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Abstract. Tubular structures are frequently encountered in bio-medical images.
The center-lines of these tubules provide an accurate representation of the topol-
ogy of the structures. We introduce a stochastic Marked Point Process framework
for fully automatic extraction of tubular structures requiring no user interaction or
seed points for initialization. Our Marked Point Process model enables unsuper-
vised network extraction by fitting a configuration of objects with globally optimal
associated energy to the centreline of the arbors. For this purpose we propose spe-
cial configurations of marked objects and an energy function well adapted for de-
tection of 3D tubular branches. The optimization of the energy function is achieved
by a stochastic, discrete-time multiple birth and death dynamics. Our method finds
the centreline, local width and orientation of neuronal arbors and identifies critical
nodes like bifurcations and terminals. The proposed model is tested on 3D light
microscopy images from the DIADEM data set with promising results.

1 Introduction

Advances in imaging technologies generate huge volume of microscopy data. Manual
analysis of such data is prohibitively expensive in terms of the expert man-hours re-
quired. At present, high resolution, high content 3D data is becoming more and more
prevalent. Thus, a fully automatic, stochastic rather than deterministic data exploration
strategy, combining both local and global image evidence, is desired [1].

Neurite tracing methods connect paths of maximum neuriteness voxels locally be-
tween sets of seed points to extract the global neurite structure. A common drawback
of existing methods is their dependence on seed points [2]. Often, manual intervention
is required to select the optimal seed points. Unavailability of seed points can even
lead to entire branches going undetected. Not only for neurons, seed points are a rel-
evant concern for all kinds of tubular structure extraction scenarios [3]. Commonly,
multiscale Eigen-analysis [4], in combination with gradient information [5] or inten-
sity ridge traversal [6] are used to detect seeds on tubule centrelines. These filters find
voxels maximizing a vesselness measure by collecting responses over a range of filter
scales. They are computationally intensive as multiple scales and orientations of the fil-
ters are convolved with the image data at every voxel. With increasing volume of data
and considering 3D orientations of neurites, deterministic filter response maximization
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Fig. 1. (a) Minimum intensity projection of intensity inverted (for ease of visualisation) Olfactory
Projection Fibers (OPF) data obtained by confocal microscopy. (b) The extracted network with
the proposed model visualised on a projection of the OPF data. We restrict overlap of object to
have a sparse density on the branches and yet get a sense of the continuity of the neurites.

is an infeasible option, considering the huge solution space that is required to be ex-
plored. The results will be sensitive to initialization, necessitating human intervention.
Machine learning techniques like SVMs for automatic seed selection have been pro-
posed in the literature [7]. But their dependence on availability and quality of learning
data, however, make them an unattractive choice.

We develop an efficient Marked Point Process (MPP) framework for extraction of
neuronal structures from 3D data without greatly increasing the computational com-
plexity of sampling and estimation, in contrast to existing MPP based 2D methods
[8],[9]. Firstly, spheres are chosen as MPP objects, in particular because it gives one
dimensional object space but allows to simultaneously extract center line, size and lo-
cal orientation of branches. Secondly, to find the Maximum A Posteriori (MAP) esti-
mate of the optimal configuration, we sample from the object configuration space using
a Multiple Birth and Death (MBAD) dynamics embedded in a Simulated Annealing
scheme [10]. The MBAD dynamics reduces computational cost over traditional Re-
versible Jump Monte Carlo Markov Chain samplers by avoiding proposal kernel com-
putations and leads to faster convergence.

2 3D Marked Point Process Model

The Point Process models were first introduced in [11] to exploit random fields whose
realizations are configurations of random points describing a spatial distribution of data.

2.1 From Point to Parametric Marked Point Process

We consider a point process X existing in K = [0, Xmax] × [0, Ymax] × [0, Zmax] ,
where K is a bounded, connected subset of V3, the image domain. In the Marked Point
Processes, each point xi is associated with additional parameters (marks) mi to define
an object ωi = (xi,mi). Here, xi ∈ K and mi ∈ M and the Marked Point Process Y
is defined on K×M . The configuration space of the objects is given by Ω = ∪∞

n=0Ωn,
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where Ω0 is the empty set, each Ωn, n ∈ N is the set of unordered sets (configurations)
containing n objects and γn ∈ Ωn, γn = {ω1, . . . , ωn}. Note that n can be arbitrary,
and in the following sections of the paper the elements of configuration γ ∈ Ω (with an
arbitrary number of elements) will be denoted as ωi, where i = 1 . . . n.

2.2 Gibb’s Distribution and Energy of Configuration

The Marked Point Processes are defined by their probability density w.r.t. the reference
Poisson process. Given a real, bounded below function U(γ) in Ω, the Gibbs distribu-
tion μβ in terms of the density p(γ) =

dμβ

dλ (γ) w.r.t. Lebesgue-Poisson measure λ on Ω
is defined as:

p(γ) =
z|γ|

Zβ
exp[−βU(γ)]. (1)

Here, parameters z, β > 0 and Zβ is a normalizing factor. In the Gibbs energy model,
the optimum object configuration γ̂ corresponds to the minimum global energy, where
γ represents the configuration of objects:

γ̂ = argmax
γ

p(γ) = argmin
γ

U(γ). (2)

U(γ) =
∑

ωiεγ

Ud(ωi) +
∑

ωi,ωj∈γ;
ωi∼ωj

Ui(ωi, ωj) +
∑

ωi∈γ

Uc(ωi), (3)

where the operation ∼ is defined as a neighborhood relation: ωi ∼ ωj = |ωi, ωj ∈ γ :
|xi − xj |< tD| and D is distance between centres of objects ωi and ωj , and t ∈ N. Ud

represents the data energy, Ui is the interaction prior energy and Uc is the connection
prior energy. We seek to minimize the global energy U(γ). To find the minimizer γ̂
means to find the number n of objects in the required configuration and to find positions
of all n objects in the configuration γ̂.

3 Energy Modeling for 3D Neuronal Network Extraction
Our aim is to extract the neuronal branches by generating a configuration of objects
fitted to the points of maximum medialness measure on the image volume. For this
purpose, we adopt spheres as objects ωi = (xi, ri), xi ∈ V

3, ri ∈ [rmin, rmax] and
ωi(xi, ri) = (yi : |xi − yi|≤ ri) where yi are voxels in the image domain V

3. The
stochastic optimization and random sampling strategy of the object configuration space,
which also defines our filter space, extracts an optimal configuration of objects whose
radii correspond to the scales of the filters maximizing the responses at their centre
voxels in the image data. In the following section we describe each of the energy com-
ponents in detail.

3.1 Data Energy

Our data energy response is based on the tubularity filter proposed in [12] and the in-
terested reader may refer it for complete details. The Hessian is a second order partial
derivative of image data containing local structural information. Its principal compo-
nents determine the tangent direction and normal plane of the local neurite structures.
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(a) Dataterm illustration (b) Connection prior

Fig. 2. (a) High negative energies indicate “good” objects (eg. objects B,C,D) i.e. objects situated
on the branch centreline and the same size as the local branch width. “Bad” objects, for example,
on the background (object A) or not centred correctly on the branch (object E) have low prob-
abilities of survival in the configuration during the energy minimization scheme. (b) Each sub
configuration is identified by its characteristic connection energy - evaluated w.r.t. the number of
neighbors with direct data connection with the current object (shaded in the image). A: Terminal.
B: Anchor points along the length of a branch. C: Bifurcation junction.

The scale of the Hessian σH is uniformly sampled from the radius range [rmin, rmax].
The medialness measure M(ωi) is obtained by taking an integral of the image gradient
at scale σG along the circumference of the cut of the spherical object on the normal
plane defined by V 1 and V 2 -

M(ωi) = |π
2

∫ 2π

θ=0

∇I(σG)(xi + riVθ)dθ|. (4)

Here, Vθ = cos(θ)V1 + sin(θ)V2 is a rotating phasor in the normal plane sampling
gradient information at radial distance r from the center xi = [x, y, z]T , xi ∈ V

3 of
the object. The medialness measure varies greatly for thin or weakly contrasted neu-
rite branches, a common occurrence in case of microscopy images due to injection
of noise and non-homogeneous staining of the neurons. Thus, a user defined optimal
global threshold to reject structured noise and background artifacts is difficult to obtain.
So, to discriminate between “good” and “bad” objects an adaptive thresholding of the
medialness response is performed based on the gradient response at the tube’s center
Mc(ωi) = |∇I(σH )(xi)|. The data energy term is then defined as follows:

Ud(ωi) =

{
−(M(ωi)−Mc(ωi)), ifM(ωi) > Mc(ωi)

0, otherwise.
(5)

3.2 Pair-Wise Interaction Prior Energy

This term is a pair-wise interaction potential for objects in each other’s zone of in-
fluence. It avoids crowding together of spheres along the neuronal processes and favors
continuity of network by merging of close lying disconnected fragments, a common oc-
currence in microscopy data due to inhomogeneity in branch intensity and poor contrast
with background. Around every object exists an immediate zone of repulsion followed
by a concentric zone of attraction. Two energy potentials are defined: U+ is repulsive
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in nature to penalize objects lying too close to each other, and U− is attractive in nature
to favor objects in reasonable distances of each other.

Ui(ωi, ωj) =

⎧
⎪⎨

⎪⎩

U+, if d < dr

U−, if dr ≤ d ≤ da

0, if d > da.

(6)

Here, d is the Euclidean distance between the centres of the spheres; dr and da (dr <
da) are respectively the repulsive and attractive distances, dr, da are multiples of ri+rj .
By varying dr and da, density of spheres along the neuronal branches can be controlled.

3.3 Connection Prior Energy

The second prior is a multi-object interaction potential, incorporating constraints on
the connection among objects. Depending on the number of objects k(ωi) = |ωj ∈ γ :
dr < d(ωi, ωj) < da|, in the neighborhood, the prior term can also be used to determine
branching points and termination points along neuronal processes, see Fig. 2(b).

Uc(ωi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E1, if k(ωi) = 0

−E1, if k(ωi) = 1

−E2, if k(ωi) = 2, 3

−E2, if k(ωi) = 4

E1, if k(ωi) > 4.

(7)

This association of favorable energy potentials E1 and E2 with particular local sub-
configurations encourage accurate detection of critical nodes. At the same time, it dis-
courages isolated objects in the configuration, which are likely to correspond to cell
nuclei or other such background structures.

3.4 Optimization

The complexity of optimization of the global energy depends directly on the size of
the sampling space of the objects, which we limit by the adoption of spherical objects,
with a 1-dimensional parameter space. The optimum global energy is defined over the
space of union of all possible configurations, considering an unknown a-priori number
of objects. To obtain the optimal configuration of the objects on the image data, we
use MAP estimation (Eq.2). We sample from the probability distribution μβ using a
Markov chain of the discrete-time Multiple Birth and Death dynamics defined on Ω
and apply a Simulated Annealing scheme. At every iteration, a transition is considered
from current configuration γ to γ

′ ∪ γ
′′

where γ
′ ⊂ γ and γ

′′
is any new configuration.

The corresponding transition probability is given by:

P (γ → γ
′ ∪ γ

′′
) ∼ (zδ)|γ

′′ | ∏

ωi∈γ�γ
′

αβ(ωi, γ)δ

1 + αβ(ωi, γ)δ

∏

ωi∈γ
′

1

1 + αβ(ωi, γ)δ
, (8)

where αβ(ωi, γ) = exp(−β(U(γ \ ωi) − U(γ))). The convergence properties of the
Markov Chain to the global minimum under a decreasing scheme of parameters δ
and 1

β are proved in [10]. The probability of death of an object depends on both the
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Algorithm 1. Multiple Birth and Death
Initialize
Discrete time-step δ = δ0 and inverse temperature β = β0.
Now, alternate between birth and death step until stop condition is met:
Birth
(a) Generate a configuration of spheres γ ∈ Ω, from the Lebesgue-Poisson distribution with
intensity z = δz0 for centers, with independent radii uniformly distributed on [rmin, rmax]. A
hard core repulsion δε is added with ε equal to one pixel.
(b) γ

′ ∪ γ
′′

: Add the new set of objects γ
′′

to the “surviving” ones γ
′ ⊂ γ to get the current

configuration γ.
Death
(a) Sort the objects of the current configuration according to their data energy Ud(ωi), for the
purpose of accelerating computation;

(b) Each object ωi in the configuration γ, is removed with probability p(ωi, γ) =
δαβ(ωi,γ)

1+δαβ(ωi,γ)
;

Termination
Terminate if all and only objects added in the birth step of current iteration are removed. Else,
update γ, decrease δ, 1

β
according to a geometric annealing schedule and go to the birth step.

temperature and its relative energy in the sub-configuration; whereas, birth of object is
independent of both energy and temperature and is spatially homogenous. In this way,
the iterative process finds a configuration γ̂ minimizing the global energy Eq. 3.

4 Experiments and Results

We test the performance of our proposed model on 3D light microscopy image stacks
from the DIADEM Challenge database [13]. See Fig.3 and Fig.1. Although our method
is not sensitive to the initialization of the configuration, to speed up convergence to
the optimum configuration, the birth of the objects are restricted to a region of interest
defined by the dilation of the maximum intensity projection of the original data stack
for OPF and NL1 datasets. On the CCF data, obtained by Brightfield Microscopy, the
configuration space is limited to a layered depth map obtained by a maximum intensity
projection of the data. Our unoptimized Matlab implementation takes 57 mins, 3 hrs 29
mins, 1hr 33 mins to converge on NL1, OPF and CCF respectively, on a PC running
Intel Core i7 processor, 3.4 GHz with 8GB RAM.

The parameters of the priors are set to - U+ = 10, U− = −2, E1 = 1.5 and E2 =
2.0, as described in the literature [14]. The sampling parameters are learnt from exper-
iments and set as β0 = 1 and δ0 to approximately three to five times the number of
objects expected in the final configuration. The objects are sampled uniformly from the
radius ranges [1, 10], [1, 3] and [1, 25] for OPF, NL1 and CCF datasets respectively. The
deviation of the extracted points set (P) using our proposed model from gold standard
manually delineated centrelines (G) is compared in Table 1 in the following way:

max(P,G) = max( min
p∈P,g∈G

(f(p, g))) (9)

avg(P,G) = avg( min
p∈P,g∈G

(f(p, g))) (10)

errr(P,G) = avg(|rp − rg|: min
p∈P,g∈G

(f(p, g))) (11)
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where f(p, g) represents Euclidean distance of the concerned points and rp and rg
are radius at point p and g respectively. Thus, our method produces an automatic and
reliable extraction of neuronal morphology. It is robust to small branch discontinuities,
intensity variations due to inhomogeneous labeling, noise and background interference.

(a) (b)

(c) (d)

Fig. 3. (a) Minimum intensity projection of Cerebellar Climbing Fibers (CCF) obtained by Trans-
mitted Light Brightfield microscopy. (b) The neuronal network extraction with the proposed
model visualised on a slice CCF data. (c) Maximum intensity projection of Neocortical Layer
1 Axons (NL1) obtained by 2-photon Laser Scanning microscopy. (d) The neuronal network ex-
traction with the proposed model on the projection of the NL1 data. These results are obtained
with a high density of objects, allowing overlap to fully reconstruct the fuzzy and blurred seg-
ments of the neurites.

Table 1. Evaluation of our proposed method against Gold Standard manual extraction. The units
of reporting error are anisotropic image voxels. The errors are higher along the z-axis due to the
differential resolution of original data. *: ground truth radius not available.

Dataset Resolution Centreline deviation Radius
avg(P,G) max(P,G) Points under 1 voxel error errr(P,G)

OP1 512x512x60 1.231 3.9 80.14% 0.5243
OP2 512x512x88 1.065 2.5319 78.72% *
OP4 512x512x67 1.4064 2.7154 83.71% 0.5786

CCF1 6120x4343x34 2.67 6.5869 66.23% 1.7656
NC01 512x512x60 1.1398 2.0119 79.12% *

5 Conclusion

To conclude, we present a MPP model for unsupervised network extraction that is
fully automatic and requires neither seed points nor manual intervention. The pro-
posed method significantly improves network detection by reconstructing blurred and
fuzzy segments of networks due to connectivity priors of the energy function. Our work
can also be viewed as a stochastic optimization of scale-orientation space for matched
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filters, developing a connected network of maximum vesselness points on tubular struc-
tures. The stochastic optimization to the global minimum and the random nature of
data exploration makes it preferable for large, high content microscopy data-sets. The
obtained results demonstrate its reliability and robustness for fully automated analysis
of neuronal morphology.

So far, we only extract the neuronal structures by a configuration of uniformly spaced
MPP objects. A future extension of our work might be neuronal reconstruction, where
the extracted centreline, local width and orientation information along with detected crit-
ical nodes will aid in a connected, tree hierarchical representation of the neuronal arbors.
Additionally, studies of the sensitivity and robustness of our model w.r.t. the model pa-
rameters and automatic estimation of the critical parameters are important, as that would
increase the applicability of the family of Marked Point Process based methods.
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