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Johns Hopkins University

Abstract. The use of human embryonic stem cell cardiomyocytes (hESC-CMs)
in tissue transplantation and repair has led to major recent advances in cardiac re-
generative medicine. However, to avoid potential arrhythmias, it is critical that
hESC-CMs used in replacement therapy be electrophysiologically compatible
with the adult atrial, ventricular, and nodal phenotypes. The current method for
classifying the electrophysiology of hESC-CMs relies mainly on the shape of the
cell’s action potential (AP), which each expert subjectively decides if it is nodal-
like, atrial-like or ventricular-like. However, the classification is difficult because
the shape of the AP of an hESC-CMs may not coincide with that of a mature
cell. In this paper, we propose to use a metamorphosis distance for comparing
the AP of an hESC-CMs to that of an adult cell model. This involves construct-
ing a family of APs corresponding to different stages of the maturation process,
and measuring the amount of deformation between APs. Experiments show that
the proposed distance leads to better interpolation and classification results.

1 Introduction

Stem cells present a new frontier in cardiology. Since the seminal work of [1], advances
have been made in the purification of cardiomyocytes (heart muscle cells) from stem
cells [2], its comparison to mature cardiomyocyte analogs [3], and its application in cell
therapy and regenerative medicine [4]. A key step to future applications in medicine and
drug discovery is the ability to isolate and purify populations of cardiomyocytes that are
precursors to the adult phenotypes (atrial, ventricular, nodal). To achieve this, discrim-
inative criteria are necessary. While current work approaches this problem chemically
[5], in this work we approach it electrophysiologically using the cardiac action potential.

The current standard [6–8] for assessing cardiomyocyte phenotype is by making
measurements of certain indicative features of the action potential. As illustrated in
Figure 1, such features include upstroke velocity (max ∂V

∂t ), which indicates the rate
of membrane depolarization, action potential amplitude (APA), which indicates the to-
tal change in membrane potential during depolarization, action potential duration x
(APDx), which is the amount of time it takes the membrane to reach x% repolarization
after depolarization, and maximum diastolic potential (MDP), which is the minimum
membrane potential achieved following repolarization. The discrimination of pheno-
type is then based on combinations of these features. However, the criterion for classi-
fication is often subjective, which makes it difficult to translate to other data sets and
scale to larger populations. In addition, the use of these features effectively discards
the action potential waveform itself, making it nearly impossible to visualize an ac-
tion potential near the decision boundary. This additional concern is of importance in
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the hESC-CM domain where an immature cardiomyocyte may not have decided on its
phenotype yet.

Fig. 1. Sample action potential with
common biological measurements

We believe that methods based on the action
potential waveform itself will lead to more ef-
fective ways of assessing cardiomyocyte pheno-
types. One approach is to use the Euclidean dis-
tance to compare two action potentials, as sug-
gested in [9] for EMG data. However, this is not
an ideal measure because, unless two signals are
very similar to begin with, Euclidean interpola-
tion of two action potentials leads to intermedi-
ary shapes that do not resemble the shape of a
prototypical action potential. Another approach
is to use dynamic time warping (DTW) to align
two action potentials in time before comparing them with a Euclidean distance [10, 11].
However, DTW does not capture variations in the amplitude of the action potential,
hence the shape of a warped action potential may still not resemble that of a prototypi-
cal one.

In this paper, we propose to use a metamorphosis distance [12, 13] for interpolation
and classification of action potentials. A metamorphosis between two action potentials
is a sequence of intermediate action potentials obtained by a morphing action and the
distance between two action potentials measures the amount of morphing. Our exper-
iments show that this distance leads to intermediate action potentials whose shape re-
sembles that of prototypical action potentials. Moreover, this distance leads to improved
classification results on existing datasets.

2 Metamorphosis of Cardiac Action Potentials

Let f1 : Ω → R be an action potential, such as that in Figure 1. We assume that the
space of action potentials, M, is the space of periodic, continuously differentiable and
square integrable functions, i.e., M = L2(Ω), where Ω = S

1 is the unit circle.
Let f0, f1 ∈ M be two action potentials corresponding to an immature and a mature

cell, respectively. The Euclidean distance between the two action potentials is defined
as d2L2(f0, f1) =

∫
Ω
(f0(t)− f1(t))

2dt. This distance is not suitable for comparing two
action potentials because the shape of the Euclidean average of two action potentials
need not resemble that of the individual action potentials. Our goal is to define a distance
dM(f0, f1) that captures the differences in the shapes of the action potentials.

To that end, we define a family of action potentials f(·, τ) that interpolates between
f0 and f1, i.e., f(t, 0) = f0(t) and f(t, 1) = f1(t), where the parameter τ ∈ [0, 1]
captures the stage of differentiation of the cell, i.e., τ = 0 corresponds to an immature
cell and τ = 1 corresponds to a mature cell. In constructing f(·, τ), our goal is to
preserve the shape of the action potential as much as possible. One possible approach
[14, 15] to constructing f is to find a deformation φ : Ω → Ω that warps the domain of
the action potential of a mature cell f1 to produce the action potential of an immature
cell f0, i.e., f0(t) = f1(φ(t)). The deformation φ is assumed to belong to the space of
diffeomorphisms in Ω, G = Diff(Ω), a Lie group that acts on the manifold M by right
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composition with the inverse [12], i.e., φ · f = f(φ−1(t)), where f ∈ M, φ ∈ Diff(Ω)
and t ∈ Ω. To preserve the shape of the action potential as much as possible, the
diffeomorphism that is “closest” to the identity deformation id ∈ G is chosen. That is,
the distance between f0 and f1 is defined as dM(f0, f1) = infφ∈G dG(φ, id), such that
f1 ≈ φ · f0, where dG is some distance in G.

The above approach accounts for most of the temporal variations between the two
action potentials. However, it does not capture variations in their amplitude (e.g., maxi-
mum or minimum). To account for both temporal and amplitude variations, we propose
to use a metamorphosis [12, 13] to interpolate between the action potentials f0 and f1.
A metamorphosis is a family of action potentials f(·, τ), parameterized by τ ∈ [0, 1],
such that f(t, 0) = f0(t) and f(t, 1) = f1(t). The curve f(·, τ) ∈ M is obtained by
the action of a deformation path φ(·, τ) ∈ Diff(Ω) onto a template path i(·, τ) ∈ M
as f(·, τ) = φ(·, τ) · i(·, τ). The curve φ(·, τ) ∈ Diff(Ω) is such that φ(·, 0) = id
and represents the deformation part of the metamorphosis, while the curve i(·, τ) ∈ M
represents the residual, or template evolution, part. Notice that when i(t, τ) does not
depend on τ , the metamorphosis is a pure deformation.

To find a metamorphosis that preserves the shape of the action potentials as much
as possible, we need to define an appropriate distance in the space of metamorphoses
so that we can choose the metamorphosis closest to the identity. We use the arc length

of the curve f(·, τ),
√∫ 1

0

∥
∥∂f
∂τ

∥
∥2
TMdτ along the tangent space TM to define such a

distance. Taking the derivative of f(t, τ) = i(φ−1(t, τ), τ) with respect to τ leads to:1

∂f

∂τ
(t, τ) =

∂i

∂t
(φ−1(t, τ), τ)

∂φ−1

∂τ
(t, τ) +

∂i

∂τ
(φ−1(t, τ), τ)

= −∂f

∂t
(φ−1(t, τ), τ)

∂φ

∂τ
(φ−1(t, τ), τ) +

∂i

∂τ
(φ−1(t, τ), τ).

(1)

When τ = 0, we have φ(t, 0) = id and (1) simplifies to:

∂f

∂τ
(t, 0) =

∂i

∂τ
(t, 0)− ∂f

∂t
(t, 0)

∂φ

∂τ
(t, 0). (2)

This equation allows us to decompose an infinitesimal change in f , ∂f
∂τ , in terms of

an infinitesimal change in the template, δ = ∂i
∂τ and an infinitesimal change in the

deformation, v = ∂φ
∂τ . The Euclidean distance is a reasonable choice to measure δ

because the infinitesimal change in the template is approximately linear. To measure
v, recall that v represents the instantaneous flow field induced by the diffeomorphism
φ(t, 0). Since we want this flow to be smooth, we can impose a Sobolev norm on the
space V of flow fields. For example, we can choose ‖ · ‖V = ‖T (·)‖L2 , where T is
a linear operator (one example of T is T (·) = id(·) − αΔ(·)). Now, notice from (2)
that different combinations of infinitesimal changes v and δ could lead to the same
change ∂f

∂τ . To remove this ambiguity and define a proper Riemannian metric, we take
the minimum length over all such combinations. The measure on ∂f

∂τ is then defined as:
∥
∥
∥
∂f

∂τ

∥
∥
∥
2

TM
= inf

v,δ

{
‖v‖2V +

1

σ2
‖δ‖2L2 :

∂f

∂τ
= δ − ∂f

∂t
v
}
, (3)

where σ > 0 is a balancing parameter.
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We can use this infinitesimal evolution to define a distance between two action po-
tentials by summing the collection of infinitesimal changes connecting the two signals.
Specifically, let f0(t) and f1(t) be two action potentials. The metamorphosis distance
between the two waveforms in M is hence defined as:

d2M(f0, f1) = inf
v,f

∫ 1

0

‖v(t, τ)‖2V +
1

σ2

∥
∥
∥
∂f

∂τ
(t, τ) +

∂f

∂t
(t, τ) v(t, τ)

∥
∥
∥
2

L2
dτ, (4)

where f(t, 0) = f0(t), f(t, 1) = f1(t), and δ = ∂i
∂τ is substituted for using (2).

3 Numerical Computation of the Metamorphosis Distance

The computation of the metamorphosis distance requires finding v and f that minimize
(4). This problem is non-convex, and its solution, if it exists, need not be unique, as
multiple velocity and template evolutions paths may connect the two action potentials
with the same energy. Regardless, we proceed to solve this problem by discretizing τ
into N + 1 timesteps, τn = (n − 1)/N , n = 1, . . . , N + 1. To discretize the residual
evolution term ∂f

∂τ + ∂f
∂t v, we follow [16] and make the following approximation:

∫ 1

0

∥
∥
∥
∂f

∂τ
(t, τ)+

∂f

∂t
(t, τ)v(t, τ)

∥
∥
∥
2

L2

dτ ≈
N−1∑

n=0

‖f(t+v(t, τn), τn+1)−f(t, τn)‖2L2
, (5)

which holds as the number of time steps approaches infinity because

lim
ε→0

f(t+ εv(t, τ), τ + ε)− f(t, τ)

ε
=

∂f

∂t
v(t, τ) +

∂f

∂τ
(t, τ). (6)

Since we also discretize the signal in the time domain, we need to resample f(t, τn)
and f(t + v(t, τ), τn+1) accordingly. Let Nv(t,τn) be the linear operator that acts on
f(t, τn+1) and represents the sampling of f(t + v(t, τn), τn+1) onto the original grid.
In our experiments, Nv(t,τn) is generated using linear interpolation. There are N such
operators, one for each of the v(t, τn) required in the energy, but each can be updated
independently from the others. This operator transforms the residual evolution term into
something amenable for vector analysis:

N−1∑

n=0

‖f(t+v(t, τn), τn+1)−f(t, τ)‖2L2
=

N−1∑

n=0

‖Nv(t,τn)f(t, τn+1)−f(t, τn)‖2L2
. (7)

Finally, to discretize the deformation energy, we discretize the linear differential op-
erator T over the sampled grid of our signal. Let this discretized differential operator
be denoted by L. Further, we follow [12] and introduce a smoothing kernel K = L−1

and the following substitution: w = L1/2v. Minimizing over w instead of v leads to a
speed up in computational time [12]. This differential operator L and kernel matrix K
can be calculated using the Fourier Transform.

The resulting discrete objective function to be minimized is given by:

U(w(t, τ), f(t, τ)) =

N−1∑

n=0

‖w(t, τn)‖L2+
1

σ2
‖Nv(t,τn)f(t, τn+1))−f(t, τn)‖L2 , (8)

where v = K1/2w, f(t, τ0 = 0) = f0(t), and f(t, τN = 1) = f1(t). The minimization
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Algorithm 1. Discrete Metamorphosis Optimization
Given a Template Signal f0(t), a Target Signal f1(t), a balance parameter σ, the number of
evolution time steps N , and a Sobolev Operator L.

1. Initialization.
a. Set d−1 = ∞. Calculate K = L−1.
b. Set w(t, τn) ≡ 0, v(t, τn) = K1/2w(t, τn) ≡ 0, and Nv(t,τn) = I for all τn.
c. For n = 0, . . . , N : Set f(t, τn) = N−n

N
f0(t) +

n
N
f1(t)

d. Calculate distance d20 =
∑N−1

n=0 ‖w(t, τn)‖2L2
+ 1

σ2 ‖Nv(t,τn)f(t, τn+1))− f(t, τn)‖2L2

2. Until di−1 − di converges

a. Set di → di−1

b. For n = 0, . . . , N − 1, Update w(t, τn) using (9).
Calculate v(t, τn) = R(K1/2w(t, τn)), Update Nv(t,τn).

c. For n = 1, . . . , N − 1, Update f(t, τn) using (10).
d. Calculate distance di =

∑N−1
n=0 ‖w(t, τn)‖L2 +

1
σ2 ‖Nv(t,τn)f(t, τn+1))− f(t, τn)‖L2

can be done using alternating gradient descent over the substituted velocity w and the
metamorphosis f . The process is described in Algorithm 1. We initialize the algorithm
by making all the velocity fields w(t, τn) = 0 for all t, τn, and the subsequent interpola-
tion matrices Nv(t,τn) = I for all τn, where I is the identity. The initial metamorphosis
is the Euclidean interpolation: f(t, τn) = N−n

N J0(t) +
n
N J1(t), n = 0 . . .N .

Velocity Update. Differentiating the objective w.r.t. to the transformed velocity gives:

∂U

∂w(t, τn)
= 2w(t, τn) +

2

σ2
K1/2(f(t̄, τn+1)− f(t, τn))

∂f(t̄, τn+1)

∂t
, (9)

where t̄ = t+K1/2w(t, τn). From (9), we see that the kernel ensures that each update
of the transformed velocity leads to a smooth velocity field. This appears to speed up
the descent process by allowing for larger steps. The original velocity field v can be
realized by multiplying w by K1/2 and taking the real component.

Metamorphosis Update. The update of the intermediary action potentials f(t, τn),
n = 1, . . . , N − 1, can be calculated from Ni = Nv(t,τi) and (8):

∂U

∂f(t, τn)
= 2NT

n−1(Nn−1f(t, τn)−f(t, τn−1))−2(Nnf(t, τn+1)−f(t, τn)). (10)

4 Experiments

Synthetic Data. We first evaluated how well the shape of the action potential is pre-
served when using metamorphosis interpolation. We used the model of [17] to generate
five mature ventricular action potentials, each one corresponding to a different percent-
age (80–120%) of the standard value of one of the model parameters (conductance of
the potassium rectifier channel). We interpolated between the action potentials at 80%
and 120% using metamorphosis with the following parameters: σ = 0.1, N = 4 and a
Sobolev norm operator T (·) = id(·) − αΔ(·) with α = 8. Figure 2 compares the Eu-
clidean (blue) and metamorphosis (green) interpolations to the ground truth (red). We
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τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
L2 Difference (Blue) 0.3310 0.4173 0.2898
L2 Difference (Green) 0.1515 0.2040 0.1078

Fig. 2. A family of ventricular action potentials (red) used as ground truth, Euclidean interpola-
tion (blue), and metamorphosis interpolation (green) between the left and right most potentials,
differences between interpolation and ground truth (inset), and the L2 errors in interpolation

see that the Euclidean evolution deviates from the action potential shape (inset of inter-
polation figures), while the metamorphosis evolution preserves the shape and matches
the changing parameter better. While the differences appear to be minor, it is these types
of differences that can affect the calculated distances and assignment.

(a) Closest atrial

(b) Closest ventricular

Fig. 3. Misclassified
embryonic atrial AP
(blue) and closest
mature model APs (red)

Real Data. We performed classification of embryonic car-
diomyocytes into mature phenotypes using metamorphosis in-
terpolation from their action potentials to those of mature cell
models. The mature signals were synthesized using a mature
atrial [18] and a mature ventricular [17] cell model. The embry-
onic signals were obtained from the dataset of [6], which con-
sists of 16 atrial and 36 ventricular cells, which were manually
labeled using biological characteristics of the APs, as described
in [6]. Since the embryonic signals were spontaneously paced,
we used [19] to adjust their cycle length to 1 second to match
the cell models. We also normalized the signals so that they have
a baseline voltage of 0 and an amplitude of 1 to concentrate on
the shape differences and not on scale/translation differences.
These are both constraints we hope to remove in future work.

Table 1 shows classification results of 1-NN and 3-NN with
Euclidean and metamorphosis distances using σ = 0.3, N =
15 and the same Sobolev norm operator from the synthetic ex-
periment. Notice that the metamorphosis distance improves the
classification results for 7-9 ventricular cells, and deteriorates
them for two atrial cells. However, we believe this is an artifact of the manual label-
ing. Specifically, notice from Figure 3 that the shape of one of the misclassified atrial
cells resembles more a ventricular shape than an atrial one. We observed a similar re-
sult for the other misclassified atrial cell. Figure 4 shows interpolation results from an
embryonic ventricular cell (first column) to an atrial or ventricular model (final col-
umn) using both distances. L2 interpolation produces intermediate signals whose shape
does not resemble that of a prototypical action potential and gives a smaller distance to
the wrong model. On the other hand, metamorphosis better preserves the shape during

1 The last step follows from ∂f
∂t

(t, τ ) = ∂i
∂t
(φ−1(t, τ ), τ ) ∂φ

−1

∂t
(t, τ ) and from taking the

derivatives of the relationship φ(φ−1(t, τ ), τ ) = t with respect to t and τ to show that
∂φ−1

∂τ
(t, τ ) = − ∂φ

∂τ
(φ−1(t, τ ), τ ) ∂φ

−1

∂t
(t, τ ).
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Table 1. Number of correctly classified embryonic cardiomyocytes by nearest neighbors

Method L2 1-NN L2 3-NN Metamorphosis 1-NN Metamorphosis 3-NN

Atrial Scoring 16/16 16/16 14/16 14/16
Ventricular Scoring 29/36 27/36 36/36 36/36

Total 45/52 43/52 50/52 50/52

(a) Euclidean interpolation from ventricular to atrial cell: dL2 = 11.9834

(b) Euclidean interpolation from ventricular to ventricular cell: dL2 = 12.6498

(c) Metamorphosis interpolation from ventricular to atrial cell: dM = 5.4423

(d) Metamorphosis interpolation from ventricular to ventricular cell: dM = 1.6484

Fig. 4. Interpolation from an embryonic ventricular cell to atrial and ventricular models

interpolation and gives a much smaller distance to the correct model than to the incor-
rect model.

5 Conclusion

We have introduced a distance between action potential waveforms based on deformable
template theory. The proposed distance aims to preserve the waveform shape and is suc-
cessful in classifying embryonic cardiomyocytes. The framework could be adapted to
other domains where shape preservation is a primary objective. Future work involves
extending the framework to unnormalized and unpaced action potentials.
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