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Abstract. We propose a learning-based method for robust tracking in
long ultrasound sequences for image guidance applications. The frame-
work is based on a scale-adaptive block-matching and temporal realign-
ment driven by the image appearance learned from an initial training
phase. The latter is introduced to avoid error accumulation over long
sequences. The vessel tracking performance is assessed on long 2D ul-
trasound sequences of the liver of 9 volunteers under free breathing. We
achieve a mean tracking accuracy of 0.96 mm. Without learning, the
error increases significantly (2.19 mm, p<0.001).
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1 Introduction

During conformal radiation therapies, motion in the treatment region needs to
be compensated to ensure accuracy of the dose delivery. For the thorax and ab-
domen, motion due to respiration is substantial and can not be neglected [11,21].
Image-guided radiation therapies use image information gathered during ther-
apy for adjusting the treatment plan. Tracking the respiratory motion on such
images requires an accuracy in the millimeter range and real-time feedback. Po-
tential imaging techniques for guidance include CT, MRI and ultrasound (US).
The latter represents the only modality that is real-time, non-ionizing and cheap.

Structures on US sequences of the abdomen have been tracked using optical
flow [5], speckle tracking algorithms [8], intensity-based registration [22], ac-
tive contours [23], hybrid methods [6,13,3] and US imaging models [12]. Block-
matching algorithms (BMAs) compute the local displacements from interpolat-
ing the translations that provide the best match of image regions in two con-
secutive frames. Many BMAs have been proposed (e.g. [1,19,14,2,8]), yet their
performance has so far only been assessed on relative short sequences (<1 min).
Therapy guidance requires the tracking of long sequences, which poses a special
challenge for BM due to its iterative nature. Moreover, our sequences suffer from
noise, interferences, low SNR and frame dropouts. To create a robust framework
for feature tracking in long sequences, we propose an algorithm, which combines
several BM components and includes a novel adaptation of the block size to
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the feature scale. In addition, we exploit the approximate periodicity of breath-
ing motion for learning image appearance and corresponding motion behavior
(extracted by accurate but slow image registration) to allow frequent temporal
realignment of the BMA for drift-free real-time tracking.

2 Material

US liver sequences of 9 volunteers during free breathing were acquired at the
Geneva University Hospital [17]. To evaluate US tracking performance for hybrid
US and MR guided treatments [17], an Acuson clinical scanner (Antares; Siemens
Medical Solutions, Mountain View, CA) was modified to be MR compatible,
and US and MR images were simultaneously acquired. The US images (real-
time second harmonic images with 1.8-2.2 MHz center frequency) were exported
on-the-fly using a frame grabber device. 2D US images were acquired at a fixed
location (longitudinal or intercostal plane) over 5:21, 5:28 and 10:08 min for 1,
7 and 1 volunteer(s), respectively. The resulting 2650 to 14516 frames had a
temporal and spatial resolution of 14-25 Hz and 0.3-0.7 mm, respectively.

3 Method

3.1 Scale-adaptive Block-matching

The key components of our proposed scale-adaptive BMA (SA-BMA) are a novel
adaptation of the block size to the feature scale and the new combination of the
interpolation function from [14] with the temporal realignment from [19].

Block Configuration. Traditionally the size of the blocks is chosen empiri-
cally [16,7] or equal to the US speckle size [10]. We adapt the block size to the
feature size to ensure that every block contains a part of the feature, which limits
the aperture problem and avoids ambiguities due to homogeneous blocks.

The position of features to track, e.g. Pj(t0) for vessel j, are manually selected
in I(t0), see Fig. 1. BM is performed for a region of interest (ROIj(t0)) around
feature j, which covers a MxN grid of equally sized squares (called blocks)
Bi,j of size Δbj with center points Gi,j , i ∈ [1, . . . ,MN ], defined at t0. Δbj is
determined from the feature size. In detail, as vessel cross sections have elliptic
shape, we search for blob-like features centered at Pj . A scale-space approach
(local maxima of a Difference-of-Gaussian (DoG)) [15,20] is used to detect the
most likely blob in ROIj(t0). The resulting scale s is related to the minor semi-
axis rj of an ellipse fitted to the vessel section by rj =

√
2s and Δbj = �rj�.

Displacement Calculation. We compute the motion field in each ROIj by
determining the displacement atGi,j via BM, and use weighted interpolation [14]
to obtain the displacement of Pj . At time step t∗ the displacement of Gi,j(t

ref )
in the reference frame tref to Gi,j(t

∗), denoted as dGi,j (t
∗), is determined by

the displacement v which maximized the normalized cross-correlation (NCC)
between Bi,j(t

ref ) and the block from I(t∗) centered at Gi,j(t
ref )+v. The values



520 V. De Luca et al.

of v are restricted to cover only a certain search region. The reference frame is
generally the previous frame (t∗−1). Other strategies for tref are described in the
next paragraph. The displacement of the tracked point from tref to t∗ (dj(t

∗))
is deduced from the block displacements dGi,j (t

∗) by weighted interpolation:

dj(t
∗) =

∑

î

wîdGî,j
(t∗), (1)

where wî are the weights and î = {i|Q(i, t∗) = 1}. Q(i, t∗) is the filtering mask
for ROIj at time t∗, which is defined by Q(i, t∗) = 1 for the 9 Gi,j(t

ref ) closest
to Pj(t

ref ), and Q(i, t∗) = 0 otherwise. We consider the weights wî [14]:

wî = 0.5
1

D2
î
+ 1

1∑
î

1
D2

î
+1

+ 0.5
αî∑
î αî

, (2)

with Dî the Euclidean distance from Gî,j(t
ref ) to Pj(t

ref ), and αî = σ2
î
/μî

the ratio between the variance (σ2
î
) and the mean (μî) of the pixel intensities

in Bî,j(t
∗). This interpolation scheme has the advantage that it incorporates

regularization (first term) and accounts for the relative image content (second
term) [14]. The position of the tracked point is Pj(t

∗) = Pj(t
ref ) + dj(t

∗).

Reference Frame Definition. BMAs can generally only cope with small
deformations and appearance changes, as they are based on the translations
of local regions. Hence BM is applied to temporally consecutive frames (i.e.
tref = t∗−1) for tracking. However, this strategy is subject to error accumulation
leading to drift. Such errors are particularly relevant in long sequences. Yet the
approximate periodic nature of respiratory motion provides frequently frames
which are similar to the initial frame and BM is again applicable for aligning
these [19]. Errors occur also due to the quantization of dGî,j

. Hence we introduce
the following strategy:

if NCC(ROIj(t0), ROIj(t
∗)) > θNCC,j then tref = t0

else if ‖dj(t
∗)‖ ≤ εd then tref = trefprev

else tref = t∗ − 1 end

where NCC(A,B) is the NCC between image region A and B, θNCC,j is the 84th
percentile of the NCC values gathered from an initial subset of the sequence,
εd = 0.01 pixel, and trefprev denotes tref from the previous image pair.

3.2 Learning-based Tracking

During therapy, images are acquired continuously over several minutes. Hence
temporal realignment of the images is crucial to ensure robust tracking and to
avoid error accumulation. For repetitive motion, such as breathing, redundancy
within the images can be exploited [4]. Following a similar strategy, we divide
the method into a training and tracking phase. During training we learn the
relationship between image appearance and the corresponding displacements,
from a slower, but more robust tracking method. During the clinical application,
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the displacements are computed by the proposed SA-BMA (see Sec. 3.1), with
the reference frame given by the closest frame from the training set. This strategy
allows temporal realignment over many more breathing states than previously.

Training Phase. In the training phase we acquire a sequence covering 10
breathing cycle, resulting in T10C images I(ti), ti ∈ [t0, . . . , T10C ].

The images I(ti) are registered to I(t0), to obtain spatial correspondence. The
registration optimizes the parameters of an affine transformation with respect
to NCC over a manually selected region around Pj(t0) and is initialized by the
result from I(ti−1) to I(t0).

To store the image appearance efficiently, we embed the images I(ti) ∈ R
D

into a low-dimensional representation S(ti) = [s1(ti); . . . ; sL(ti)] ∈ R
L, with

L � D, using Principal Component Analysis (PCA) [4]. We select L such that
the cumulative energy of the first L eigenvectors just exceeds 95%. In addition,
we select the PCA component sB in S that captures the main breathing mo-
tion, by computing the FFT of each si and choosing the one that has a power
spectral density maximum at 0.15-0.4 Hz (2.5-6 s, common breathing). S and
the corresponding registration results (e.g. Pj) are stored ∀ti.
Tracking Phase. New images are continuously acquired during treatment.
Given the current image I(t∗), we first project it into the PCA space (S(t∗) =
[s1(t

∗); . . . ; sL(t∗)]). Then, depending on its similarity to the training data and
the previous frame, a reference frame is chosen. The logic is as follows:

outlierFlag = false
if ||S(t∗)− S(t0)||2 < θ1 then tref = t0
else if argmintx∈[t0,...,T10C ]||S(t∗)− S(tx)||2 < θ2 then tref = tx
else if ||S(t∗)− S(t∗ − 1)||2 < θ2 then tref = t∗ − 1
else outlierFlag = true end
if (outlierFlag == false) then do SA-BMA
else do affine registration and update S end

The threshold θ1 is the 5th percentile of the Euclidean distance between S(t0)
and S(ti) ∀t0 < ti ≤ T10C . θ2 is the 95th percentile of the distribution of the
minimum Euclidean distances between the S(ti) in the training set [4].

3.3 Evaluation

We compared the performance of SA-BMA (Sec. 3.1) and LB-BMA (Sec. 3.2).
As baseline BMA, we modified the SA-BMA to have fixed block size Δbj = 16.
The methods were tested for a total of 25 vessels in 9 sequences, see Fig. 1. We
visually inspected the tracking quality for all vessels. We quantitatively evaluated
the tracking error for the 15 vessels, which appeared to allow reliable annotations.
We randomly selected 10% of the tracking phase images and manually annotated
the position (denoted as P̄j) corresponding to Pj(t0). For the annotated frame
(t̂), we calculated the tracking error TEj(t̂) =

∥∥Pj(t̂)− P̄ (t̂)
∥∥. We summarize

the results by the mean (MTE), standard deviation (SD) and 95th percentile of
all TE(t̂), considering all landmarks as a single distribution. We computed the
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Fig. 1. I(t0) of the 9 sequences and manual annotation of the tracked vessel centers
Pj(t0), j ∈ [1, . . . , 25]. Quantitative evaluation was based on the 15 Pj marked by ’x’.
Visible artifacts include MR-RF interferences (4), and small acoustic windows (2,3,6,8).

MTE for each landmark j (MTEj) and report the range for the 15 vessels. We
included the motion magnitude of the vessels, i.e.

∥∥Pj(t0)− P̄ (t̂)
∥∥.

We estimated the inter-observer variability of the annotations. Two additional
experts annotated 3% of randomly selected images from the tracking phase. We
then defined as ground truth the mean position over the 3 annotations and
calculated the tracking error as before.

4 Results

We tracked a total of ∼50000 frames, acquired over a total of ∼50 min. Δbj
ranges in [4, 22] pixels and the size of the tracked vessels varies from 2 to 9 mm.
The PCA space is characterized by L in the range of [86, 287], vs. D > 3660.

We firstly evaluated the registration error for the training images. The affine
registration achieves an accuracy of 0.63 ± 0.36 mm (1.30 mm) on average (MTE
± SD (95th percentile of TE)), with a MREj range of [0.42, 0.84] mm.

Table 1 lists the results for the proposed approaches, SA-BMA and LB-BMA.
We compared LB-BMA considering S (LB-BMA95) and sB (LB-BMAB). The
best performance is achieved by LB-BMA95 with a MTE of 0.96 mm. Fig. 2 illus-
trates the benefit of the proposed methods for the worst case of BMA. For LB-
BMA95 (LB-BMAB) and all 25 tracked vessels, tref is picked from the training
set for 68.3% (99.0%) of the frames, while 1.4% (1.0%) require affine registration.

The inter-observer MTE varies from 0.30 to 0.34 mm (95th TE from 0.63
to 0.68 mm, MTEj range [0.16, 0.70]). For the inter-observer data set, the me-
dian TEj of BMA and SA-BMA, SA-BMA and LB-BMAB, and SA-BMA and
LB-BMA95 were statistically significantly different at the 0.001 level (Wilcoxon
sign-rank test), while LB-BMAB and LB-BMA95 were not (p=0.53). No other
statistical tests were performed.
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Table 1. Tracking results (in mm) for the different methods w.r.t. manual annotation
from one and three observers. Best results are in bold face.

1 Obs - 10%, ∼7500 images 3 Obs - 3%, ∼2500 images

MTE ±SD (95thTE) rangeMTEj MTE ±SD (95thTE) rangeMTEj

VesselMotion 5.17 ± 3.21 (10.59) [2.81, 11.48] 5.22 ± 3.23 (10.57) [3.00, 11.30]
BMA 3.22 ± 2.26 (7.24) [1.25, 12.35] 3.20 ± 2.26 (7.17) [1.26, 12.16]
SA-BMA 2.19 ± 1.46 (4.90) [1.20, 5.79] 2.18 ± 1.45 (4.83) [1.22, 5.78]
LB-BMAB 1.24 ± 1.41 (3.81) [1.04, 1.49] 1.21 ± 1.39 (3.67) [0.98, 1.49]
LB-BMA95 0.96 ± 0.64 (2.26) [0.38, 2.34] 0.97 ± 0.65 (2.20) [0.36, 2.24]

Fig. 2. Comparison of the tracking performance for a sequence where BMA failed
(MTEj=12.4 mm). (Top) Main motion component of manual annotation and dj from
3 methods for a temporal subset. (Middle) Corresponding NCC to first image. (Bottom,
left to right) First image with annotation (P (t0)), image with tracking results at last
realignment (ta) of (SA-)BMA, at ta + 30 s and ta + 60 s. Drift occurs in a significant
(moderate) way for BMA (SA-BMA) for t > ta, while LB-BMA remains robust.

The average time to compute the motion of the tracked vessel per frame
was 100 ms (range [30, 350] ms). The PCA projection in LB-BMA required
∼13 ms per frame. These measures were obtained using non-optimized Matlab
software and no GPU parallel computing (single PC with Intel R©CoreTMi7-920
at 2.66 GHz processor and 8 GB RAM), and exclude outliers, i.e. images that re-
quired affine registration. The latter was computed in approximately 0.8-2.5 s per
image region, using the Insight Segmentation and Registration Toolkit (ITK).
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5 Conclusion

We proposed a novel and robust framework for vessel tracking in long US se-
quences. The method is based on learning the relationship between image ap-
pearance and feature displacements to allow frequent reinitialization of a scale-
adaptive block-matching algorithm. The method was evaluated on long US se-
quences of the liver of 9 volunteers under free breathing and achieved a mean
accuracy of 0.96 mm for tracking vessels for 5-10 min. To our knowledge, this is
the first evaluation for tracking such long US sequences. Our performance also
improves the state-of-the-art in 2D US tracking of the human liver (1.6 mm [23]).
The proposed method is robust to interference, noise (see Fig. 1), and frame
dropouts. Moreover, it is potentially real-time [9,18,4].

Standard BMA might fail in long sequences, due to an inappropriate block
size, changes in the image similarity values and error accumulation. The intro-
duction of scale-adaptive blocks and the learning strategy were both significant
for the improvement of the results. While adaption to the feature size reduces the
error caused by ambiguous matches, the use of NCC for measuring the feasibility
of temporal realignment can be misleading. Even with adaptation to the individ-
ual US sequence, temporal realignment of the tracking was often too sparse. In
contrast, the proposed learning based approach enables more frequent realign-
ments to relevant images by exploiting the repetition in the images and learning
the main variation in image appearance. This allows us to detect outliers and
then adapt to these previously unseen variations by affine registration, which is
slow but able to handle larger displacements.

Reducing computational costs by using only the breathing signal for measur-
ing image similarity increased mean errors slightly (0.96 vs. 1.24 mm). While
affine registration performed well on the training set, it was only applied to
outliers (1%) during real-time tracking due to its computational complexity [4].

The achieved accuracy and robustness of the proposed tracking method for
long and very difficult US sequences makes us confident of its success for real-
time US guidance during radiation therapy under free-breathing.
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