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Abstract. In this paper, we present a fully automated hierarchical probabilistic
framework for segmenting brain tumours from multispectral human brain mag-
netic resonance images (MRIs) using multiwindow Gabor filters and an adapted
Markov Random Field (MRF) framework. In the first stage, a customised Gabor
decomposition is developed, based on the combined-space characteristics of the
two classes (tumour and non-tumour) in multispectral brain MRIs in order to opti-
mally separate tumour (including edema) from healthy brain tissues. A Bayesian
framework then provides a coarse probabilistic texture-based segmentation of tu-
mours (including edema) whose boundaries are then refined at the voxel level
through a modified MRF framework that carefully separates the edema from the
main tumour. This customised MRF is not only built on the voxel intensities and
class labels as in traditional MRFs, but also models the intensity differences be-
tween neighbouring voxels in the likelihood model, along with employing a prior
based on local tissue class transition probabilities. The second inference stage is
shown to resolve local inhomogeneities and impose a smoothing constraint, while
also maintaining the appropriate boundaries as supported by the local intensity
difference observations. The method was trained and tested on the publicly avail-
able MICCAI 2012 Brain Tumour Segmentation Challenge (BRATS) Database
[1] on both synthetic and clinical volumes (low grade and high grade tumours).
Our method performs well compared to state-of-the-art techniques, outperform-
ing the results of the top methods in cases of clinical high grade and low grade
tumour core segmentation by 40% and 45% respectively.

1 Introduction

Worldwide, it is estimated that roughly 238,000 cases of brain tumours are diagnosed
every year [2]. One of the primary diagnostic evaluation tools for brain tumours is mag-
netic resonance imaging (MRI) of the brain to evaluate the size of the tumour and its
proximity to critical structures of the brain. Brain tumours present significant challenges
to traditional segmentation techniques due to the wide variability in their appearance in
terms of shape, size, position within the brain, their intensity variability and hetero-
geneity caused by swelling (edema), the presence of cysts, tumour type, etc. Moreover,
the image acquisition parameters, scanner type, imaging artefacts, and pre-processing
steps also greatly affect the appearance of tumours in MRI. The tumour boundaries
appear differently in different MRI contrasts (e.g. T1w, T2w, or FLAIR images) com-
monly used in clinical contexts leading to non-trivial ambiguities both in terms of the
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modelling and with regards to expert ground truth labelling required for training and
testing. Finally, depending on the tumour type, the contrast between the boundaries and
the surrounding healthy tissue can often be quite weak. These factors greatly impede
the ability of generative techniques to properly model and predict tumour appearance.

Over the years, a number of techniques have been successfully devised to segment
brain tumours automatically. These include atlas-based techniques [4], [5], [6], [9]
which register brain tumour volumes to healthy brain atlases, and classify tumour re-
gions as outliers. Generative techniques [3], [13] model the brain tumour intensity
patterns during training and segment tumours in test images based on these models.
Discriminative techniques [7], [8], [10], [11] on the other hand, avoid modelling inten-
sity distributions and instead determine boundaries between tumour and non-tumour
classes based on local intensity and/or some regional information. Overall, the litera-
ture suggests that it is advantageous to embed both local and global information into the
framework in order to localise tumours and segment their boundaries correctly. Global
information can be provided through position frequency techniques which offer a con-
venient way of coarsely detecting and locating tumours [12] based on learning texture
patterns over images. Markov Random Field (MRF) approaches have been devised to
model local information to segment tumours [13], however they have primarily been
used to perform spatial regularisation through a class prior. The premise of this paper is
that optimal tumour segmentation can be achieved through the careful design and com-
bination of coarse Gabor texture based segmentation and a refined MRF model into a
single probabilistic framework that leverages the advantages of both techniques. Prelim-
inary work based on a similar idea was presented in [15] at MICCAI BRATS 2012, but
this paper presents substantial improvements including a customised Gabor filterbank
to optimally separate tumour, and non-tumour, an improved MRF to include inter-class
transition probabilities, and also model intensity differences between classes.

In this paper, we develop a fully automated, hierarchical probabilistic framework for
segmenting brain tumours from multimodal brain MRI. At the first stage, the goal is to
coarsely segment the tumour (and associated edema) from the surrounding healthy tis-
sue using texture based features. Here, specialised Gabor functions are developed to op-
timally separate the tumour class from the surrounding healthy tissues during training.
A Bayesian classification framework is developed, based on the combined space Gabor
decomposition, resulting in tumour/non-tumour probabilities. In the second stage, the
boundaries and details of the segmentation are refined through an adapted probabilistic
graphical MRF model, designed to separate the edema from the main tumour. This cus-
tomised MRF differs from standard MRFs in that it is not simply a smoothing operator
through a prior on class labels. In addition to taking voxel intensities and class labels
into account, it also models the intensity differences between neighbouring voxels in
the likelihood model and considers the likelihood of transitions between classes.

The entire proposed framework is trained and tested on the publicly available, MIC-
CAI 2012 Brain Tumour Segmentation Challenge (BRATS) database [1]. On-line seg-
mentation statistics (e.g. Dice overlap metrics) are provided. In comparison with other
participants, our method outperforms the top methods from the competition in the cases
of clinical high grade and low grade tumour core by 40% and 45% respectively, and
performs roughly as well as the top methods in other categories.
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Fig. 1. Flowchart displaying the various stages of the classification technique. In the MRF classi-
fication and expert labels, red label represents edema, and green represents tumour.

2 Proposed Framework

We develop a hierarchical probabilistic brain tumour segmentation approach, using two
stages. In the first stage, multiwindow Gabor decompositions of the multi-spectral MRI
training images are used to build multivariate Gaussian models for both the healthy
tissues and the tumour (including core and edema tissue). A Bayesian classification
framework using these features is used to obtain initial classification results. In the sec-
ond stage, Gaussian models are built for healthy tissues (i.e. grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF)) as well as for tumour tissues (e.g. core tis-
sues, edema) from intensity distributions acquired from the training dataset. A Markov
Random Field is trained to classify all these types of tissues. A flowchart of the process
is shown in Fig. 1. We now present in detail the two stages.

2.1 Stage 1: Multiwindow Gabor Bayesian Classification

Training: The data consists of MRI intensity volumes in different contrasts (T1, T1c
(T1-post gado-contrast), T2 and FLAIR). Hence, at each voxel, we have a 4-dimensional
vector containing the intensity in each contrast. Each contrast f of each volume is pro-
cessed using multiwindow, 2D Gabor transforms of the form suggested by [16]. We use
a set of R window functions gr, r = 1 . . . R of the form:

gr[x, y; a, b, n1, n2,m1,m2, σxr
, σyr

] = e−((x−n1a)
2/σxr

2+(y−n2a)
2/σyr

2)e−j2π(m1bx+m2by)/L,

(1)

where L is the total number of voxels in the slice under consideration, x and y are
space coordinates within the slice, a and b are the magnitude of the shifts in the spatial
and frequency domains respectively, n1,2 and m1,2 are the indices of the shifts in the
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position and frequency domains respectively, σxr and σyr are variance parameters of
the r-th window. In our experiments we chose b such that there are 6 equally spaced
orientations between 0 and π radians (sufficient in practice) and a = 1. Let G be the
Gabor matrix whose columns are generated by picking all possible shift values for both
a and b for all the R windows with every x and y represented in each column. The filter
bank coefficients c are obtained by convolving each contrast volume slice by slice with
the Gabor filter bank G. We use the same G matrix for all contrasts. It was proved in
[18] that if both gr[·] and its remapping window are positive definite1, then any gr[·]
can be used and perfect reconstruction is possible. Here, both gr[·] and its remapping
window are Gaussian (but with different parameters), and are positive definite.

Each voxel in the training volumes belongs to one of two classes: tumour or healthy
tissue. We estimate the window function parameters (σxr and σyr ) that will maximize
the distance between the two classes. More formally, let {ft} and {fh} be the sets of
voxels belonging to the tumour class and the healthy class respectively. The correspond-
ing tumour coefficients ct in the combined space are obtained by a convolution of the
Gabor filters centred at the tumour voxels in question. Similarly, the ch are obtained
with Gabor filters centred at the non-tumour voxels in question. Ideally, the coefficients
of the tumour and healthy class should be as different as possible. To achieve this goal,
we solve the following optimisation problem:

(σx, σy) = arg max
σx,σy

∑

j,k

| cj − ck |, ∀cj ∈ {ct}, ∀ck ∈ {ch} (2)

where σx and σy are the vectors containing the R σxr and σyr . We solve this optimisa-
tion using simulated annealing during training.

Classification: Each test volume is decomposed into its multiwindow Gabor filter bank
outputs, IG, using the convolution at each voxel described above. The class of each
voxel i, Ci is then estimated using Bayesian classification:

P (Ci | IGi ) ∝ P (IGi | Ci)P (Ci), (3)

where IGi is the set of Gabor coefficients of voxel i.

2.2 Markov Random Field Classification

The main purpose of the second stage is to remove false positives, distinguish the dif-
ferent sub-types of tumour tissue (e.g. core vs edema), and refine the boundaries of the
tumour. The proposed Markov Random Field (MRF) framework differs in several im-
portant ways from standard MRF approaches. First, the model is designed specifically
to model the differences in intensity between a voxel and its neighbours probabilisti-
cally, in order to preserve the correct tumour boundaries. Our MRF uses significantly
larger clique sizes than in standard models, which typically use only pairs of voxels.
The prior models are conditioned on all possible class configurations within the neigh-
bourhood. More precisely, we consider that the label of voxel i, Ci, is probabilistically
inferred through an intensity vector, Ii, and cliques involving the voxel and some of

1 Positive definite windows are windows whose discrete Fourier transform is real and positive.
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its adjacent voxels in the neighbourhood Ni. For all voxels j in the neighbourhood Ni,
j ∈ Ni, there exists a corresponding class vector Cj and corresponding set of intensity
vectors Ij . The energy at voxel i has to be minimised to infer the optimal classification
for P (C | I) as follows: The energy of voxel i is given by:

U(Ci | Ii)=−[logP (Ci)+logP (Ii | Ci)+
∑

j∈Ni

logP (ΔIi,j | Ci,Cj)]+αm(Cj , Ci),

(4)

where P (Ci) is the prior probability of class Ci, P (Ii | Ci) models the likelihood of
Ci given the intensity of voxel i, P (ΔIi,j | Ci,Cj) models the difference in intensity
between i and voxels in the j-th clique for classes Ci and Cj , m(Cj , Ci) is the potential
of transitioning from Ci to Cj and α (α = 1 here) is a weighting parameter.

Training: During training, the volumes are non-linearly registered to a brain tissue at-
las, masking out the tumour region using the experts classification labels. The
registration allows us to generate separate labels for grey matter, white matter, and
cerebrospinal fluid. The core and edema are superimposed from the expert labels. We
consider an 8-neighbourhood around the voxel in the axial plane as well as the corre-
sponding voxels in the slices above and below. The neighbourhood Ni consists of all
size 2, 3, and 4 cliques that contain voxel i. When only 2 tumour class labels are avail-
able for training (i.e. ”Two class Gabor-MRF”), we chose to model the single voxel
clique likelihood P (Ii|Ci) as a Gaussian mixture model (GMM) with 8 component
Gaussian mixtures, for both the tumour core and edema classes due to the heterogene-
ity of the regions. However, when various class labels are available for the tumour core
(e.g. necrotic core, enhancing tumour, solid tumour), we chose to use single multivariate
Gaussian distributions for each class instead of Gaussian mixture models. The healthy
classes are all modelled as multivariate Gaussians. The differences between intensities
of the different classes are modelled as multivariate Gaussian distributions for all class
combinations in both cases. The class transition probabilities are extracted from the
frequency of co-occurrence in the training volumes.

Classification: The Gabor-Bayesian probabilities are used as priors for the tumour
and the edema classes, with an exponential decay from the initially classified tumour
regions. The tumour areas are masked out and healthy atlases are registered to the re-
maining regions to get the prior probabilities of healthy tissues in the non-tumour re-
gions. Iterated conditional modes (ICM) [19] are used to minimise the total energy as
the initial classification provides a good starting point for the optimisation.

3 Experiments and Results

The framework was trained and tested on the publicly available MICCAI 2012 Brain
Tumour Segmentation Challenge datasets[1]. Here 20 high grade and 10 low grade real
tumour volumes are available for training with 2 class (core and edema) and 4 class
(necrotic core, enhancing tumour, solid tumour, and edema) labels. In addition, 25 high
grade and 25 low grade synthetic volumes with 2 class labels are also available. The
final test set consisted of 11 high grade and 4 low grade real data sets, and 10 high grade
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and 5 low grade synthetic volumes. The algorithm was trained on both the 2 class and
4 class labels for real glioma cases, as well as on the 2 class synthetic data, separately
for both high and low grade tumours. As the system is set up to test 2 class labelling:
i.e., only core and edema, for the results of the 4 class case, the 3 tumour labels were
merged to create a single tumour core label. All the resulting test labels were uploaded
onto the website and the statistics were provided automatically. Testing of the algorithm
took slightly more than an hour per case on a Dell Optiplex 980 I7 machine.

Qualitative Results: Fig. 2 shows the results of our algorithm on a slice from a low
grade tumour and a high grade tumour against the experts segmentation, along with the
corresponding unlabelled T1c and FLAIR slices. Visually, in both cases, it can be seen
that our results are comparable to the experts’ labelling.

(a) (b) (c) (d)

Fig. 2. Row 1, case HG0011, Row 2, case LG0015. (a) The unlabelled FLAIR slice, (b) the
unlabelled T1C slice (c) expert labelling and (d) our algorithm labels, (red = edema, green =
tumour). Our algorithm’s labels corresponds closely with the experts’ labels.

Quantitative Results: Table 1 shows the results of our technique on both real glioma
and synthetic tumour volumes. Dice similarity coefficient was used to compare results,
as in the BRATS challenge. Our algorithm outperforms the winning algorithm by about
40% in the case of high grade (HG) tumour cores and about 45% in the case of low
grade (LG) tumour cores, and has statistics comparable to the winner for edema. Table
2 shows that our statistics are comparable to the winners with Dice averages of around
0.8 overall for LG tumours (core and edema) and 0.85 for HG. The 4 class Gabor-MRF
outperforms the 2 class Gabor-MRF mainly due to the heterogeneity of the tumour core.
Modelling the core as a GMM with 8 modes in the ‘two class case’ is proven to be less
effective than training on each sub-class separately, in the four class case, even with a
simple model for each sub-class.
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Table 1. Comparison of the segmentation results of the proposed method and the methods par-
ticipating in the BRATS Challenge as presented on the website [1] for both edema and tumour
core for clinical cases using average Dice similarity coefficient values. The final results of our
method are found in the ”Four class Gabor-MRF”, where the method was trained and tested on
the 4 class tumour labels and the 3 core labels were merged to create a single core label prior to
uploading. The ”Two class Gabor-MRF”, where the algorithm was trained and tested on a single
tumour core class, is shown for comparison. The winners of the challenge are highlighted in bold.

Method HG Edema HG Tumour Core LG Edema LG Tumour Core
Shin. et. al 0.038 0.144 0.061 0.232
Bauer. et. al. 0.536 0.512 0.179 0.332
Zikic. et. al. 0.598 0.476 0.324 0.339
Subbanna. et. al. 0.166 0.248 0.14 0.245
Xiao. et. al. 0.539 0.337 0.279 0.224
Zhao. et. al. 0.003 0.058 0 0

Two class Gabor-MRF 0.613 0.641 0.268 0.241
Four class Gabor-MRF 0.56 0.74 0.240 0.49

Table 2. Comparison of the segmentation results of the proposed method ”Two class Gabor-
MRF” and the methods participating in the BRATS Challenge as presented on the website [1]
against the experts’ labels for both the edema and the tumour core for the synthetic cases in the
BRATS Challenge [1] using Dice similarity coefficient values. The winners of the challenge are
highlighted in bold. As may be observed, our technique has a performance comparable to the
winners of the challenge. In the case of synthetic tumour volumes, both our algorithm and the
winners have Dice values of around 0.85.

Method HG Edema HG Tumour Core LG Edema LG Tumour Core
Shin. et. al 0.312 0.284 0.213 0.072
Bauer. et. al. 0.785 0.779 0.746 0.858
Zikic. et. al. 0.85 0.869 0.749 0.842
Subbanna. et. al. 0.696 0.398 0.645 0.42
Xiao. et. al. 0.343 0.414 0.1 0.469
Zhao. et. al. 0 0 0 0

Two class Gabor-MRF 0.877 0.841 0.772 0.832

4 Discussions, Future Work and Conclusion

The results show that our method performs very well in the task of segmenting brain
tumours and edema in both synthetic and real clinical multimodal brain MRI. It outper-
forms other techniques in segmenting tumour cores. Its main strength is the hierarchical
approach that first coarsely segments the tumour using a customised Gabor decompo-
sition and then refines the segmentation using an adapted MRF. We hope to enhance
our technique by improving the second stage to recover from any errors made during
the first stage by using a more flexible hierarchical MRF. Currently, the accuracy of the
second stage is dependent on obtaining a reasonable classification from the first stage.
We are working on solving the optimal cluster separation analytically. Finally, although
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the results of the experiments on this dataset are promising, the automated approaches
are all tested against the subjective ground truth labels of one set of clinicians. Further
experimentation on data acquired from multiple centres would be desirable.
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