposing a dataset into the prod-
uct of a dictionary matrix and a sparse vector of coefficients. Here we represent
the N dataset vectors as x1:N , with the nth vector given by xn ∈ R

d, the dic-
tionary matrix as W ∈ R

d×C , and the set of N sparse vectors of coefficients as
α1:N , αn ∈ R

C . The number of dictionary columns, C, is chosen beforehand.
The Sparse Dictionary Learning objective is typically defined as follows:

f(xn;W ) = min
αn

1

2
||xn −Wαn||22

︸ ︷︷ ︸

loss

+ λψ (αn)
︸ ︷︷ ︸

sparsity-inducing term

(1)

where ψ is a regularization function, typically an L1 norm.
There has been a significant amount of research to develop efficient algo-

rithms for solving the Sparse Dictionary Learning problem [3]. These algorithms
typically consist of repeating two optimization steps. In the first step, a linear
regression problem with the sparsity-inducing regularization term is solved to
compute αn = minαn ||xn −Wαn||22 + λψ (αn) given the current value of the
dictionary, W , for each example in the dataset. Common algorithms to perform
this task include pursuit algorithms [7], Least Angle Regression (LARS) [8],
coordinate-wise descent methods [9], and proximal methods [10].

In the second step, the value of the dictionary,W , is updated given the current
minimum values of αn. As with methods for optimizing with respect to the α’s, it
is possible to use any of a number of different methods to minimize with respect
to the dictionary. These methods include K-SVD [7] (which also updates the α
terms), stochastic gradient methods [6], and solutions of the dual problem (for
a constrained dictionary) [5], among others.

Sparse Dictionary Learning is similar to other decomposition techniques like
Principal Component Analysis (PCA). PCA decomposes elements of a dataset
into linear combinations of vectors from an orthogonal basis. Sparse Dictionary
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Learning differs from PCA in two important respects. First, dictionary columns
are non-orthogonal, and second, the sparsity inducing regularization term forces
only a small number of columns to be used for reconstruction. These charac-
teristics can be advantageous compared to PCA because the sparsity inducing
term allows the dictionary to include more columns that the dimensionality of
the vector being reconstructed [3]. This “overcomplete” representation allows a
large number of patterns to be found in the data but only a small number of
these patterns are used to reconstruct each data element.

3 Relevant Subsequence Dictionary Learning

We propose an approach, which we call Relevant Subsequence Dictionary Learn-
ing (RS-DL)1, to extend Sparse Dictionary Learning to the domain of sequences.
Sequences differ from more-standard vector representations in that they can vary
in length across a single dataset, and patterns within sequences can occur at any
position rather than being associated with a fixed set of indices. To account
for these characteristics of sequence data, RS-DL constructs dictionaries from
C different subsequence dictionary components, each of length K. We refer to
these constituent components as “relevant subsequence patterns” and indicate
these patterns by the two-dimensional array, v, of size C × K, where vc,k is a
value associated with the kth position in the cth relevant subsequence pattern.

Unlike standard Sparse Dictionary Learning, RS-DL constructs a separate
dictionary, Wn, for each sequence, xn, in a dataset by positioning relevant sub-
sequence parameters, vc,:, so that they cover all possible subsequence start-
ing positions. Positions in dictionary columns that are not given by relevant
subsequence parameters are set to zero.

Figure 1 shows how the array of constituent relevant subsequence patterns,
v, is used to construct Wn, the dictionary associated with sequence xn. Table 1
gives descriptions of all parameters in the RS-DL formulation. After building the
dictionaries, Wn, we are left with an objective very similar to that of standard
Sparse Dictionary Learning:

f(x1:N ;v) =
N
∑

n=1

min
αn

1

2
||xn −Wnαn||22 + λ|αn|1 (2)

To optimize with respect to this objective, we employ a stochastic gradient
descent procedure where sequences are received by the learner in random order.
The learner alternatively solves first for αn, then takes a gradient step with re-
spect to the array, v, in a similar manner to existing Sparse Dictionary Learning
optimization algorithms. For the optimization step with respect to αn, we ap-
ply a variation of the Least Angle Regression (LARS) [8] algorithm. The LARS
algorithm requires computing a number of matrix products involving Wn. How-
ever, computing these matrix products directly would be inefficient, as each Wn

matrix is of size O(Tn) × O(CTn), where Tn is the length of the nth sequence.
1 We have made code available at http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz

http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz
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Sequence: xn Matrix: Wn Vector: αn

≈Tn
. . .

C
(T

n −
K

+
1)

K

Tn −K + 1

C(Tn −K + 1)

v1,: v2,: vC,:

Fig. 1. The figure above illustrates the Relevant Subsequence Dictionary Learning
setup. The matrix Wn is constructed from the weights vc,k in C blocks so that the
relevant subsequence patterns given by each vc,: are arranged to create dictionary
elements (columns of Wn) that cover every K length subsequence of the sequence
xn (illustrated in blue). White areas of the Wn matrix are set to zero. The vector
αn is L1-regularized to select a small number of dictionary columns associated with
positioned relevant subsequences patterns. The αn-weighted sum of these positioned
relevant subsequences patterns approximates xn.

To improve performance, we can take advantage of the sparse construction of
each Wn, allowing these products to be computed more quickly, as we describe
in the next section.

After computing each new value of αn, the RS-DL algorithm takes a single
stochastic gradient step in v: vi+1 ← vi −

(

γ
i+1

)

∂ 1
2 ||xn−W i

nαn||22
∂v , where γ is a

learning rate term. We found empirically that, for RS-DL, this single stochastic
gradient step is often faster than solving for v after accumulating information
from a batch of αn’s as in Mairal et. al. [3].

3.1 Efficiently Running the LARS Algorithm with RS-DL

RS-DL involves constructing dictionaries, Wn of size O(Tn)×O(CTn), many of
whose entries are set to zero. If not carefully handled, this large, sparse matrix
can cause the RS-DL training algorithm to operate inefficiently. The LARS al-
gorithm constitutes a major substep in RS-DL training and requires a number
of computations involving Wn. Efficiency of these computations can be con-
siderably improved by taking Wn’s sparse construction from elements of the
array v into account. Three LARS computations involving the dictionaries, Wn

are (i) the matrix-matrix product (Wn)
�
A (Wn)A, (ii) the matrix-vector product
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Table 1. Relevant Subsequence Dictionary Learning parameters

��������� ���	
�
�	

M �
� �
�� �� �
� ���
���� ��� �
������ �����	���� �� ��
� �
� M ��������� �
�	 ����
	� �
�


��	�
	����������� �����	����

x1:N � ��� �� N �������� �����	���� �	�
�
���� �����	��� xn ��	 �� �� ���
���� ��	��
� �
������

�����	��� ��� �!��	��� �� M ��	����	���� �����	��� �� Tn 
	�
����� ���
������

Tn �
� ��	��
 �� �
� nth �����	���

α1:N � ��� �� N �������� "��
 αn ������ 
� �� ��	��
 C (Tn −K + 1)�
Wn � ��
�
� ����
! �� �
�� Tn × C (Tn −K + 1) ������� ���� �����	�� �� �
� ����# v�

v �	 ����# �� ������ ���� �� ��	������ �
��
�	��# �����	��� vc,k 
� �����
���� �
�
 �
� kth ���
�
�	


	 �
� cth ������	� ��������	�� ������	�

λ �
� L1 �������
���
�	 ��������� �����
���� �
�
 ���
 αn�

(Wn)A ωA, and (iii) the matrix-vector product W�
n u, where A indicates an ac-

tive set of columns (the number of non-zero components of α), (Wn)A indicates
a matrix constructed from this active set, ωA is a vector of length |A|, and u is
a vector of length Tn. Below, t(i) indicates the index of the start of the subse-
quence associated with the ith column of Wn (see Figure 1), c(i) indicates the
relevant subsequence position associated with the ith column of Wn, and sgn(i)
indicates the sign of the correlation between the ith matrix column, (Wn)

�
i , and

the current residual: sgn
(

(Wn)
�
i

(

xn − (Wn)
�
A αn

))

.

The matrix-matrix product, X = (Wn)
�
A (Wn)A, can be computed as follows:

Xij =

{
∑max(K−t(j)+t(i),0)

k=0 sgn (i) vc(i),ksgn (j) vc(j),t(j)−t(i)+k t(j) ≥ t(i)
∑max(K−t(i)+t(j),0)

k=0 sgn (i) vc(i),t(i)−t(j)+ksgn (j) vc(j),k t(j) < t(i)
(3)

This matrix-matrix product has an overall complexity of O(|A|2K). However,
the full product does not need to be computed at each LARS iteration. Rather,
as additional columns are added to the active set, we update a stored Cholesky
decomposition of (Wn)

�
A (Wn)A, at a cost of O(|A|K) for each update (updates

involve computing a single column of the product in Equation 3), plus O(|A|2)
for a back-substitution operation.

We compute the matrix-vector product, x = (Wn)A ωA, incrementally as the
weighted sum of components of v:

x(1:i) =

K
∑

k=1

x
(1:i−1)
t(i)+k + sgn (i) (ωA)i vc(i),k (4)

where x(1:i) indicates the sum up to the ith term, and i ∈ [1 . . . |A|]. This matrix-
vector product has an overall complexity of O(|A|K).

Finally, we compute the matrix-vector product, x =W�
n u, as follows:

xi =
K
∑

k=1

vc(i),kut(i)+k (5)

with an overall complexity of O(CTnK).
For each LARS iteration, we must also compute CTn correlations between

each column of the matrix, Wn, and the current residual at a cost of K each.
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These are computed in the same way as the matrix-vector product in Equation
5. In most of out experiments, we restrict |A| to values less than or equal to
C. Thus, each LARS iteration has a complexity of O(CTnK) when |A| is small,
which can be a significant reduction from O(CT 2

n). However, with no restrictions
on the size of the active set, |A| can potentially grow to CTn. In this case,
complexity is eventually dominated by back-substitution operations involving
the incrementally-updated Cholesky decomposition of (Wn)

�
A (Wn)A at a cost

of up to O(C2T 2
n) per iteration.

3.2 Modifications to RS-DL

The procedure for constructing the RS-DL dictionary (Figure 1) is applicable
only to sequences with continuous-valued elements. To allow RS-DL to find de-
compositions of sequences of discrete symbols, we first transform each original
sequence into M separate binary sequences, where elements of the mth binary
sequence indicate if the symbols in the original sequence are equal to the mth

symbol in the alphabet. These M binary sequences are then concatenated to ob-
tain the input sequence to RS-DL. Dictionary construction must also be modified
for discrete sequences. In this case, v becomes a three-dimensional constituent
array, where vc,k,m is associated with the mth symbol of the kth position in the
cth relevant subsequence. Separate dictionaries are constructed for each of the
M possible symbols using vc,:,m for the cth relevant subsequence pattern associ-
ated with the mth constructed binary sequence. These M dictionaries are then
stacked vertically to create a composite dictionary.

It is also possible to use RS-DL to find decompositions of multi-variate se-
quences. To do so, we rearrange each multivariate sequence as a concatenation
of univariate sequences. We then create a stack of M dictionaries as we did to
create the dictionary for discrete sequences.

Another modification of the basic RS-DL algorithm includes appending a col-
umn to the dictionary whose entries are set to a constant value. This addition
has the effect of including a bias term whose magnitude varies depending on the
associated αn term. This bias term is useful for modeling time series datasets
where the amplitudes of major trends that occur in individual sequences are off-
set by varying amounts. We employ this bias term in all experiments conducted
on time series sequences. A similar strategy can also be employed to capture
linear trends.

Finally, we can modify the LARS algorithm so that, rather than finding an
L1-regularized solution for α, it finds solutions with one or fewer non-zero α
terms associated with each of the C relevant subsequence patterns. Although
the L1 regularization is no longer enforced in this case, sparsity is maintained in
a similar manner to the L0-regularized2 version of LARS[8].

2 The “L0 norm” [7] is a pseudo-norm that counts the number of non-zero components
in a vector, i.e., ||x||0 =

∑
i I (xi �= 0).



Relevant Subsequence Detection with Sparse Dictionary Learning 407

4 Relationship to Hidden Markov Models

A form of the Factorial Hidden Markov Model, which we describe later in this sec-
tion, shares characteristics of RS-DL. To understand Factorial Hidden Markov
Models, one must first understand the basic Hidden Markov Model (HMM),
which defines a probability distribution over sequences. The HMM assumes that
each symbol in a sequence is generated from a mixture distribution. Mixture
components are indexed by “hidden states” in the HMM. The Markov property
holds over these hidden states, meaning that the value of the hidden state in-
dexing the observation at time point t depends only on the value of the hidden
state associated with time point t− 1.

The Profile HMM (pHMM) [11] is an HMM with specific restrictions on tran-
sitions and emissions. In Profile HMMs, hidden states are divided into three
types: Match states, which describe important sequence elements, Insert states,
which model noise, and Delete states, which do not emit a symbol and allow the
model to skip a Match or Insert state. Emission distributions from the pHMM’s
Match hidden states capture an archetypal sequence or sequence fragment, and
the likelihood of an observed sequence under a pHMM can be viewed as a mea-
sure of distance to the archetypal sequence encoded in the model. Blasiak et.
al. [12] defined a simplified version of the pHMM, called the Simplified Local
pHMM (SL-pHMM), which generates observed sequences using a contiguous se-
quence of Match states surrounded by Insert states. This structure simplifies
the pHMM in a convenient way, as the only information needed to encode the
model’s entire hidden state configuration is the position of the first Match state.

The Factorial HMM [13] extends the basic HMM by postulating that the
distribution over sequence elements depends on hidden states from multiple,
parallel HMMs. If SL-pHMM factors are used, then the resulting Factorial SL-
pHMM, with Gaussian emission distributions, operates very similarly to RS-DL.

Figure 2 shows an example configuration of Match hidden states in a Fac-
torial SL-pHMM. This hidden state configuration leads to the same additive
composition of parameters used to represent symbols of an observed sequence in
RS-DL. The primary differences between RS-DL and the Factorial SL-pHMM
lie in how the parameters of each model are constrained. In the Factorial SL-
pHMM, the model’s hidden states can be encoded in a vector, α(FHMM)

n of length
C(Tn−K +1), where C indicates the number of factors in the model, Tn is the
length of the sequence, and K is the number of Match states in the SL-pHMM.
Because the hidden state sequence in the SL-pHMM only allows a single start
position for each chain of Match states, encoding the positions of initial Match
hidden states requires that α(FHMM)

n be constrained as α(FHMM)
n,i ∈ {0, 1} and

∑Tn−K
t=0 α

(FHMM)
n,c(Tn−K+1)+t = 1 ∀c ∈ [1 . . . C]. In contrast, the αn-vectors in RS-

DL are not explicitly constrained but are instead subject to L1 regularization.
Substituting an L1 regularizer in RS-DL for the binary constraint in the Factorial
SL-pHMM is advantageous, because it converts the combinatorial optimization
problem associated with the MAP solution over hidden state configurations of
the Factorial SL-pHMM into one that is more-easily solvable.
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Fig. 2. The diagram above illustrates example hidden state assignments for the Facto-
rial SL-pHMM. Sequences of SL-pHMM Match states are indicated by blue nodes with
the text “Mk,” indicating the kth Match state. Insert states are indicated by white-
colored nodes with the text “I .” SL-pHMM transition probabilities are defined so that
only a single sequence of Match states per individual SL-pHMM can occur. For a Facto-
rial SL-pHMM with Gaussian emission distributions, hidden states are associated with
different weights which are summed over the C constituent SL-pHMMs (vertically in
the diagram) to obtain the mean parameter used to generate the appropriate observed
sequence element (in gray).

5 Experiments

We evaluate Relevant Subsequence Dictionary Learning using two types of mea-
surements. First, we expect RS-DL to find meaningful subsequences within a
dataset. This task is also referred to as “motif finding” [14, 15] (other authors
[16] use a different definition of the term “motif”). We quantitatively assess motif
finding on a synthetic dataset consisting of discrete sequences where the ground
truth motif positions are known. We also qualitatively assess motif finding re-
sults on sets of both time-series and text sequences to verify that RS-DL can
pick out portions of a sequence meaningful to humans. In the next sections we
make a distinction between the terms “relevant subsequence pattern” and “mo-
tif”. We use “relevant subsequence pattern” to indicate the pattern encoded in
RS-DL parameters, and “motif” to denote subsequences selected from a dataset
because of their association with a particular relevant subsequence pattern.

We also test RS-DL in sequence classification. We hypothesize that if RS-DL
can discover informative subsequences with no access to label information, then
these subsequence features will be effective for classification. In these experi-
ments, RS-DL features are input to a one-nearest-neighbor classifier to isolate
the effect of different feature representations.

5.1 Datasets

We employ four types of datasets to evaluate our algorithm. To evaluate the
ability of RS-DL to discover known motifs, we generated a synthetic dataset
of discrete-valued sequences containing three predefined subsequences. We also
assessed motif finding ability using a set of continuous-valued ECG sequences3

3 http://www.cs.ucr.edu/~eamonn/discords/ECG_data.zip

http://www.cs.ucr.edu/~eamonn/discords/ECG_data.zip
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and the Associated Press (AP) dataset4, consisting of English language text. We
assessed classification ability using only continuous-valued sequences. These in-
cluded both a synthetic dataset, which we call the “Bumps” dataset, and datasets
from the University of California Riverside (UCR) Time Series Classification
Database [17].

5.2 Finding Motifs in Synthetic Sequences

To verify basic motif finding abilities of RS-DL, we constructed a synthetic
dataset, allowing us to control the location and frequency of motifs. The syn-
thetic dataset consisted of 20 sequences, generated to contain up to three non-
overlapping motifs. These motifs consisted of 5 repetitions of “a,” “r,” or “n,”
with a 10% chance at each motif position for a motif character to be replaced by
a character generated uniformly from the full sequence alphabet of 20 possible
characters. Non-motif sequence elements were chosen uniformly at random from
the full 20-characters alphabet. Sequence lengths were generated uniformly at
random from a range of 25 to 75.

To explore the behavior of the RS-DL model, we ran a number of experiments,
varying the values of K, the length of the relevant subsequence pattern, from
3 to 7, and the values of λ, the L1-regularization parameter, from 0.4 to 0.8 in
steps of 0.05. We configured the algorithm to use at most one of each relevant
subsequence pattern to reconstruct each sequence.

Figure 3a shows graphs of the average precision and recall associated with
motifs recovered by the RS-DL algorithm over 20 trials for each configuration of
K and λ. We counted a ground truth motif as “discovered” if its start position
was within �K/2� of the motif returned by the RS-DL algorithm. To verify the
upper limit of algorithm performance and to confirm the trend that ground
truth motifs were associated with larger values of α than false positive motifs,
we counted motifs as “not found” if their associated α values were below 0.25.
Motifs were extracted by taking the subsequence of length K at the position of
an associated non-zero component of the α vector.

Figure 3b, shows the output of the run of the RS-DL algorithm with the
lowest mean-squared error (MSE) out of 20 random initializations. Columns in
the figure display both values of α and motifs selected from the dataset sequence.
Different dataset sequences are associated with different rows in the figure. In
this run, low values of α are consistently associated with incorrectly discovered
motifs (in red), and, out of four possible relevant subsequence patterns given by
the model, only three are used, which is consistent with the ground truth.

Figure 3a shows that both precision and recall tend to increase as the value
of K increases. In addition, the figure shows that if we set λ to a value that is
too high, both precision and recall are degraded. This behavior, when varying
λ, occurs because at high λ levels, the model becomes too sparse, reducing
the number of motifs returned. In this case, we do not see a corresponding
increase in precision because sparsity is only enforced in the number of relevant
4 http://www.cs.princeton.edu/~blei/lda-c/ap.tgz

http://www.cs.princeton.edu/~blei/lda-c/ap.tgz


410 S. Blasiak, H. Rangwala, and K.B. Laskey

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
0.70

0.75

0.80

0.85

0.90

0.95

1.00
A

v
e
ra

g
e
 P

re
ci

si
o
n

Average Precision and Recall as a function of λ

K=3

K=4

K=5

K=6

K=7

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 R

e
ca

ll
α ����� � α ����� � α ����� � α ����� 	


�	� ����� 
�

 
� 
�		 ����� 
�		 �����


��� ����� 
�

 
� 
�	� ����� 
��� �����


��� ����� 
�

 
� 
�

 
� 
��� �����


�	� ����� 
�

 
� 
��� ����� 
�

 
�


�	� ����� 
�

 
� 
��� ����� 
��� �����


��� ����� 
�

 
� 
��
 ����� 
�		 �����


��� ����� 
�

 
� 
��� ����� 
�
� �����


�	� ����� 
�

 
� 
��� ����� 
�		 �����


�	� ����� 
�

 
� 
��� ����� 
�		 �����


�	� ����� 
�

 
� 
�

 
� 
�
� ��� �


�	� ����� 
�

 
� 
��
 ����� 
�
� �����


�
� ���!� 
�

 
� 
��� ����� 
�		 �����


�	� ����� 
�

 
� 
�	� ����� 
�		 �����


�	� ����� 
�

 
� 
��� ����� 
�		 �����


��� ����� 
�

 
� 
��� ����� 
�
� �� ��


��� ����� 
�

 
� 
�

 
� 
��� �"�"�


�	� ����� 
�

 
� 
��� ����� 
��� �����


�	� ����� 
�

 
� 
�	� ���� 
�		 �����


�
� ����� 
�

 
� 
�	� ����� 
�		 �����


�
� ����� 
�

 
� 
�
� ����� 
��� �����

(a) (b)

Fig. 3. (a) The graphs in the left-hand figure depict precision and recall over 20 runs
of the RS-DL model on a synthetic dataset. As the L1-regularization term, λ, increases,
fewer motifs are returned, leading to a drop in both recall and precision. As the length
of the relevant subsequence patterns increase, precision and recall tend to increase. (b)
Recovered α coefficients (left side of Figure b) and associated subsequences (right) from
a low-error run (the run with the smallest MSE out of 20 random initializations) of the
RS-DL algorithm on the synthetic dataset. The low-error run gave a precision of 0.7
(with an α cutoff of 0) and a recall of 1.0. The number of relevant subsequences patterns,
C, in the model was set to four, while the number of ground truth motifs was three.
Consistent with the ground truth, the model only used three relevant subsequences
patterns to reconstruct the data. Incorrectly discovered motifs are depicted in red.

subsequences patterns used to reconstruct a sequence. Also from Figure 3a, the
best precision scores were near 1.0, occurring with K = 6 and λ = 0.65 and
filtering motifs with α coefficients less that 0.25. This result contrasts with top
precision values of 0.5 (not shown in the figure) when the α filtering level is
set to zero. The reason for this trend is illustrated in Figure 3b, where motifs
associated with small α coefficients also tend to be less correlated with core
relevant subsequence patterns.

To avoid low recall solutions it is possible to rerun the model for a number
of trials with initial relevant subsequence patterns, v, drawn from a standard
Normal distribution. Because the RS-DL problem is non-convex, the optimiza-
tion algorithm will converge to different areas in the parameter space depending
on initial parameter settings. We found that, with our synthetic dataset, low-
MSE runs consistently produced recall values of 1.0 (see Figure 3b). Selecting a
low-MSE run also allows us to better take advantage of RS-DL’s sparsity. For
instance, if we set C, the number of relevant subsequence patterns, to 4, larger
than the 3 ground truth motifs in our dataset, then low-MSE solutions return
only 3 discovered motifs (higher error solutions find a fourth motif with noisy
parameters).
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5.3 Motifs in Time-Series Data

To show that RS-DL can pick out patterns meaningful to humans in continuous-
valued sequences, we trained it on a single sequence of electrocardiogram (ECG)
data, containing 3750 datapoints. The ECG sequence consists of a recording
of electrical signals from the human heart measured at the surface of the skin.
A plot of the signal (Figure 4) contains repeated patterns easily identifiable to
humans. The ECG sequence also contains an anomalous motif, which, like the
main set of patterns in the sequence, is easily identified by humans. We ran the
RS-DL algorithm on the sequence with the L1 regularization term, λ, set to .1
and the length of the relevant subsequence pattern, K, set to 150, and C, the
number of relevant subsequence patterns, set to 15. In Figure 4, we plotted the
relevant subsequence patterns learned by RS-DL associated with the largest 50
regression coefficients, α. Each pattern in the plot (top three graphs) consists
of 150 values of the relevant subsequence pattern given by the constituent vec-
tor, v, multiplied by its corresponding α coefficient. Summing over all of these
plotted subsequences gives the approximate sequence reconstructed by RS-DL
(bottom plot in green, offset by −1). The original sequence is also shown in
the figure (bottom plot in blue). The MSE between reconstructed sequence and
the original sequence was 0.98. As expected, the figure demonstrates how the
relevant subsequence patterns in the upper graphs are strongly correlated with
the human-perceptible patterns from the original sequence in the bottom graph.
Another interesting property of the RS-DL decomposition shown in Figure 4
relates to the sparsity of the model. Only a three (6, 10, and 11) out of fif-
teen possible relevant subsequence patterns account for the main patterns in the
sequence while additional patterns are responsible for increasingly fine-grained
approximations. This type of behavior is similar to commonly-used orthonormal
bases, such as the DCT basis, which consist of low frequency components that
capture major trends, while high-frequency basis elements capture finer-grained
variations. Another characteristic of the RS-DL solution is that the anomalous
portion of the sequence is associated with a different relevant subsequence pat-
tern (Relevant Subsequence Pattern 10) than the common ECG pattern. This
characteristic shows how RS-DL can be used not only to find positions of recur-
rent patterns but also to distinguish between pattern types.

5.4 Motifs in Text Data

As an additional test of RS-DL’s motif-finding ability, we trained the model
on the Associated Press (AP) corpus. We preprocessed the corpus by removing
words that occurred more than 500 times or in fewer than three documents.
We then removed documents containing fewer than 10 words. The processed
corpus size was 2213 documents. Finally, to make processing the text dataset
tractable, rather than representing each word as a large binary vector (which
would typically have a length of at least 10,000), we used the “word embedding”
representation from Collobert et. al. [18]. These word embeddings are vectors
in R

50 and were constructed so that the Euclidean distance between a pair of
vectors is be small if the meanings of the associated words are similar.



412 S. Blasiak, H. Rangwala, and K.B. Laskey

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Relevant Subsequence Pattern 6

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Relevant Subsequence Pattern 10

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Relevant Subsequence Pattern 11

1500 2000 2500 3000 3500
Time

5

4

3

2

1

0

1

2

S
ig

n
a
l

Original and Reconstructed Sequences

Original

Reconstructed

Fig. 4. A plot of the relevant subsequences patterns (upper plots) associated with the
largest 50 coefficients of the vector α that were learned by RS-DL to approximate
the ECG sequence (bottom plot, blue line). Only 3 out of the 15 possible relevant
subsequence patterns appear in this set of 50. Relevant subsequence patterns learned
by RS-DL are strongly associated with human-identifiable patterns in the sequence. The
figure also shows that the approximation learned by RS-DL (bottom plot, green line) is
very similar to the original sequence with an MSE of 0.98. The RS-DL approximation
is offset by −1 on the y-axis to aid in presentation.

Figure 5 shows the top 15 examples, as ordered by the absolute value of the
associated α coefficient, of the top four relevant subsequence patterns (out of
C = 10 total possible relevant subsequence patterns) learned from a run of the
RS-DL algorithm. Unlike text processing methods that treat words indepen-
dently, RS-DL preserves the order of words within each document (minus words
removed in the document preprocessing step). As the columns of five-word groups
in the figure show, RS-DL, in minimizing reconstruction error over sequences of
word embeddings, is capable of finding and grouping together meaningful se-
quences of words within the text. In the figure, all columns of discovered motifs
share internally consistent semantic themes. Moreover, these themes tend to cen-
ter around phrases containing important nouns. For instance, Motif 1 includes
organization-related phrases like “product safety commission defended”, “public
health system plagued”, and “environmental protection agency banned”. Motifs
2 and 4 contain phrases including a person and occupation description such
as “defense attorney thomas e. wilson”, “district attorney william h. ryan”, and
“secretary james a. baker” in Motif 2 and “attorney michael rosen,” “education
secretary william bennett,” and “assistant district attorney ted stein.” Motif 3 is
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Fig. 5. The figure above shows motifs discovered by the RS-DL model in the Associ-
ated Press corpus. It lists the top 15 motifs by α coefficient of the top four (out of ten
possible) relevant subsequence patterns. Motifs found by RS-DL have, in general, cap-
tured sets of semantically coherent phrases. Motifs 1 and 2 contain phrases including
organization and noun/concept phrases while Motifs 2 and 4 contain phrases including
a person and occupation descriptions.

centered on organizations and concepts like “natural resources,” “public services,”
and “tough economic conditions.”

5.5 Classification Experiments

To assess whether features derived by RS-DL are useful for classification, we com-
pared the performance of these features on both a synthetic dataset of our own de-
sign and five UCR Time Series datasets that satisfied the underlying assumptions
of our model. Because RS-DL selects subsequences, we do not expect features from
the algorithm to be effective for classification when discriminative information be-
tween sequence categories lies in global trends over an entire sequence or if the or-
der of different patterns within a sequence is highly correlated with its category.
Similarly, because RS-DL is a sparse regression algorithm, we expect relevant sub-
sequence patterns to be matched to high-magnitude areas of dataset sequences.
Therefore, if dataset sequences contain large-magnitude areas (e.g. spikes in an
ECG sequence), but discriminative information found elsewhere in the sequence,
we do not expect RS-DL features to be effective for classification.
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Table 2. Classification results using RS-DL features on the UCR Time Series datasets.
The “Sequence”, “DTW”, and “RS-DL” columns give error rates from the one-nearest-
neighbor algorithm using the Euclidean distance between sequences, Dynamic Time
Warping scores, and Euclidean distance between RS-DL features respectively. RS-DL
features improved the classification error for all three datasets.
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With these assumptions in mind, we generated a set of continuous sequences,
which we call the “Bumps” dataset5 (see Figure 6c). Each sequence in this dataset
contains two large magnitude bumps placed at random and without overlap. In
the negative category one out of the two bumps in each sequence contains a divot.
We also selected five datasets from the UCR Time Series database that conform
to the underlying assumptions about RS-DL: CBF, Coffee, DiatomSizeReduc-
tion, ECGFiveDays, and TwoLeadECG. These datasets consist of sequences that
contain large magnitude patterns occurring in all or nearly all sequences, satis-
fying the assumptions needed for RS-DL to extract useful features.

We ran RS-DL with randomly initialized v arrays for ten trials on all sequences
in both the training and test sets, excluding label information, for each dataset.
For all experiments, we set C = 10, K to 30% of the sequence length, and
λ = 3.0. We also enabled the restriction on the LARS algorithm (see Section
3.2) where only a single relevant subsequence pattern of each type was used. For
each sequence, we created feature vectors by concatenating the subsequences
associated with each relevant subsequence pattern. Table 2 shows a comparison
of classification errors using the one-nearest-neighbor algorithm on (i) features
given by treating sequences as vectors in Euclidean space, (ii) Dynamic Time
Warping (DTW)6 [19] distances between sequences, and (iii) Euclidean distance
between RS-DL feature vectors. As assessed by McNemar’s test [20], RS-DL
features reduce classification error over raw sequence vectors with p-values of
less than 0.014 for all datasets. For all datasets except for the CBF dataset,
RS-DL features improved on the classification error over DTW. Here, all results
were significant with p-values of less than 0.01, except for the Coffee dataset,
where RS-DL’s improvement over DTW was significant with a p-value of 0.17.

Figure 6 shows examples of positive and negative category sequences from
three of the classification datasets. In each case, RS-DL features lead to im-
proved time-series category prediction by isolating large-magnitude trends in
subsequences shared across the set of sequences (as shown in the upper portions
of each plot in the figure). Constructing features from these isolated subsequences

5 This dataset can be found at http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz
6 DTW scores were computed in R using http://dtw.r-forge.r-project.org/

http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz
http://dtw.r-forge.r-project.org/
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Fig. 6. Figures a, b, and c above show the top two (by α value) relevant subsequence
patterns that approximate positive (bottom blue) and negative category (bottom red)
sequences in the ECGFiveDays, TwoLeadECG, and our synthetically-generated Bumps
datasets respectively. For each of these datasets, RS-DL features improve classification
performance by picking out similarly shaped subsequences from different dataset cat-
egories. Classification performance improves because class distinctions occur in minor
variations in the major trends captured by RS-DL. After processing by RS-DL, these
minor variations can more easily be distinguished by standard classification algorithms.

aligns these major subsequence trends, allowing minor variations that occur
between the positive and negative sequence categories to be more-easily dis-
tinguished. When variations in the general trend are highly correlated with a
category label, then the feature isolation provided by RS-DL can lead to more
accurate classification.

6 Conclusions

In this paper, we have presented Relevant Subsequence Dictionary Learning,
a novel method for adapting Sparse Dictionary Learning to discover interest-
ing subsequence patterns across sets of sequences. RS-DL is related to standard
statistical models over sequences through a version of the Factorial HMM with
specially formulated restrictions on transition probabilities. In a series of ex-
periments, we have shown that RS-DL can discover useful information across a
variety of sequence domains. In addition, as demonstrated on time-series data,
sequence features extracted using RS-DL can improve sequence classification
performance.
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