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Abstract. We describe a method to capture disease-specific components in or-
gan shapes. A statistical shape model, constructed by the principal component 
analysis (PCA) of organ shapes, is used to define the subspace representing in-
ter-subject shape variability. The first PCA is applied to the datasets of healthy 
organ shapes to define the subspace of normal variability. Then, the datasets of 
diseased shapes are projected onto the orthogonal complement (OC) of the sub-
space of normal variability, and the second PCA is applied to the projected da-
tasets to derive the subspace representing the disease-specific variability. To 
calculate the OC of an n-dimensional subspace, a novel closed-form formula-
tion is developed. Experiments were performed to show that the support vector 
machine classification in the OC subspace better discriminated healthy and dis-
eased liver shapes using 99 CT data. The effects of the number of training data 
and the difference in segmentation methods on the classification accuracy were 
evaluated to clarify the characteristics of the proposed method. 

Keywords: Statistical shape model, orthogonal complement, support vector 
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1 Introduction 

Discriminating diseased organs from healthy ones based on the variations of organ 
shapes is one of the important goals of computational anatomy. The early structural 
change in cortical grey matter caused by Alzheimer’s disease is a well-studied prob-
lem [1]. This work studied the shape variations based on the local geometric mea-
surement from an average representation of the shape. However, global deformation 
patterns may be more important for studying some pathological anatomies such as 
chronic liver disease (CLD). To our knowledge, the development of computational 
tools for modeling disease-specific global deformation patterns is still insufficient. 

To study the variability of normal anatomy or pathological structures caused by the 
disease, the statistical shape model (SSM), which is constructed by the principal com-
ponent analysis (PCA) of organ shapes, is one of the basic representation schemes [2]. 
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However, it would be ideal if it was possible to eliminate the normal variability of 
organ shapes from the variability of diseased organs to effectively study disease-
specific behavior.  

We propose to use the disease-specific shape component SSM that objectively eli-
minates the variability of healthy shapes. We generate an SSM with a given set of 
healthy organ shapes and then design a subspace that is the orthogonal complement 
(OC) of the healthy shape SSM. The projection of a new healthy shape sample into 
the OC subspace is ideally expected to result in sufficiently small components. Sub-
sequently, the projections of diseased shapes into this OC subspace are expected to 
mostly consist of the disease-specific components after eliminating the normal varia-
bility. In our literature survey, the OC subspace was utilized for content-based image 
retrieval [3]. However, it has not been applied to discriminate subtle variations in 
anatomical shapes caused by the disease, such as those addressed by Golland et al. 
[4]. Here, we do not assume that the components of shape changes caused by the dis-
ease are in the OC subspace, but assume and demonstrate that using the disease-
specific components in the OC subspace is useful for disease discrimination. 

In this study, we address the problems of shape-based discrimination of CLD. With 
respect to computer-assisted diagnosis (CAD) of CLD, the local shape has been stu-
died [5]. However, its usefulness is limited to the discrimination of serious stages, 
where bumpy contours of the liver surface are clearly observed. Although the radiolo-
gists’ observations of the global changes of CLD are typically used in clinical diagno-
sis, the modeling of global liver shape changes in CAD has been insufficient. Because 
these shape change patterns are often subtle, their detection may be a difficult task 
even for experienced radiologists. The purpose of this work is to objectify and quanti-
fy these shape changes by statistical shape analysis, and in particular, the shape com-
ponents specific to CLD using the OC subspace. We eventually aim to develop a  
CT-based imaging biomarker for staging liver fibrosis. 

The main contributions of this study are as follows: (1) We have shown that the 
anatomical difference of shape is clarified in the OC space, which improves the sup-
port vector machine (SVM) classification accuracy. (2) We combine the OC-based 
SVM classifier with automated CT segmentation of the liver to evaluate its perfor-
mance and limitations in clinical use. (3) In addition, a complete closed-form solution 
of estimation of n-dimensional OC space is provided from the methodological point 
of view. 

2 Methodology 

SSM provides a family of shape vectors, ܠ א Թ௡, ܠ ൌ തܠ ൅  ത representsܠ where ,ܾ۾
the mean shape and ۾ represents the eigenvector of some shape space samples, ૏. 
The SSM parameter b is varied within േߪ ,ߪߢ ൌ -represents the eigen ߣ where ,ߣ√
value of the SSM space ૏. In general, the ߢ value of 2 or 3 is chosen and the proba-
bility of the parameter b is assumed to follow a Gaussian distribution. Given the  
sample shape S, which is not included in ૏, the estimation of b could be a multi-
dimensional optimization of the distance ԡ܁ െ  ሺܾሻԡ. This distance could be eitherܠ
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Euclidean or Mahalanobis distance between the point clouds S and x for a given b. 
However, in case the new shape ܁ ב ࣑ is already registered with the family ૏, then ܾ ൌ ܁Tሺ۾ െ  തሻ, where T represents the transpose. If ૏ represents a healthy or diseaseܠ
class of organs, the SSM parameter b can be estimated using ܾN ൌ NܠNTሺ۾ െ  ,തNሻܠ
where subscript N represents a healthy organ class. Assuming that a global deforma-
tion of the organ shape caused by a specific disease is represented by the eigenvectors ۾D, the disease shape ܠD is represented as ܠD ൌ ഥNܠ ൅ NܾN۾ ൅  DܿD,                         (1)۾

where ܿD is the SSM parameter. Let ۾OCN be the sub-components of ۾D projected 
onto the OC of the healthy SSM. Thus, we can modify Eq. (1) as, ܠD ൌ തNܠ ൅ NܾԢN۾ ൅  OCN is calculated as the principal component (PC) of the OC-transformed disease۾ OCNܿOCN.                    (2)۾
samples ܠD that is projected onto the OC of the healthy SSM. Therefore, to create 
the OC-transformed disease-specific SSM, we obtain ܿOCN  by ܿOCN ൌ OCNT۾ ሺܠD െܠതN െ   NܾԢNሻ. Next, we present a complete closed-form solution for the estimation of۾
n-dimensional OC space. 

2.1 Orthogonal Complement of Principal Components 

The OC of a subspace ܯ ؿ Թ௡  is given by ୄܯ ൌ ሼݓ א Թ௡: ݒ்ݓ ൌ 0, ݒ׊ א represents a subspace and Թ௡ ୄܯ .ሽܯ ൌ ܯ If dim .ୄܯ۩ܯ ൌ ୄܯ then dim ,ݍ ൌ ݊ െ  .ݍ
We are interested in finding the OC of a subset of PCs of a covariance matrix. The 
OC of a correlation matrix is used for tracking principal and/or minor subspaces for 
applications in signal processing involving time series data [6]. In that case, the OCs 
weigh the correlation matrix in each iteration of tracking. In our case, the orthogonal 
complement of a few leading PCs defining healthy organ shape will be used to project 
the disease specific shape. 

Assuming that n-D shape space is split into the r and p-D subspaces, such that the 
first p PCs of the shape space are chosen to calculate the OC and ૖ is  ሺݎ ൅ ሻ݌ ൈ  ݌
eigenvectors of a covariance matrix ܈  ( ሺݎ ൅ ሻ݌ ൈ ሺݎ ൅ ሻ݌  dimension), we can  
decompose ૖ into two matrices as, ૖T ൌ ሾહT઺Tሿ                               (3) 

where, હ represents the ሺݎ ൈ  ሻ matrix containing the first r rows of ૖ and ઺݌
represents the ሺ݌ ൈ  ሻ matrix containing p last rows of ૖. To find out the OC of the݌
p-dimensional dominant subspace, we need to do orthogonal decomposition of ઺. 
Three promising orthogonal decompositions are the QR decomposition, SVD decom-
position, and polar decomposition. The most stable and suitable way is to use polar 
decomposition, where factors are unique and coordinate-independent [7]. Using polar 
decomposition, ઺ ൌ ી܃, where ܃ represents the positive definite and ી represents  
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the orthogonal matrix. The orthogonal factor ી represents the closest possible ortho-
gonal matrix to ઺ [7]. The physical interpretation of polar decomposition is that the 
orthogonal factor ી provides a rotation and the positive definite factor U provides a 
stretch along the basis vectors defined in U. 

Therefore, ሺݎ ൈ -ሻ upper sub-matrix હ of ૖ has to be rotated along the ortho݌
gonal part of the remaining lower ሺ݌ ൈ ଵ܎ ሻ sub-matrix ઺ of ૖. Therefore, we define݌ ൌ હીT and ܎ଶ ൌ ଵሺ۷܎ ൅ ሻିଵ. Note that ሺ۷܃ ൅  ,ሻ is always positive definite. Then܃
the OC of p dimensional subspace of ૖ is given by, ۽ ൌ ቈ۷ܚ െ ଵT܎ଶTെ܎ଵ܎ ቉.                                   (4) 

The matrices ܎ଵ and ܎ଶ  are of dimensions ሺݎ ൈ ݎis ሺ ۽ ሻ, so݌ ൅ ሻ݌ ൈ -dimen ݎ
sional orthonormal matrix. In Eq. (4) the lower ሺ݌ ൈ -represents the or ۽ ሻ part ofݎ
thogonal rotation of the upper ሺݎ ൈ  ሻ part of ૖ in the direction orthonormal to the݌
lower ሺ݌ ൈ ሻ part of ૖. The ሾሺ۷ ൅݌  ሻିଵሿሾሺહીTሻTሿ part of the right hand side of܃ 
the upper ሺݎ ൈ  represents the pseudo-inverse of ሾહીTሿ and acts as OC ۽ ሻ part of݌
projector from the theory of least square. It can be easily shown that ۽T۽ ൌ ۷. There-
fore, ۽ represents the OC of the p dimensional subspace defined by the p PCs of the 
covariance matrix ܈. Then, because ૖ is also an orthogonal matrix, ۽T૖ ൌ ૙. 

Therefore, by taking the first p eigenvectors of the healthy organ subspace ۾N, Eq. 
(4) yields the OC of the healthy organ subspace. Next, we define the diseased organ 
subspace in the OC of the healthy shape. 

2.2 Diseased Organ Subspace 

The generation of healthy shape subspace is straightforward and provides the basis 
vectors ଵ݂, ଶ݂, ..., ௞݂, of normal variations of the k dimensional healthy subspace. For 
an n dimensional shape sample ܠN, we define the ሺ݊– ݇ሻ dimensional subspace as 
the OC of the healthy subspace. The OC is calculated using Eq. (4). Let the basis 
vectors of the OC be ݋ଵ, ݋ଶ, ..., ݋௡ି௞. We project each of the n dimensional vectors ሺܠD െ തNሻܠ  of the disease datasets to the ሺ݊ െ ݇ሻ  dimensional OC subspace.  
The projected vectors are given by ܠDᇱ ൌ ∑ Dܠሺۃ െ ,തNሻܠ ௜ሺ௡ି௞ሻ௜ୀଵ݋ۄ௜݋ .                           (5) 

Then, PCA is performed on the projected ሺ݊ െ ݇ሻ vectors ܠDᇱ . The first l basis vec-
tors of this projected disease data set provides the disease specific subspace,  ݃ଵᇱ , ݃ଶᇱ , ݃ଷᇱ , ...,  ݃௟ᇱ . Note that ݃௜ ൌ ∑ ,Ԣ୨݃ۃ ௝݁݋ۄ௝ሺ௡ି௞ሻ௝ୀଵ , where ௝݁  denotes a ሺ݊ െ ݇ሻ dimen-

sional unit vector whose j-th element is one and others are zero. Therefore, we obtain 
the disease subspace ݃ଵ, ݃ଶ, ݃ଷ , ..., ݃௟, where all the basis vectors are orthogonal 
to each other and to the healthy subspace. 
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We performed k-fold cross validation. Only within the training data, we further 
performed another (leave-one-out) cross validation to select the optimal parameter 
values involved in the classifier so that the highest classification accuracy was at-
tained. Note that the test data were totally separated from the classifier training as 
well as the parameter optimization. In the parameter optimization, the number of PCs 
was optimized. In the disease-specific SSM, the number of PCs in the healthy SSM, 
whose OC was used, was also optimized. We used a linear SVM and no parameter 
was involved in it. A Gaussian-RBF SVM was not used because its lower perfor-
mance in our problem was confirmed via a preliminary cross-validation study.  
The above k-fold cross validation was performed for 30 different k partitions of the 
data, which were randomly generated, and the results were averaged. 

3.2 Results 

We plotted the ROC curves by shifting the discrimination hyper-plane of SVM along 
its normal for the proposed and conventional methods [4]. We also evaluated the clas-
sification accuracy that is defined as the ratio of the numbers of correctly classified 
shapes to all the shapes when the SVM hyper-plane is not shifted. 

Figure 2 shows the ROC curves and classification accuracy under the three seg-
mentation conditions, when k = 15, i.e., 15-fold cross-validation was performed. The 
number of PCs was approximately 37 in the conventional method, whereas it was 8 
for the healthy SSM and 20 for the OC-transformed disease-specific SSM in the pro-
posed method. The proposed method showed higher performance on ROC and classi-
fication accuracy under the conditions “Both-manual” and “Both-automated” than the 
conventional method. Under “Training-manual & testing-automated,” the classifica-
tion accuracy was the worst. The reduction of the accuracy from “Both-manual” to 
“Both-automated” was larger in the proposed method than in the conventional me-
thod, although the accuracy was still better in “Both-automated.” Overall, the pro-
posed method shows better performance, even though a larger accuracy reduction was 
observed when the automated segmentation was used.  

 

Fig. 2. ROC curves. Conventional: Blue, Proposed: Red. The knots on the curves denote the 
classification results when the discrimination plane was not shifted, i.e., they represent original 
SVM classification results. AUC represents the area under the curve. 
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Figure 3 shows the effects of the number of training data on the classification accu-
racy using different k values in k-fold cross-validation. The number of training data 
was 50, 66, and 92 for k = 2, 3, and 15, respectively. The accuracy improvement was 
large in the proposed method for increased number of training data compared with the 
conventional method. 

Figure 4 visualizes the shape deformation patterns corresponding to the normal of 
the SVM hyper-plane (See captions of Fig. 4 for the details). As in Fig. 4(b), the pro-
posed method showed more subtle shape deformation for the discrimination than the 
conventional method.  

 

Fig. 3. Effects of number of training data on classification accuracy (Conventional: Blue,  
Proposed: Red). The number of training data is shown in parenthesis along the horizontal axis. 

 

Fig. 4. Deformation patterns corresponding to the normal vector of the discrimination hyper-
plane of SVM. The liver shape is the projection of the average shape onto the discrimination 
plane. The normal vector originates from the discrimination plane and heads to the disease side. 
Blue and cyan represent large and slight atrophy (shrinkage), respectively, and yellow 
represents slight hypertrophy (dilation). 

4 Discussion and Conclusions 

The proposed method showed better accuracy than the conventional method when the 
same segmentation method was used in training and testing. However, the accuracy 
difference became small in automated segmentation (Fig. 2), suggesting that the pro-
posed method is more sensitive to segmentation error. As shown in Fig. 4, the proposed 
method appears to capture more subtle disease-specific shape deformations, which are 
considered to be easily affected by the segmentation error. However, among the existing 
methods, the segmentation method used in this study may not be the most accurate. 
Further, the liver segmentation accuracy may improve with future research. 

The accuracy improvement by increasing the training data was larger in the proposed 
method than in the conventional method. One potential reason is because the healthy 
subspace covered a more accurate variability due to the increasing training data; thus, 
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the disease subspace was less contaminated by the normal variability. When the auto-
mated segmentation is used for training, increasing the training data will be easy in the 
clinical routine; thus, this feature is advantageous for the proposed method. 

In our dataset, the patients of the dataset belonged to the same race. Healthy livers 
have large inter-subject variability, but it may be smaller within the same race. To clini-
cally accept these results, further validations, including multi-race and prospective stu-
dies, are essential. Furthermore, the fibrosis diagnosis is clinically important. In our 
dataset, 63% of the disease data were histologically diagnosed to be fibrotic. We tested 
the classifier for the dataset consisting of healthy and fibrotic livers, and obtained simi-
lar classification accuracy (0.924 for “Both-manual” and 0.889 for “Both-automated”). 
Thus, the proposed method will also be promising for diagnosis of fibrosis. 

We have shown that the OC subspace projection pronounces the diseased compo-
nents of an organ shape and more clearly clusters the healthy and diseased organs. In 
addition, the results showed the necessity of more accurate segmentation. Future work 
will include the application of the proposed method to different diagnostic problems. 
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