
 

K. Mori et al. (Eds.): MICCAI 2013, Part II, LNCS 8150, pp. 698–705, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Modeling Dynamic Functional Information Flows  
on Large-Scale Brain Networks 

Peili Lv1, Lei Guo1, Xintao Hu1, Xiang Li2, Changfeng Jin3, Junwei Han1, 
Lingjiang Li3, and Tianming Liu2 

1 School of Automation, Northwestern Polytechnical University, Xi’an, China 
2 Department of Computer Science and Bioimaging Research Center, 

The University of Georgia, Athens, GA, USA 
3 The Mental Health Institute, The Second Xiangya Hospital, 

Central South University, Changsha, China 

Abstract. Growing evidence from the functional neuroimaging field suggests 
that human brain functions are realized via dynamic functional interactions on 
large-scale structural networks. Even in resting state, functional brain networks 
exhibit remarkable temporal dynamics. However, it has been rarely explored to 
computationally model such dynamic functional information flows on large-
scale brain networks. In this paper, we present a novel computational frame-
work to explore this problem using multimodal resting state fMRI (R-fMRI) 
and diffusion tensor imaging (DTI) data. Basically, recent literature reports in-
cluding our own studies have demonstrated that the resting state brain networks 
dynamically undergo a set of distinct brain states. Within each quasi-stable 
state, functional information flows from one set of structural brain nodes to oth-
er sets of nodes, which is analogous to the message package routing on the  
Internet from the source node to the destination. Therefore, based on the large-
scale structural brain networks constructed from DTI data, we employ a dynam-
ic programming strategy to infer functional information transition routines on 
structural networks, based on which hub routers that most frequently participate 
in these routines are identified. It is interesting that a majority of those hub rou-
ters are located within the default mode network (DMN), revealing a possible 
mechanism of the critical functional hub roles played by the DMN in resting 
state. Also, application of this framework on a post trauma stress disorder 
(PTSD) dataset demonstrated interesting difference in hub router distributions 
between PTSD patients and healthy controls.   

Keywords: structural brain networks, brain state changes, dynamic functional 
information flow, default mode network, post trauma stress disorder. 

1 Introduction 

The human brain is often described as a collection of specialized functional networks 
that flexibly interact with each other to support various perceptive, cognitive, or rest-
ing state functions [1]. From a computational perspective, such functional process 
essentially involves the participation of different brain areas in a temporal sequence, 
and also presents a spatial routine in structural brain networks. In this sense, the brain 
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network is analogous to the Internet, as both of them coordinate integral components 
to complete information processing and transition tasks. Essentially, the core compo-
nents in a computational network, i.e., the routers and dynamic links on the Internet, 
are critical to understand its working principles and mechanisms. In this context, 
therefore, a key question in understanding the working mechanisms of functional 
brain networks is to find out the dynamic information transition routines and key rou-
ter-like brain areas. Hence, in this paper, we are motivated to explore dynamic func-
tional information transition routines and the hub routers that play key roles in func-
tional brain network dynamics. 

Recently, perceptive, cognitive, or resting state activities on brain networks are re-
ported to be spanned by a set of distinct functional states [2-4]. A functional brain 
state is often defined as the quasi-stable interaction or synchronization between mul-
tiple cortical areas and the modulation of intrinsic circuits by feedback connection [5]. 
Growing evidence from the functional neuroimaging field [e.g., 2-3, 6-8] suggested 
that human brain functions are realized via dynamic functional interactions on large-
scale structural networks. Even in resting state, functional brain networks exhibit 
remarkable temporal dynamics [2-4, 6]. Thus, it is reasonable to hypothesize that the 
temporal transition of the functional information in each distinct brain state exhibits a 
proprietary routine that is spatially distributed on the structural routers of the brain 
networks. Notably, there could possibly exist distinct causalities which drive the dy-
namic information transition among the brain networks in each functional state. In-
spired by literature reports [e.g., 2-3, 6-8] and our observations, in this paper, we 
present a novel computational framework to explore the routines and routers of dy-
namic functional information transition on large-scale brain networks using multi-
modal DTI/R-fMRI data. In particular, we use a publicly available cortical landmarks 
localization system named Dense Individualized and Common Connectivity-based 
Cortical Landmarks (DICCCOL) [9] as a brain reference system for the representation 
of common human brain networks. The proposed computational pipeline that is com-
posed of three steps will be detailed in Fig. 1. As an application example, we used the 
computational pipeline to investigate the difference of dynamic transition routines and 
routers between patients with post trauma stress disorder (PTSD) and matched normal 
controls, and interesting results were obtained.  

2 Methods 

2.1 DFCS and Temporal Brain State Extraction 

In our study, we adopted the publicly available DICCCOL (http://dicccol.cs.uga.edu) 
brain reference and localization system [9] to localize large-scale structural brain 
networks. For each DICCCOL ROI, we extracted the corresponding R-fMRI signal Yi 

for the i-th DICCCOL, Fig. 1(a). To construct the Dynamic functional Connectivity 
Strength (DFCS), a sliding window with width d=14 [3] was used to parcellate Yi into 
temporal segments and the segment at time point t is: 

, ,{ | }i t i tmS Y t tm t d= ≤ < +                           (1) 

Where 1 ൑ ݐ ൑ 186. For each pair of nodes i and j, the functional connectivity FSi,j,t 
between them at time point t is calculated as the Pearson correlation coefficient:  
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Fig. 1. The flowchart of the proposed framework. Step 1, 2 & 3 are described in subsection 2.1, 
2.2 & 2.3, respectively. (a) Extraction of fMRI signal based on DICCCOL. (b) An exemplar 
DFCS profile of large-scale brain networks. (c) A brain state extracted from DFCS. (d) Brain 
state decomposition into N non-overlapped sub-networks (A-D for N=4 for example). (e) The 
activity peak (black bar) detection for each sub-network using a polynomial curve-fitting me-
thod. (f) Dynamic activation transitions among the sub-networks. (g) An exemplar visualization 
of the clustered sub-networks. (h) Illustration of routine tracing for a brain state. (i) An exem-
plar visualization of the traced routine. 
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The dynamic functional connectivity strength (DFCS) for node i at time point t is 
calculated as: 

358
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=
=                               (3) 

In general, DFCSi,t measures the overall functional interaction between node i and the 
rest of the ROIs at time t. It was used as a global measurement of the functional activ-
ity of the ROI in consideration, which has been adopted in the literature [3].  
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The extraction of the temporally changing brain states follows the similar semi-
automatic methods described in [3-4]. Then, an effective sparse coding algorithm [10] 
was employed to learn the representative dictionary for the semi-automatically parcel-
lated segments. As a result, each DFCS at time point t is assigned with a label by the 
sparsely represented dictionary (18 elements in total). The whole DFCS is then as-
signed with 18 different dictionary labels, and each corresponds to a center matrix 
representing the whole-brain network connectivity for corresponding labeled time 
points, which will be used in section 2.3. The continuous DFCS segment with the 
same labels for more than 10 time points (considered as sufficiently long segments) 
are extracted as a quasi-stable state, Fig. 1(b). At last, we obtained 101 states for the 
normal control group and 93 states for the PTSD patient group (details of the datasets 
in section 3). Mathematically, denote DFCSi={DFCSi,t|t=1,2,…,l} as the DFCS vector 
of the i-th ROI within a state, l is temporal length of the state.  

2.2 Dynamic Information Transition on Brain Networks 

In each temporally separated quasi-stable brain state, the dynamic transition of func-
tional activities of the ROIs may follow quite different routines. Since the timing 
order of functional activities is widely considered to reflect the causal effect in the 
neuroimaging field, e.g., in Granger Causality Modeling [11, 12], we then investigate 
the timing orders of synchronous activities among different sub-networks in each 
brain state. To model the dynamic transition of the activities of the ROIs in a given 
brain state, we cluster the 358 DICCCOL ROIs into non-overlapped sub-networks 
based on their DFCS similarities, Fig. 1(d). Here, our premise is that the subset of 
ROIs with temporally similar DFCS tends to be within the same sub-network, which 
has been commonly adopted as the criterion of functional network identification in 
the neuroimaging field [2, 6]. 

For the m-th state, the k-means clustering algorithm is adopted to group the 358 
DICCCOL ROIs into N sub-networks (clusters). Denote Gn as the n-th sub-network. 

Denote (n)
DFCS  as the mean of DFCS of Gn. 

( ) 1n
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i GG
DFCS DFCS

∈
= 

                           
(4) 

Here |Gn| is the total number of ROIs in sub-network Gn. 
The causal relationship among the extracted sub-networks is inferred by the tem-

poral activity orders. That is, the activity of a sub-network might induce the activity 
of another sub-network, and results in the dynamic activity transitions among the sub-
networks. In order to model the temporal activity transition patterns among the sub-

networks, the temporal activity peak in each sub-network is detected. We fit (n)
DFCS  

using a cubic polynomial function f(x), Fig. 1(e). Then, the temporal activation peak 
point ( )nT  of sub-network Gn is detected as: 
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where T(n) takes the cubic function maxima q if q is located in the segment time inter-
val [0, l]. Otherwise, it takes the maximum value point of 

( )n
DFCS . After temporal 

activity peak detection, the activities of the N sub-networks in the m-th brain state are 
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temporally sorted, Fig. 1(f), in which the concept is similar to the temporal causality 
modeling [11, 12], in order to infer the dynamic functional information flows among 
the sub-networks. 

2.3 Temporal Information Transition Routine Modeling 

To represent the routine consisting of network ROIs, we select one node from each 
sub-network as the “router”, so the routine consists of N nodes from N sub-networks 
in a brain state that could represent the activation transitions of the corresponding 
state, Fig. 1(h)-(i). As described in section 2.1, by using a sparse coding method [10], 
we encoded the functional connectivity pattern through the whole time series at each 
point into 18 discrete and common functional connectivity (CFC) matrices. As a re-
sult, each functional brain state now corresponds to a CFC matrix.  

The causal relationship among sub-networks might rely on the functional interac-
tion among a specific set of ROIs. We hypothesize that the optimal routine should not 
contain weak connectivity that harms the overall efficiency, which could be obtained 
by maximizing the multiplication of functional connectivity between each two con-
secutive ROIs located in the transition path, as it has much less tolerance to a single 
weak connectivity. Denote E={eij|i,j=1,2,…,358} as the edge set in brain network, 
CFC(eij) as the element of the CFC matrix of the corresponding state, which 
represents the functional interaction between ROI i and j in the specific state.  

In the n-th activated sub-network Gn. P is the multiplication of the edges between 
N sub-networks. L={eij| 1, ,1n ni G j G n N+∈ ∈ ≤ < } is the routine. Since the high interac-

tion between the ROIs from different sub-networks predicts the transition of the activ-
ity, the routine that the transition of the activities follows is detected as: 

1

1 1( ), ,
N
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−
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L
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Eq. (7) is solved by the dynamic programming method [13]. The two steps of the 
algorithm are briefly summarized as follows. 

Step 1 (Recursion): 

1, 1iP =                                      (8) 
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Step 2 (Routine back tracking): 

,arg max( )
N
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=
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1 ( , )nnx Ptr n x− =                                (12) 
Pn,j is the maximization of multiplication of functional connectivity from the first sub-
network until the j-th ROI in the n-th sub-network (j∈Gn), with one node from each 
previous activated sub-network. Here, xn represents the n-th nodes (selected from the 
n-th sub-network) located in the routine. In this algorithm, the routine is retrieved by 
saving back pointers that remember which ROI was used in Eq. (9). Ptr(n,j) is the 
back pointer function that returns the ROI i that maximizes Eqs. (9) and (10). 
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2.4 Routers Identification 

The probability that a given ROI is a router is inferred as the frequency that the net-
work ROI occurs in the detected routines. Denote M as the total number of states of 
the dataset (M=101 for the normal control dataset and M=93 for the PTSD patient). 
And for the m-th state, denote ( )m

iδ as the label that indicates the i-th ROI’s occur-

rence in the m-th state. Denote iδ  as the overall router frequency of i-th ROI in all the 

M states normalized by dividing MൈN. 

( )
( ) 1

0

m
m

i
i V

otherwise
δ

 ∈



= ，

1

( )1 M

m

m
i iM N

δ δ
=

=
×                 (13) 

V(m) is the set of nodes in the routine for the m-th state. N is the parameter of number 
of sub-networks. 
 

 
Fig. 2. Router frequency comparison between normal controls and PTSD patients. The upper 
panel is for control subjects and the bottom panel is for patient subjects. (a), (b) and (c) corres-
ponds to results with the number of clusters as 4, 6, and 8.  

3 Results 

The methods in section 2 have been applied on the following dataset. Post-traumatic 
stress disorder (PTSD) patients and controls were recruited under IRB approvals. Mul-
timodal DTI and R-fMRI datasets for 98 subjects including 53 adult normal controls 
and 45 adults PTSD patients were acquired on a 3T MRI scanner. Acquisition parame-
ters for the scans were as follows. R-fMRI: 64×64 matrix, 4mm slice thickness, 220 mm 
FOV, 30 slices, TR=2s; DTI: 256×256 matrix, 3mm slice thickness, 240mm FOV,  
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50 slices, 15 DWI volumes, b-value = 1000. Pre-processing steps of the DTI and R-
fMRI datasets are referred to methods in [3-4].  

3.1 Frequent Router Comparison of PTSD Patient and Normal Control 

The frequencies that the DICCCOL ROIs occurred in the detected routines are quanti-
tatively measured. Fig. 2 shows the normalized router frequency ߜ௜ described in sub-
section 2.4 on PTSD patient and healthy control datasets. The result shows the overall 
consistency and reproducibility, as well as noticeable difference between normal con-
trol and PTSD patients. In Fig. 2, it is clear that the distribution of frequent routers 
among PTSD patient subjects is more widespread. In particular, some area, e.g., the 
anterior area (shown in dashed red box), are detected with higher router frequency 
among PTSD patient subjects than normal control subjects, which is in agreement 
with previous literature reports that anterior areas are involved in the neural circuitries 
in PTSD and they are hyper-active [14, 15].  

 

Fig. 3. Neuroscience interpretation of frequent routers. (a)-(c) Frequent routers located in the 
DMN, with number of clusters as 4, 6 and 8 respectively. The color-bars are on the right side. 
(d) Volumetric image with the default mode network. 

3.2 Neuroscience Interpretation of Frequent Routers 

We performed the same analysis (section 2) on all of 101 brain states (section 3.1) in 
the normal controls and summarized the results in Figs. 3(a)-(c). It is interesting that a 
majority of most frequent router nodes are located within the default mode network 
(DMN) [16], particularly the posterior cingulate cortices, as highlighted by the orange 
oval shapes. For visual comparison purpose, a volumetric image showing the DMN 
peak nodes derived from applying group-wise ICA [17] on R-fMRI data is provided 
in Fig. 3(d). Our result in Figs. 3(a)-(c) is quite consistent with current literature re-
ports on the vital roles played by the DMN in resting state functional activities [16, 
18]. Importantly, our work from a dynamic functional information flow perspective 
reveals a possible novel mechanism of DMN: it serves as the functional information 
transition hub, as demonstrated in Figs. 3(a)-(c). 

4 Conclusion 

In this paper, we presented a novel computational framework to explore the routines 
and frequent routers of dynamic functional activity transitions in large-scale brain 
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networks. Experimental results have shown that our methods and results are reproduc-
ible and robust to different datasets and experimental parameters. Importantly, our 
results demonstrated a possible mechanism of the DMN in regulating functional activ-
ities in resting state: it possibly serves as the hub for functional information transition. 
The framework was also applied on multimodal DTI/R-fMRI datasets of PTSD pa-
tients and matched normal controls, and meaningful difference of the router frequency 
between PTSD patients and the normal controls was observed. 
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