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Abstract. In recent years, the emergence of the new paradigm of compressive 
sensing (CS) has led to the development of innovative image/signal processing 
and analysis tools that can be exploited to efficiently deal with serious challenges 
in pattern recognitions.  This paper is concerned with the use of CS tools and dic-
tionaries for face recognition, and in particular when dealing with uncontrolled 
conditions, e.g. faces captured at a distance in surveillance scenarios or in  
post-rioting forensic, whereby the images are severely degraded/blurred and of 
low-resolution. We present the results of our recent investigations1 into the con-
struction of over-complete dictionaries that recover super-resolved face images 
from any input low-resolution degraded face image. These results demonstrate 
that non-adaptive image-independent implicitly designed dictionaries that guaran-
tee the recovery of sparse signals achieve face recognition accuracy levels and 
yield significant recognition rates that are as good as if not better than those 
achieved by a recently proposed image-based learnt dictionaries. We shall also 
show that a variety of random dictionaries known to satisfy the Restricted Isome-
try Property (RIP), achieve similar accuracy rates, and thereby removing the need 
for training images. The high quality of the super-resolved images provides great 
potential for forensics and crime/terrorism fighting.  

Keywords: Compressive Sensing, Super-resolution, RIP dictionaries, Face rec-
ognition, CS classifiers. 

1 Introduction 

Automatic face recognition in uncontrolled conditions and in particular when dealing 
with surveillance tasks is far from reliable due to the degraded nature of captured 
images. Image resolution enhancement is deemed necessary for face recognition, 
where the camera is at a distant from imaged face yielding small low resolution, 
blurred and low-quality image for matching. Image degradation results from a variety 
of recording conditions: subject on the move, unstable sensors, out of focus optical 
system, or abnormal weather and atmospheric conditions such as thermal waves.  
                                                           
1  Conducted as part of the PhD research project of Nadia Al-Hassan supervised jointly with 

Harin  Sellahewa.  
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Recognising faces when matching low-resolution (LR) degraded small images 
against a gallery of high-resolution good size face images, is traditionally dealt with 
by preprocessing procedures primarily using the so called super-resolution methods 
which aims to reconstruct a higher resolution version of the LR image. Hennings-
Yeomans et al [1] proposed to perform super-resolution and recognition simulta-
neously.  The performance of this method depends on the training database. He and 
Zhang in [2] have developed an SR technique that constructs a high-resolution face 
image, from a sequence of low-resolution images, to be processed by Gabor feature 
based recognition.  

The emergence of compressive sensing (CS) theory and sparse representation has 
led to a plethora of image/signal processing and analysis tools that can be exploited to 
efficiently deal with serious challenges in pattern recognitions including the face rec-
ognition in uncontrolled conditioned. In particular, the development of efficient lଵ-
minimization procedures to obtain sparse solutions of certain underdetermined linear 
systems has led to the emergence of new SR schemes that aim recover high quality 
super-resolved images from low resolution degraded images ([3], [4], [5], [6], & [7]). 
Such approaches are motivated by the fact that images in general, and more so de-
graded ones, can be well-approximated by a sparse expansion in terms of suitable 
bases such as wavelets. Yang et al in [4], [5] proposed a method to reconstruct super-
resolved image from a single low-resolution image using a pair of overcomplete dic-
tionaries DH  and DL  whose columns are constructed,  through a learning process, 
from a number of randomly selected patches of high and low resolution training data-
sets of face images. This pair of image-trained dictionaries is referred to as the LD 
system. 

In this paper, we briefly discuss CS dictionary construction for various purposes in 
pattern recognition, but our main focus will on CS based image SR approach for face 
recognition in uncontrolled conditions. We shall demonstrate that non-adaptive dic-
tionaries, implicitly constructed without using images, perform as well as the LD 
dictionary, if not better. We introduce an implicit approach to CS dictionary construc-
tion, an example of which was developed by the author’s team at Buckingham, and 
investigate its performance in comparison to that of the LD scheme as well as a num-
ber of different random dictionaries in terms of the quality of their super-resolved 
images, face recognition accuracy and CS relevant statistical parameters. For comple-
tion, we also present the performance of a non-CS based iterative SR method [8] and 
of matching in low-resolution.  

The rest of the paper is organized as follows. Sections 2 and 3 provide a brief re-
view of Super resolution and Compressive Sensing respectively. In section 4, we shall 
discus a recently designed CS approach to image RS using different types of dictiona-
ries, and discuss the properties of these dictionaries that are relevant to the recovery of 
a sparse signal from a down-sampled degraded version of images. In section 5, we 
shall conduct experiments to compare the performance of a known face recognition 
scheme when applied to super-resolved mages using the different types of dictionaries 
as well as to the original LR images. In the conclusion, section 6, we shall briefly 
describe the contribution of the paper and also highlight benefits of using certain 
types of implicitly constructed CS dictionaries conclusions. 
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2 Super Resolution 

Super-resolution (SR) is an inverse problem used as a pre-processing technique to 
recover a high-resolution (HR) image from one or more low-resolution (LR) images. 
Generally, SR techniques to obtain a HR image from an observed LR input image y 
may be modelled as a solution ࢞ of the matrix equation: 

    ࢟ ൌ ࢞࡮ࡿ ൅              (1)

where ࡮ is a point-spread function with a blurring effect, ܁ is a down sampling 
function, and   is additive noise. Various traditional non-CS based super-resolution 
techniques have been developed, and the most common of these are variants of the 
Iterative Back Projection (IBP) SR scheme which can super-resolve a single or mul-
tiple input LR image(s).  The standard single LR image IBP scheme generates the 
initial HR image x0 simply by decimating the pixels of the LR image y and using Bi-
cubic interpolation. At the nth iteration, n>0, an error image xe of the size of the x(n-1) 
image is calculated by: (1) convoluting the x(n-1) image with an appropriate degrada-
tion function, (2) down sample the resulting image to obtain y(n), and (3) xe  is ob-
tained from (y- y(n)) by up-sampling. The nth iteration output the nth version of the 
HR image simply by calculating x(n) = (x(n-1) + xe), which represents the back projec-
tion of the difference (y- y(n)) onto x(n-1). The iteration procedure terminates either 
when the energy of the error term (y- y(n)) is reduced below a certain threshold or the 
number of iterations reached a fixed maximum number. In [9], interesting variants of 
the IBP have been proposed that simply pack-project additional terms in each itera-
tion, representing high frequency information in x0. These variants include the use of 
Canny edge information and the Gabor filter to preserve edges in different directions.  

The main challenge in recovering ࢞ is the modelling of the unknown blurring func-
tion. Gaussian functions with different blurring effect have been considered as a suit-
able model for use in SR procedures, but they do not reflect severe degradation condi-
tions seen in surveillance scenarios. A suitable model can be based on the use of at-
mospheric turbulence functions of different strengths (i.e. degradation functions that 
model environmental conditions caused by variation in temperature, wind speed and 
exposure time) which extends the effect of the Gaussian functions. In the frequency 
domain such functions are of the form: 

,ݑሺܪ    ሻݒ ൌ ݁ି௞ሺ௨మା௩మሻఱ లൗ
        (2) 

where ݇ is a constant that reflects severity of blurring. We label degradation as se-
vere if  ݇  ሿ0.045 , 0.09ሿ ; mild (similar to most Gaussian blurring functions) if ݇  ሿ0.02, 0.04ሾ; and low if  ݇  ሿ0, 0.02ሾ, Figure 4 illustrate the effect for different 
values of ݇. In what follows, we shall adopt this model of degradation for a number 
of k values in these ranges to test performance of face recognition from LR images. 

3 Compressive Sensing 

Compressive sensing, also known as sparse recovery, is a novel paradigm of  
signal sampling that greatly relaxes the stringent limitations of the conventional 
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Shannon-Nyquist Sampling Theorem, for signals that can be can be approximated by 
a sparse expansion in terms of a suitable basis. Image compression tools (e.g. JPEG 
and JPEG2000) use a DCT or wavelet transforms to obtain different approximately 
sparse representation of any input image. The concatenation of 2 bases one con-
structed from wavelet functions and the other from sinusoid functions is expected to 
be of benefits for image processing/analysis tasks, [10]. Each of these bases provides. 
The underlying principle of CS is that the number of linear measurements needed to 
reconstruct a compressed signal should be proportional to the compressed size of the 
signal, not the uncompressed size. The central challenge for CS is the construction of 
preferably non-adaptive relatively small number of linear measurements that can 
guarantee the reconstruction of a sparse or approximately sparse signal. Such a set of 
linear measurements are represented by rows of an over complete dictionary, [11], i.e. 
an mxn matrix whose columns form a spanning set of m-dimensional vectors to be 
used to decompose the signal. Dictionaries generalize vector space basis, and are 
represented by overcomplete m ൈ n  matrices, ሺm ا nሻ,  whose columns are ex-
pected to form a pool of Թ୫ bases. In this case, any vector in Թ୫ can have multiple 
representations in terms of the different bases each capturing different features per-
haps at different scales. A main premise of this work is that good CS dictionaries can 
be constructed implicitly from certain pools of bases by concatenation.  

Once a suitable underdetermined dictionary ࡰ ൌ ሼ݀ଵ, ݀ଶ, … ݀௡ሽ א Թ௠ൈ௡ is created, 
the main step in CS based tools is then the recovery of the sparsest solution of the 
equation:  ࢟ ൌ  :where ࢟ is the observed vector, i.e. finding ෝ࢞ ߳Թ௡such that ,࢞ࡰ

 
ොݔ       ൌ min௬ԡݔԡ଴ ݕԡ ݋ݐ ݐ݆ܾܿ݁ݑݏ  െ  ԡଶ                   (3)ݔܦ

 
This ݈଴-minimization problem, known as the (P0) problem, is computationally NP-

hard. If x is sparse and D is suitably selected, then we can find a unique solution of 
the ݈ଵ- minimisation (P1) problem:  

 
ොݔ          ൌ min௬ԡݔԡଵ ݕԡ  ݋ݐ ݐ݆ܾܿ݁ݑݏ  െ  ԡଶ .                 (4)ݔܦ

 
This is a convex optimisation problem which is amenable to linear programming. 

Note that, if x is small, then the Least Square (LS) method can be used to solve the 
corresponding the ݈ଶ- minimisation (P2) problem: 

 

 
However, the LS solution is not desired in many applications such as when x is 

spiky. Therefore, the use of the ݈ଵ- minimisation to recover the solution of (P0) prob-
lem have been the subject of intense investigations.  Bruckstein et al, [10], discuss 
two basic questions about (P0): (1) Under what conditions, does it have a unique solu-
tion? and (2) Given a feasible solution, is there a simple test to verify that is a global 
minimizer?  We now discuss the dependence of these uniqueness requirements on 
certain parameters and properties of the matrix D.   
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The sparke an mxn matrix D, denoted by sp(D) is the minimum number of linearly 
dependent columns of D. It is clear that sp(D)≤ m+1.  Equality occurs when D has a 
full row rank, and then D is said to be of full sparke. 

Theorem 1: (see [10]) If every (sp(D)-1) columns of D are linearly independent then 
every (sp(D)/2)-sparse x can be recovered uniquely from ࢞ࡰ. //  

This theorem provides an efficient strategy, that we adopt here, for the implicit 
construction of suitable CS-dictionaries by concatenating certain sets of Թ௠ bases.  

An m x n dictionary D satisfies the Null Space Property (NSP) of order k if for 
each size k set Ω ⊂ {1,…,n} and nonzero vector z ε Ker(D),  

 

 
where    is obtained from z by making 0 all coordinates  not indexed by A ⊂ 

{1,…,n}.   

Theorem 2: ([12]) An mxn dictionary D satisfies NSP of order k iff every k-sparse 
solution x can be recovered by ℓ1-minimization. //  

It is not difficult to show that if D satisfies NSP of order k then every k columns of 
D are linearly independent. Consequently, NSP of order 2k guarantee uniqueness by 
Theorem 1 while Theorem 2 then showing the way of recovering the sparsest solu-
tion.  

Candes and Tao, [13], introduced Restricted Isometry Property (RIP) as sufficient 
for ݈ଵ - recovery: an  ݉ ൈ ݊   dictionary D, ݉ ا ݊,  satisfy the RIP of order ݇ if 
there is a constant 0 < δk < 1, such that for any ݇-sparse signal ݔ א Թ௡:  
 ሺ1 െ ԡ ଶଶݔ௞ሻԡߜ  ൑ ԡݔܦԡଶଶ ൑ ሺ1 ൅  ԡ ଶଶ                     (5)ݔ௞ሻԡߜ
 

The smallest δk is called the restricted Isometry constant (RIC) of order ݇, and if ܦ 
satisfies RIP of order ݇, then any 2݇-columns sub-matrix of D must be well- condi-
tioned, [14]. The condition number of a matrix is the ratio of its maximum to the  
minimum singular values. Checking this property for all 2k- columns submatrices is 

computationally infeasible as it requires exhaustive check of all ቀ2݊݇ቁ submatrices. 
The statistical version of the restricted Isometry property (STRIP) provides a compu-
tationally easier to check version of the RIP property. It requires computation of con-
dition numbers of sufficiently large uniformly randomly selected such submatrices. 
Gan et al [15], developed a STRIP performance bound in terms of the mutual cohe-
rence ߤ  of the dictionary which is an indicator of the dependence between columns 
of the matrix. The coherence of a matrix provides information about the likelihood of 
guaranteed recovery of the sparse solution, and is defined as the largest absolute nor-
malized inner product of pairs of columns a୧ and a୨, i.e.  
 
 

,zz c
11 ΩΩ ≤

Az



222 S.A. Jassim 

 

            µሺAሻ ൌ maxଵஸ୧ழ௝ஸ୬ หۃୟ౟,ୟౠۄหԡୟ౟ԡమฮୟౠฮమ                          (6) 

It is not difficult to show that if D is a dictionary with unit column vector and cohe-
rence μ then D satisfies RIP of order k with δk ≤ (k − 1)μ, (see [15]). When ݊  the coherence value has been shown, [15], to be bounded below by  ଵ√௠ , which is ,݉ب

reasonably tighter than the Welch bound ට ௡ି௠௠ሺ௡ିଵሻ. 
Due to unfeasibility of exhaustive search, we shall follow a statistical sampling ap-

proach when estimating the strength of RIP of the various dictionaries in terms of the 
condition number and coherence, or when testing for linear independence of the 2k 
columns submatrices of the dictionary. There are a number of efficient sparse recov-
ery algorithms that have been developed including the Homotopy method (LARS) 
and the Iteratively Reweighted Least Square method (IRLA), [12]. 

4 CS-Based Superresolution 

Here, we briefly describe a recently developed CS-based method to super-resolve low 
resolution degraded images which uses underdetermined dictionaries that are assumed 
to satisfy RIP. We list a number of approaches to dictionary construction including 
the LD approach, random constructions, and a new construction strategy that is inde-
pendent of training images but designed to implicitly be of full sparke. We shall test 
the strength of RIP, as described above, for the constructed dictionaries and use the 
corresponding pairs of dictionaries to reconstruct super resolved images from low 
resolution degraded face images.  

4.1 CS Approach for Image SR   

It requires the use of 2 CS dictionaries: a Low resolution matrix DL of size 100x512 
and a High resolution matrix DH of size 25x512. The input to this scheme is a de-
graded low row resolution small image Lr, and the output is super-resolved to double 
the size image that is meant to be of “high quality”. The Lr image is resized by deci-
mating its pixels and Bi-cubic interpolation to obtain double the size image LR which 
is still degraded. Three more versions of the LR image are created by applying 3 spa-
tial filters to highlights edges in different directions. These four images are subdivided 
into blocks of size 5, and the pixel values in the 4 versions are turned into a column 
vector of 100=4x25 by concatenation. In order to avoid the appearance of blocking 
artefacts, the LR image will be subdivided into overlapping blocks.   

Initialise a HR image of the same size of the LR image for the super-resolved im-
age. The 5x5 blocks are then processed iteratively as follows:  

 

 



 Face Recognition from Degraded Images – Super Resolution Approach 223 

 

1. Let y be corresponding 100-dimensional vector. 
2. Find the sparse solution z of the underdetermind equation    y  = DL z  
3. Calculate the 25-dimentional HR patch x using the matrix multiplication    

x = DH z ,  
4. Back-projection the 2-dimensional 5x5 version of x onto the existing HR. 

In the rest of this section we describe the pairs of Dictionaries DL and DH for the 
various dictionary construction strategies adopted in this paper. 

4.2 The Image-Based Learnt Dictionary 

This construction was proposed by Yang et al, (see [4]. [5], & [6]) and used for super-
resolution based face recognition. It is based on learning dictionaries using patches 
from a large training set of high resolution images of good quality that exhibit similar 
statistical characteristics of the pattern recognition task under investigation. We shall 
refer to this construction as LD dictionary. The DH and DL dictionaries are created as 
follows: 

1. A sufficiently large number of high resolution (HR) images (here Face im-
ages) are selected and each divided into patches of 5x5 pixels. Patches over-
lap.  

2. Randomly sampling raw patches from a training HR images, and each se-
lected patch is transformed into a normalised vector that is added as a col-
umn to the DH.  

3. Generate a set LR of blurred versions of the HR images,  and create 3 other 
filtered versions, and the columns of DL are constructed in a similar way as 
in above, but  by concatenating  the patches from the LR images and their 3 
filtered version. Again the columns are to be normalised. 

4.3 Random Dictionaries 

CS randomly constructed measurement matrices that satisfy the Restricted Isometry 
Condition include Gaussian, Toeplitz and Circular random Matrices. For Gaussian 
Random Matrix (GRM), the entries  ݔ௜,௝ of the CS matrix of size ݉ ൈ ݊ are indepen-
dently sampled from a normal distribution ݔ௜,௝~ܰሺ0,1/݉ሻ, the ݈ଶ-norm was used to 
normalize each columns in the dictionary. In order to recover super resolved image 
from a single LR image for face recognition via sparse representation, two overcom-
plete dictionaries ܦு ௅ܦ ,  of size 25 ൈ 512 and 100 ൈ 512 respectively have been 
generated from a zero mean Gaussian distribution with variance 1/25.  

Toeplitz-Circular Random measurement matrix (TCRM) are another class of RIP 
dictionaries that have been widely used. Bajwa et al. [16], have shown that Toeplitz-
structured matrices are sufficient to recover undersampled sparse signals. Toeplitz and 
Circular matrices of the size ݇ ൈ ݊ are respectively of the form:  
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T ൌ ൦ t୬     t୬ିଵ     … tଵt୬ାଵ     t୬     … tଶڭt୬ା୩ିଵ t୬ା୩ିଶ … t୩൪, and  C ൌ ൦t୬     t୬ିଵ     … tଵtଵ        t୬      … tଶڭt୬ିଵ  t୬ିଶ   … t୩ ൪ 

 
For image reconstruction, DHand  DL are generated as TCRM matrices, where the 

first row consists of standard Gaussian random variables, and the rest of the rows are 
permuted versions of the first row as shown above. 

4.4 Iteratively Constructed Full Spark Dictionaries 

Full-sparke dictionaries is class of full row rank overcomplete ݉ ൈ ݊ dictionaries ,  
where ݉ ا ݊,  so that each m-columns sub-matrix is a basis of Թ௠ . Here we de-
scribe an example on how to construct such matrices by starting with an invertible 
mxm matrix and iteratively appending a set of image independent linearly indepen-
dent ݉-column vectors in Թ௠ while maintaining the full sparke property after every 
addition. One way to maintain the full sparke is to insist that every new column can 
only be generated by the full columns of the previous inserted submatrices. In this, 
paper we present a simple example of such a dictionary, but in the future we shall 
investigate algebraic construction method using group finite actions on Թ௠.  

Our example of full sparke dictionaries, referred to as LID, is of the form:   ܦ ൌ ,௣భܣൣ ,௣మܣ … , ,௣ೖܣ  .௣ೖశభሻ൧ܣሺܥ
For i=1,..., k+1,  the ݌௜Ԣݏ,  are distinct real numbers >1,  and   

 

௣೔ܣ ൌ
ۈۉ
1ۇۈ                ଵ௣೔                     ଵ௣೔మ …  ଵ௣೔೘షభଵ௣೔               1                     ଵ௣೔ …  ଵ௣೔೘షమ             ڭଵ௣೔೘షభ      ଵ௣೔೘షమ                 ଵ௣೔೘షయ … 1 ۋی

  .ۊۋ

 
Note that k = n/m and the last sub-matrix of D is simply the first (n-km) columns. 

Then, the ݉ ൈ ݊  LID dictionary is obtained from the following matrix after norma-
lising its columns using the ݈ଶ-norm.  

For our experimental purposes we the LID high-dictionary DH is generated from 
using integers ݌௜ ൐ 1. For simplicity, the low-dictionary DL was created from a Stan-
dard Gaussian Random Matrix (GRM).  

4.5 Comparison of RIP Parameters for Different DH Dictionaries 

Here we present some comparisons of the “strength” of the RIP for the LD and LID 
dictionaries. Whenever exhaustive search is infeasible we conducted a statistical test-
ing by taking random sample of 100 cases. To test for full sparke property, we  
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Fig. 1. Determinant of submatrices from the 
High-resolution LD Dictionary 

Fig. 2. Determinant of submatrices from the 
High-resolution LID dictionary  

evaluated the determinants, as indicator of linear independence, for more than a hun-
dred randomly selected sample of 25 ൈ 25  submatrices of the corresponding DH 
dictionaries. Although in theory, the LD dictionary may statistically satisfy NSP of 
order 12, Figure 1 shows that the determinant of most 25x25 submatrices is so small 
(almost zero) and hence the full sparke property is not satisfied. In contrast, figure 2 
confirm that the LID is indeed fully sparke.  

The next experiment to calculate another RIP indicator, namely the condition num-
ber of 25x25 submatrices of 4 of the DH dictionaries for LD, LID. GRM and 
theTCRM. These condition numbers are expected to be bounded by RIC of order 2k, 
with k=12. Table 1, below, displays the mean and standard deviation of the condition 
numbers for 100 randomly selected submatrices and the condition number of the full 
size 25 ൈ 512 matrix. 

Table 1. Mean and Standard deviation for CN for a hundred random sub-matrices of different 
sizes 

submatrices 
Dictionaries 

LID LD GRM TCRM 
mean std mean std mean std mean std 

25x25 3.08 3.14 3.34E+16 1.79 E+17 279.36 597.79 85.19 155.68 
Full matrix 1.977  1.00E+15  1.43  1.453  

 
 

These results again demonstrate that the overcomplete LID dictionary is well-
conditioned in comparison to all others for the various submatrices but for the full 
matrix GRM and TCRM have similar condition numbers that are better than the LID.  
Moreover, the condition number of the LD is extremely large for all cases, which 
make these dictionaries very ill conditioned. 

Another test relates to calculating the row-rank and coherence values for the vari-
ous dictionaries. It is well known that the highest sparsity recovered signal for any 
dictionary = (1+ row rank)/2, and coherence μ must satisfy 0.2 =1/√m ≤ μ  ≤ 1. 
Again, results in Table 2 highlight the superiority of the LID dictionary. 
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Table 2. Row-rank and Coherence 

Dictionary  LID LD GRM TCRM 
Row Rank 25 24 25 25 
Coherence 0.9958 < 0.2 0.7438 0.7318 

 
 

Subset 1                                             Subset 2 

 

LL3-wavelet subband             LL3-wavelet subband 

 
LH3-wavelet subband LH3-wavelet subband

     

 
HL3-wavelet subband HL3-wavelet subband

Fig. 3. Recognition accuracy rates using different dictionaries and in comparisons with match-
ing in low-resolution 
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HH3-wavelet subband HH3-wavelet subband 

 
Fig. 3. (Continued) 

 
Finally, in order to test the viability of the CS-based SR scheme, we compared the 

visual quality of large set of  SR enhanced images obtained from the application of 
the various discussed dictionaries, as well as the IISR scheme and interpolation me-
thods. The results of the visual inspection reveal that there is little difference in the 
quality of the recovered HR image using the various dictionaries, but a noticeable 
improvement that can be noticed in SR methods, including IISR, over the low-
resolution images and interpolation methods at every level of degradation. Figure 3, 
below, show one example but this pattern was repeated over all the images. PSNR 
valuescalculated between the output SR image and the original images confirm the 
same pattern, but we omit these results. Unsurprisingly and regardless of the method 
used in the SR procedure, the quality of SR images decreases as the level of blurring 
increases. With increased level of blurring there is no difference in image quality 
obtained by different dictionary methods. But the dictionary methods produced slight 
improvement on the IISR method, and superiority over the interpolation methods at 
every level of blurring. 

5 Face Recognition – Experimental Results  

In this section, we shall compare the performance of face recognition using the cor-
responding super-resolved images. We test the performance of different dictionary 
methods as well as a state-of -the art methods to reconstruct super resolved face im-
age from a single LR image with different magnification blur. The image sets were 
sampled from a publically available face database and, comparisons recognition rates 
presented with matching in low-resolution domain. We use a simple but efficient 
wavelet-based face recognition scheme, whereby the training as well the matching 
image are wavelet decomposed to level 3 and each of the each of the subbands at 
level 3 (i.e. LL3, HL3, LH3 and HH3) is used as a face feature vector and Euclidian 
distance is used for matching against the face feature vectors of the templates.   

To test the performance of the wavelet face recognition schemes post the CS-based 
SR preprocessing schemes, we used face images from the Extended Yale B database. 
This database consists of 2,414 frontal-face images of 38 individuals. The cropped  
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6 Conclusion 

We have studied the RIP property for random, and not so random, constructions of 
CS related overcomplete dictionaries as well as an existing dictionary that trained on a 
set of high-resolution face images. These dictionaries were used to generate super 
resolved image with the aim of using for face recognition in uncontrolled conditions 
where the input is degraded blurred LR image with a wide range of degradation. This 
results effectively support the use of SR based techniques that employ CS dictionaries 
for recovering super-resolved images that are suitable for face recognition. More im-
portantly, that there is no need for using image sets for training dictionaries, because 
non-adaptive dictionaries perform equally well if not better in some cases.   In an 
attempt to find possible explanation, we conducted a number of tests of numerical 
matrix parameters relevant to the RIP condition. We note that the learning image-
based dictionary is highly ill conditioned and far from satisfying the RIP related con-
ditions discussed in the literature. Perhaps the use of image patches with the same 
statistical parameters of general face image patches compensate for the lack of RIP 
properties.  

Further studies are needed to test other implicit construction of RIP dictionaries. 
Indeed, we have developed a new method which aims to implicitly satisfy the known 
bounds on singular values. Such approaches can be exploited to use RIP dictionaries 
for revocable face biometric instead of the traditional random projection. 
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