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Abstract. We consider the problem of mining subsequences with sur-
prising event counts. When mining patterns, we often test a very large
number of potentially present patterns, leading to a high likelihood of
finding spurious results. Typically, this problem grows as the size of the
data increases. Existing methods for statistical testing are not usable
for mining patterns in big data, because they are either computationally
too demanding, or fail to take into account the dependency structure
between patterns, leading to true findings going unnoticed. We propose
a new method to compute the significance of event frequencies in sub-
sequences of a long data sequence. The method is based on analyzing
the joint distribution of the patterns, omitting the need for randomiza-
tion. We argue that computing the p-values exactly is computationally
costly, but that an upper bound is easy to compute. We investigate the
tightness of the upper bound and compare the power of the test with
the alternative of post-hoc correction. We demonstrate the utility of the
method on two types of data: text and DNA. We show that the proposed
method is easy to implement and can be computed quickly. Moreover, we
conclude that the upper bound is sufficiently tight and that meaningful
results can be obtained in practice.

Keywords: Big data, pattern mining, multiple hypothesis testing, event
sequence, frequency of occurrence.

1 Introduction

The amount of collected data is growing rapidly. As a result, the focus in data
mining research is more than ever on faster and simpler methods, where fast
currently means linear or sublinear in the size of the data. However, big data
presents more challenges. For example, when mining patterns—local structure,
as opposed to global structure [15]—the number of patterns potentially present
in the data is often exponential in the size of the data. Testing more patterns is
nice, because it increases the likelihood of finding interesting results. However,
testing more patterns is also dangerous, as it increases the likelihood of finding
spurious results, i.e., patterns caused by randomness.
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Several methods have been developed in the past decade for testing the sta-
tistical significance of various types of patterns, and a few studies investigated
post-hoc corrections to avoid finding many spurious patterns. Unfortunately,
none of the proposed methods is usable for big data, because they rely either on
randomization, Bonferroni-style post-hoc correction, or both.

Randomization testing is computationally expensive; a single randomization
has a computational cost linear in the size of the data or higher, and thousands or
millions of randomizations may be required for sufficient resolution. Bonferroni-
style post-hoc correction is also problematic, because the studied patterns (which
each correspond to a hypothesis test) are typically dependent, in which case the
p-values become conservative, i.e., many true findings will go unnoticed. The
problem is worse for large data, as the conservativeness depends on the number
of patterns, which may be exponential in the size of the data [6].

We propose a new method for mining subsequences with surprising event
counts that does not suffer from these problems. We formulate a statistical test
that includes a correction for testing multiple hypotheses, i.e., the p-value for
an observation will depend on the observation itself, as well as on the size of the
data. This allows us to avoid using a conservative post-hoc correction. Although
the method is not directly applicable to other data or pattern types, it may act
as a model for methods on other data.

The method provides strong control over the family-wise error rate (FWER),
that is, the probability that any of the significant results is a false positive.
Put less formally, we ask the question “what is the probability that any of the
considered patterns would have a statistic equal to or higher than the observed
statistic?”, where the statistic can be any interestingness measure: support, lift,
WRAcc, etc. We illustrate FWER control in the following example.

Assume that the interestingness measure, and thus the test statistic, is the
support of a pattern, and that the data is a transaction database in tabular
form. For simplicity assume that all items have equal support. The probability
that the statistic of a specific pattern P is significantly high can be assessed by,
for example, using swap randomization [5] to generate randomized samples1 and
then computing how often we observe a similar or higher statistic for pattern P
in the randomized samples. The obtained p-value corresponds to the question
“what is the probability that this specific pattern has a test statistic equal to or
higher than the observed statistic?”.

Now assume that we repeat this procedure for all itemsets of some fixed size.
Because we are testing many hypotheses, we are liable to finding many small
p-values. To prevent this, we can instead compare the observed statistic with the
maximum observed statistic over all itemsets of that size in each randomization.
In that case, the p-values correspond to the question “what is the probability
that any of the considered patterns would have a statistic equal to or higher
than the observed statistic?”, which is the same as FWER control. Significance

1 Which randomization method to use depends on the assumptions that one wants to
make.
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testing with FWER control using randomization for mining frequent itemsets
has been studied extensively by Hanhijärvi [7].

As stated earlier, randomization is unpractical for large data, and the method
proposed in this paper is based on computing the p-values analytically. This
means that we have to analyze the joint distribution of the statistics of all
potential patterns. We discuss a specific type of data and patterns. We show
that, although exact p-values are computationally costly to obtain, an upper
bound can be computed efficiently. We show empirically that the upper bound
is sufficiently tight.

The data that we consider are event sequences, and the aim is to find sub-
sequences of a fixed length where a certain event is significantly frequent or
infrequent. This is essentially a subgroup discovery problem: the target is a spe-
cific event, the descriptions or patterns are subsequences, and the aim is to find
all descriptions where the target is exceptionally frequent or infrequent. This
problem setting has many applications. For example, biologists are interested in
detecting isochores and CpG sites in DNA sequences, which are regions that are
especially rich or poor in CG content and rich in the dinucleotide CpG respec-
tively [2], and another example is that in text analysis it is useful to identify
text fragments where a certain word is under or overused.

Summary of contributions. We propose a new method to test the significance
of event frequencies in subsequences that provides p-values under control of
the family-wise error rate. That is, the p-value corresponds to the probability
of observing the observed statistic or higher in any of the subsequences of a
given length in a single long sequence. We show that computing the p-values
exactly is computationally costly, but that an upper bound can be computed
fast. We investigate the tightness of the upper bound and compare the power of
the test against using a generic post-hoc correction. We demonstrate the utility
of the method by applying the method to two types of data: text and DNA.
We show that the proposed method is easy to implement and can be computed
quickly. Moreover, we conclude that the upper bound is sufficiently tight and
that meaningful results can be obtained in practice.

Outline. The method is introduced in Section 2. Results from the experiments
on the tightness of the upper bound, comparison with the generic post-hoc cor-
rection, and the experiments on the two data sets are presented in Section 3.
Related work is discussed in Section 4 and conclusions are given in Section 5.

2 Method

2.1 Notation

Given a finite set of event labels L, an event sequence S is defined as S =
(s1, . . . , sn), ∀i ∈ {1, . . . , n} : si ∈ L, where n is the length of the sequence. We
denote a subsequence of S as Si,m = (si, . . . , si+m−1), where m is the length
of the subsequence. The count of an event a ∈ L in subsequence Si,m is given

by σ(Si,m, a) =
∑i+m−1

k=i 1{a}(sk), where 1A(sk) is the indicator function that
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equals 1 if sk ∈ A and 0 otherwise. The frequency of an event a ∈ L in subse-
quence Si,m is ζ(Si,m, a) = σ(Si,m, a)/m. The count and frequency of an event
in a sequence S are defined as σ(S, a) = σ(S1,n, a) and ζ(S, a) = ζ(S1,n, a).

2.2 Background

Our aim is to test the hypothesis that an event is significantly frequent or infre-
quent in a given subsequence. To determine if an observed frequency is signifi-
cant, we use the notion of p-values. Denote Z a random variable that represents
the count of an event under the null hypothesis. The p-value for an observed
count k is the probability of observing that count or higher, under the null
hypothesis:

pH = Pr(Z ≥ k)

The observed count is significantly high if the probability of a observing that
count or higher under the null hypothesis is less than or equal to the pre-specified
threshold α:

pH ≤ α

Vice versa, the observed count is significantly low if the probability of observ-
ing that count or lower is less than or equal to α:

pL = Pr(Z ≤ k) ≤ α

The null hypothesis that we are interested in is that the data has no structure,
i.e., that all events in the sequence are i.i.d. samples:

Definition 1 (Null Hypothesis). The null hypothesis is that the sequence is
generated by a sequence of random variables X1, . . . , Xn, where each random
variable Xi is defined by an independent Bernoulli distribution: Xi ∈ {0, 1}, and
Pr(Xi = 1) = p.

We assume that the parameter p, which represents the expected frequency
of an event, is fixed. The parameter p can be, for example, estimated from the
sequence S, in which case the method will find regions in the sequence where
the event frequency is significantly high (or low) with respect to the rest of the
sequence. Alternatively, p can be based on background knowledge, for example
an estimate derived from a database of sequences.

Furthermore, we assume that we are going to test subsequences of a fixed
length m, which is a parameter defined beforehand by the user, and we assume
that the user chooses a priori the significance threshold α.

2.3 Computing P-Values When Testing One Subsequence

Given a sequence of independent random variables X1, . . . , Xn, each following a
Bernoulli distribution with parameter p, define Zi,m as

Zi,m =
i+m−1∑

j=i

Xj .
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Because Zi,m is the sum ofm independent and identically distributed Bernoulli
variables, the probability distribution for Zi,m is a binomial distribution:

Pr(Zi,m = k) = Bin (k;m, p) =

(
m

k

)

pk(1− p)m−k.

We find that, as expected, the distribution is independent of the location i.
We can now define the one-tailed p-value under the null hypothesis for a

single subsequence at a random location. For the high frequency direction, the
one-tailed p-value is given by

pH = Pr(σ(Si,m, a) ≥ k)

= Pr(Zi,m ≥ k)

=

m∑

j=k

(
m

j

)

pj(1 − p)m−j,

(1)

while the one-tailed p-value in the low frequency direction is given by

pL = Pr(σ(Si,m, a) ≤ k)

= Pr(Zi,m ≤ k)

=

m∑

j=0

(
m

j

)

pj(1− p)m−j .

(2)

As can be seen, the p-values correspond to the cumulative distribution func-
tion of the binomial distribution. These tests are also known as the binomial test.
Many statistical software packages contain a function for computing its value.

2.4 Computing P-Values When Testing All Subsequences

When testing a single subsequence at a random location, the probability of re-
jecting the null hypothesis while it is actually true—a false positive or type I
error—is exactly α, and thus the result is easy to interpret. However, if we test
the significance of the event frequency in multiple subsequences, or in a subse-
quence at an optimized location, we increase the probability of false positives.

Let us assume that we test the observed counts for all subsequences of a given
length, using a sliding window with step size one. In that case, the probability
under the null hypothesis of observing a certain count or higher in at least one
subsequence of length m is

Pr(
⋃

i=1,...,n−m+1

Zi,m ≥ k). (3)

When we test the event frequency in all subsequences, it seems reasonable to
use this probability as a p-value. This is also theoretically justified: the proba-
bility expressed in Eq. (3) is equal to the probability of obtaining at least one
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false positive, thus, using this as the p-value corresponds to strong control of the
family-wise error rate [18].

Thus, we redefine the one-tailed p-value, in the high direction, as

pH = Pr(
⋃

i=1,...,n−m+1

Zi,m ≥ k).

The p-value can be decomposed as

pH = Pr(Z1,m ≥ k) + Pr(Z2,m ≥ k ∩
⋂

i=1

Zi,m < k) + . . .

+ Pr(Zn−m+1,m ≥ k ∩
⋂

i=1,...,n−m

Zi,m < k),
(4)

which highlights that the p-value equals the standard case (Eq. (1)) plus a cor-
rection term.

This correction term is in general difficult to compute exactly. A straight-
forward approach would be to define a column vector v with a probability for
each possible initial state, and a transition matrix W that specifies the transi-
tion probabilities between the states, and use one sink state for all subsequences
with at least k ones. Then the exact p-value is given by computing Wn−m · v.
However, the matrix W will have O(22m) entries, so this approach works only
when the length of the subsequences, m, is very small.

The main result of this paper is that we can instead obtain an upper bound
that is very easy to compute. Let us define the following approximation:

p̃H = Pr(Z1,m ≥ k) + (n−m) · Pr(Z2,m ≥ k ∩ Z1,m < k).

Theorem 1. p̃H is an upper bound on the exact p-value pH , i.e., p̃H ≥ pH .

Proof. Notice that for the correction terms of pH it holds that

Pr(Z2,m ≥ k ∩
⋂

i=1

Zi,m < k) ≥ Pr(Z3,m ≥ k ∩
⋂

i=1,2

Zi,m < k)

≥ Pr(Z4,m ≥ k ∩
⋂

i=1,2,3

Zi,m < k)

≥ . . .

≥ Pr(Zn−m+1,m ≥ k ∩
⋂

i=1,...,n−m

Zi,m < k).

(5)

Combining Eqs. (4) and (5) gives

pH = Pr(Z1,m ≥ k) + Pr(Z2,m ≥ k ∩
⋂

i=1

Zi,m < k) + . . .

+ Pr(Zn−m+1,m ≥ k ∩
⋂

i=1,...,n−m

Zi,m < k)

≤ Pr(Z1,m ≥ k) + (n−m) · Pr(Z2,m ≥ k ∩ Z1,m < k).

Thus, p̃H is an upper bound on the exact p-value pH . ��
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Notice that the first term of p̃H can be computed using Eq. (1), while the
second term can be rewritten as follows:

Pr(Z2,m ≥ k ∩ Z1,m < k)

= Pr(Z1,1 = 0 ∩ Z2,m−1 = k − 1 ∩ Zm+1,1 = 1)

= Pr(Z1,1 = 0) · Pr(Z2,m−1 = k − 1) · Pr(Zm+1,1 = 1)

= (1− p) ·Bin (k − 1;m− 1, p) · p.
Thus, the upper bound p̃H is easy to compute.

We propose to use the upper bound p̃H as a statistical test. This test may
be conservative, but that only means that results may be statistically more
significant. As the exact p-value pH is difficult to compute, we cannot analyze
directly how tight the upper bound is. In Section 3.1 we study empirically how
tight the approximation is, and in Section 3.2 we compare the power of this
test to the alternative of combining the binomial test with a general post-hoc
correction.

To complete the story, we obtain an upper bound to the one-tailed p-value in
the low direction analogously to the previous case. For brevity we just list the
result. Define

p̃L = Pr(Z1,m ≤ k) + (n−m) · Pr(Z2,m ≤ k ∩ Z1,m > k).

Theorem 2. p̃L is an upper bound on the exact p-value pL, i.e., p̃L ≥ pL.

Proof. Analogous to Theorem 1. ��
The correction term can be computed using

Pr(Z2,m ≤ k ∩ Z1,m > k) = p · Bin (k;m− 1, p) · (1− p).

2.5 A Generalization for Sliding Windows with Constant Step Size

If we use a sliding window with step size larger than one, we test fewer hypothe-
ses, but the dependency between the consecutive subsequences will also change.
The upper bound from Section 2.4 is also an upper bound when using a larger
step size, but a tighter bound can be obtained relatively easily.

Let r be the user-defined step size. The p-value in the high direction is

pH = Pr(
⋃

i=1,1+r,1+2r,...,1+	n−m
r 
r

Zi,m ≥ k)

Since there are 1 +
⌊
n−m

r

⌋
subsequences, we define p̃H as

p̃H = Pr(Z1,m ≥ k) +

⌊
n−m

r

⌋

· Pr(Z1+r,m ≥ k ∩ Z1,m < k).
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Theorem 3. p̃H is an upper bound on the exact p-value pH , i.e., p̃H ≥ pH .

Proof. pH can be decomposed as

pH = Pr(Z1,m ≥ k) + Pr(Z1+r,m ≥ k ∩
⋂

i=1

Zi,m < k) + . . .

+ Pr(Z1+	 n−m
r 
r,m ≥ k ∩

⋂

i=1,1+r,1+2r,...,1+(	n−m
r 
−1)r

Zi,m < k).
(6)

Also, it holds that

Pr(Z1+r,m ≥ k ∩
⋂

i=1

Zi,m < k) ≥

Pr(Z1+2r,m ≥ k ∩
⋂

i=1,1+r

Zi,m < k) ≥

. . .

(7)

Combining Eqs. (6) and (7) gives

pH ≤ Pr(Z1,m ≥ k) +

⌊
n−m

r

⌋

· Pr(Z1+r,m ≥ k ∩ Z1,m < k).

Thus, p̃H is an upper bound on the exact p-value pH . ��
In this setting, the correction term is more involved. For convenience, we split

the correction term into three parts: the overlap between the two subsequences,
Z1+r,m−r, and the two non-overlapping parts, Z1,r and Z1+m,r. We have that

Z1+r,m ≥ k ⇒ Z1+r,m−r + Z1+m,r ≥ k, and

Z1,m < k ⇒ Z1,r + Z1+r,m−r < k.

Both right hand sides are satisfied simultaneously if and only if

Z1+m,r ≥ k − Z1+r,m−r, Z1+r,m−r ≥ k − Z1+m,r,

Z1,r < k − Z1+r,m−r, Z1+r,m−r < k − Z1,r.
(8)

Since Z1+m,r and Z1,r are both by definition between 0 and r, we have that

k − r ≤ Z1+r,m−r < k. (9)

We can rewrite the correction term to an explicit sum using Eqs. (8) and (9):

Pr(Z1+r,m ≥ k ∩ Z1,m < k)

=

k−1∑

j=max(0,k−r)

Pr(Z1+r,m−r = j ∩ Z1+m,r ≥ k − j ∩ Z1,r < k − j)

=

k−1∑

j=max(0,k−r)

Pr(Z1+r,m−r = j) · Pr(Z1+m,r ≥ k − j) · Pr(Z1,r < k − j)

=

k−1∑

j=max(0,k−r)

⎛

⎝Bin(j;m− r, p) ·
r∑

l=k−j

Bin(l; r, p) ·
k−j−1∑

l=0

Bin(l; r, p)

⎞

⎠ .
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One may verify that the result for r = 1 is the same as in Section 2.4. The
binomial pmf and cmf can be computed in constant time [14], thus the compu-
tational complexity of the correction term is O(min(k, r)) and independent of
the size of the full sequence. An upper bound p̃L can be derived analogously.

3 Experiments

We studied the power of the test on synthetic data and compared the power of
the test with the alternative of post-hoc correction, results of which are discussed
in Sections 3.1 and 3.2. We also investigated the practical utility of the test on
two types of data: an English novel and a part of the human reference genome.
The findings of these experiments are presented in Sections 3.3 and 3.4.

3.1 Tightness of the Upper Bound

Since the proposed test provides strong control over the family-wise error rate,
we know that the probability of observing one or more false positives is at most
α. Unfortunately, this provides no information on the power of the test, i.e.,
the probability of rejecting a false null hypothesis. Ideally, we would study the
probability or rate of false negatives directly. But that is not possible, unless we
specify an alternative hypothesis; there is no general false negative rate. Instead,
we use the fact that there is a trade-off between the probability false positives
and the probability of false negatives.

By definition we have that the probability of false negatives is minimized when
the probability of false positives is maximized. Thus, preferably, the probability
of observing one or more false positives should be as close to α as possible. To
study how close the probability of encountering one or more false positives is in
practice, we designed the following experiment.

The tightness of the upper bound may depend both on the length of sliding
window, as well as the event probability. Thus, we tried various window lengths
(m ∈ {100, 1000, 10000}) and event probabilities (p ∈ {0.001, 0.01, 0.1}). For
each combination, we generated 1,000 sequences of length n = 9, 999 +m (such
that there are 10,000 p-values per sequence) and computed the p-values p̃H for
all subsequences using a sliding window with step size 1.

The quantity of interest is the minimal p-value per sequence, because if the
minimal p-value in a sequence is below the threshold α, then we have at least one
false positive. Ideally, the distribution of minimal p-values over the sequences is
uniform, which means that for any value α, the probability of observing one or
more p-values below α is exactly α itself. This ensures that the probability of false
positives is maximal (while providing FWER control), and that the probability
of false negatives is minimal. Note that this holds by definition for the exact
p-values under the null hypothesis, but the upper bound that we propose to use
instead may have a higher probability of false negatives.

The results of the experiment are presented in Figure 1. We find that the p-
values are reasonably close to the optimal distribution and that they are further
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Fig. 1. The distribution of minimal p-values over 1,000 synthetic sequences for the
proposed method, using various window lengths m and event probabilities p, compared
to the ideal distribution. We find that the p-values are reasonably close to the uniform
distribution and that they are further from uniform when the expected number of
events (= m · p) is higher.

from the optimal distribution when the expected event count (= m · p) is larger.
The largest observed effect is approximately 1 order of magnitude (m = 10,000,
p = 0.1), indicating that the p-values are 1 order of magnitude too high in that
case. Note that the results for very low expected counts (e.g., m = 100, p =
0.001) may appear more conservative, but they are skewed mostly because there
are very few distinct p-values: the highest number of events observed in any
subsequence is 3 (p̃H = 0.0437), and for k ∈ {0, 1}, we have p̃H = 1.

We expect that p-value estimates that are conservative by one order of magni-
tude will not be a problem in most practical settings; much larger differences in
the choice of α can be observed in the literature: from α = 0.1 to α = 0.00001.
Also, because the p-values are controlled for family-wise error rate, use of a
‘large’ α, such as 0.05, still guarantees that obtaining any false-positive results
has very low probability.

3.2 Comparison to Hochberg’s Step-Up Procedure

An alternative approach to obtaining p-values for the tested hypotheses under
strong control of the family-wise error rate is to use the binomial test (Eqs. (1)
and (2)) with post-hoc correction. The correction with largest power that we are
aware of that provides strong control for the family-wise error rate, and which is
applicable in this setting, and that does not require specifying the dependency
structure of the p-values, is Hochberg’s step-up procedure [8]. Hochberg’s proce-
dure is valid for independent and positively dependent p-values [17]. The latter is
the case here, as the p-values for overlapping windows have positive correlation.
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Fig. 2. The distribution of minimal p-values for the binomial test with Hochberg’s
post-hoc correction, on the data from Figure 1. We find that the p-values are far from
the uniform distribution, for any combination of parameters, while the distribution is
more uniform when the expected number of events (= m · p) is larger.

We computed the p-values for the binomial test for each sequence generated in
the previous experiment (Section 3.1), using a sliding window of the same length,
and adjusted these using Hochberg’s procedure. Thus, the p-values are directly
comparable to those in the previous experiment. We computed the minimal p-
value per sequence, and compared the results with those from the upper-bound
method.

The distribution of minimal p-values is shown in Figure 2. We observe that
p-values from the method with post-hoc correction are far from uniform, for
any combination of parameters, while the distribution becomes more uniform as
the expected number of events per subsequence increases. The proposed method
outperforms the post-hoc approach for any combination of parameters, although
we cannot be certain that this holds for much larger expected number of events.

3.3 Bursty and Non-bursty Words in an English Novel

The prime motivation for this work comes from the domain of text analysis.
Church and Gale [3] and Katz [9] both studied burstiness of words in the context
of probabilistic modeling of word counts, and the concept is related to relevance
measures in information retrieval, such as inverse document frequency [19]. More
recently, using a quantification of burstiness based on the inter-arrival time dis-
tributions of words, burstiness of words has been related to semantic categories
[1], statistical tests for comparing corpora that take into account burstiness have
been proposed [13], and the impact of burstiness on choosing appropriate window
lengths for sequence analysis has been studied [12].
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Fig. 3. The relationship between burstiness, measured using the Weibull distribution,
and frequency of words. Each dot represents a word in the novel Pride and Prejudice.

Table 1. We studied the local behavior of the five least and most bursty words in two
frequency bins to investigate the suitability of our method to locate over and underuse
of words in text.

Frequency Low [σ = 40–50] High [σ = 300-600]

Non-bursty hardly, help, perfectly, point, scarcely an, elizabeth, more, there, when
Bursty marry, pride, read, rosings, william are, me, their, will, your

For the purpose of text analysis, it is useful to know if there are fragments in
a text where a certain word is over or underused and to locate such fragments.
We investigated the suitability of the proposed method to this task. As an ex-
periment, we downloaded the book Pride & Prejudice by Jane Austen, which
is freely available via Project Gutenberg2. We computed the frequency and the
maximum-likelihood estimates for the Weibull distribution [1,13] for all words,
and then selected the five most and least bursty words in two frequency bins,
see Table 1. An overview of the relation between the frequency and burstiness
of words is given in Figure 3.

For each of the selected words, we tracked the frequency throughout the book
using a sliding window of length 5,000 and step size 1. The book contains n =
121,892 words, thus there are 116,893 windows. We chose a window length of
5,000 to ensure that low event counts could also be significant; for example, for
a window length of 2,000 and event probability p = 1/300, we have that the
p-value for k = 0 is p̃L = 0.4833. Thus, an event count of zero is not significant,
even for fairly frequent words. With a window length of 5,000, event counts of 3
and less are significant at α = 0.05 (p̃L = 0.0164).

We computed the significance of the observed frequencies, for both the high
and low direction. Because the results are for illustrative purposes, we did not
apply any additional correction for testing multiple sets of hypothesis. Figure
4 shows the results for three words. The word an is frequent and non-bursty,
and no parts of the book show significant under or overuse of the word. For the
pronoun me, which is frequent and bursty, we observe two areas of overuse, and

2 http://www.gutenberg.org/

http://www.gutenberg.org/
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Fig. 4. Significant over and underuse of three words in the novel Pride and Prejudice,
compared to the average frequency in the book. Each blue dot corresponds to an
occurrence of the word in the text. To aid the visualization of the results, all overlapping
significant subsequences have been merged together. We observe that for an, no parts
of the book show significant under or overuse of the word, while for the pronoun me,
two areas show significant overuse, and four areas show underuse of the word. Finally,
the family name rosings is used mainly in two parts of the book.

four areas of underuse, compared to the average frequency. Finally, the family
name rosings, which is infrequent and bursty, is used a lot in two text fragments
and occurs a few times in other parts of the book.

A full overview of results is given in Table 2. As expected, we find that each of
the bursty words is significantly over or underrepresented in at least one fragment
of the book. Surprising is that some frequent words that are non-bursty according
to the Weibull distribution estimate are also under or overused in one or more
fragments. This indicates that there is local structure that is not captured by
the Weibull measure of word burstiness. The results from the proposed method
are confirmed by visual inspection of the data and we conclude that the method
has a clear potential to find novel and interesting patterns.
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Table 2. Number of areas with significant underuse (L) or overuse (H) for each of
the twenty words. Each of the bursty words is significantly more or less frequent in
some part of the book, and some frequent words that are non-bursty according to the
Weibull distribution estimate are also under or overused in one or more book parts.

Non-bursty Bursty
Frequent Infrequent Frequent Infrequent

Word L H Word L H Word L H Word L H
an 0 0 hardly 0 0 are 1 0 marry 0 1
elizabeth 2 0 help 0 0 me 4 2 pride 0 1
more 0 0 perfectly 0 0 their 1 0 read 0 2
there 0 1 point 0 0 will 2 3 rosings 0 2
when 0 0 scarcely 0 0 your 2 3 william 0 1
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Fig. 5. Analysis of the GC content at the start of Chromosome 1 of the Homo Sapiens
reference genome, using a sliding window of length 10,000. All overlapping significant
parts have been merged. We observe that the frequency of GC is quite volatile: parts
where the content is significantly high overlap with parts where the content is sig-
nificantly low. We also observe that the test is sufficiently powerful, there are many
significant results, even though we are testing a total of 225,270,622 hypotheses.

3.4 Variation in GC and TA Content in DNA

Variation of GC content in DNA sequences is used to define isochores, which in
turn are used to identify gene structure [2]. We tested if we could find significant
variation in GC and TA content in chromosome 1 from the Homo Sapiens refer-
ence genome, which we downloaded from the NCBI repository3. We computed
the frequency of C+G using a sliding window of length 10,000 and step size 1.
Chromosome 1 of the reference genome (build 37, patch 9) contains 225,280,621
fixed nucleotides, thus the number of tested hypotheses is in this case very large.

Analysis of the first consecutive fixed part can be found in Figure 5. We
observe that the test is sufficiently powerful, because several parts of the sequence
are identified as having significantly high or low GC content. We find that the
GC content is quite volatile: the parts where the content is significantly low
and high overlap each other. We conclude again that the proposed method has
potential for finding novel and interesting patterns in the data.

3 http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
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4 Related Work

The popularity of significance testing methods in data mining has increased
considerably over the past decade. Gionis et al. [5] introduced swap randomiza-
tion for mining significant patterns while maintaining row and column margins,
while De Bie [4] proposed a maximum-entropy approach that can also take into
account other types of constraints. Webb [20] and Hanhijärvi [7] studied the
problem of multiple testing for mining patterns. These studies are all restricted
to mining itemsets or tiles. A generic approach to mining structure in data using
statistical testing has been presented by Lijffijt et al. [11].

There are only a few studies on statistical testing approaches for mining se-
quential data. Most related is the statistical test proposed by Kifer et al. [10]
for detecting change points in streams. However, they rule out the possibility of
controlling the family-wise error rate, as they consider only streams of infinite
length. Another drawback of that method is that the critical points cannot be
computed analytically, but require randomization.

Complementary to this work are the randomization-based statistical tests for
comparing event counts between databases of sequences put forward by Lijffijt et
al. [13]. Segmentation methods may provide an alternative to modeling frequency
variation, although the focus is then on global modeling, while the aim here is
to find local structure. Mannila and Salmenkivi [16] study efficient methods for
sequence segmentation, while the approach by Lijffijt et al. [11] can be used to
assess the significance of such a segmentation.

5 Conclusions

We have introduced a novel statistical test for assessing the significance of event
frequencies in subsequences when using a sliding window. The test provides
strong control of the family-wise error rate and takes into account the depen-
dency structure of overlapping subsequences. We have shown that, although
exact p-values under the null hypothesis are difficult to compute, an easy-to-
compute upper bound can be used instead. We have shown empirically that
the upper bound is sufficiently tight and that the test offers increased power
compared to combining the binomial test with a generic post-hoc correction.

We have also investigated the utility and practicality of the test on linguistic
and biological sequences and found several novel and interesting patterns. We
have shown that meaningful results can be obtained, and that the method re-
mains sufficiently powerful even when testing a very large number of hypotheses.
We conclude that the proposed method is simple, fast and powerful and that it
can produce meaningful results on various types of data.
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